
Kadanoff Scaling

Even before the formal and mathematically controlled formulation of the

renormalization group techniques became available, Kadanoff proposed a phys-

ical picture providing a conceptual basis for the scaling behavior. This approach,

which later become the standard language of critical phenomena, emphasized that

effective coupling constants should be viewed as scale-dependent quantities, giving

rise to the ideas of renormalization.

Open questions

We have seen that a remarkable classification of experimental findings around the critical

point follows from the Widom’s scaling hypothesis, leading to a number of critical exponent

relations [the last one follows from the scaling of the correlation function χ(R) (Problem

3.1)]

γ + 2β = 2− α; δ =
γ

β
+ 1; dν = 2− α; γ = (2− η)ν.

Thus instead of six independent exponents α, β, γ, δ, ν, and η, in fact there are only two

independent parameters! Even more remarkably, experiments and numerical simulation

strongly suggested that their values are universal: they only depend on the symmetry of

the order parameter and the dimensionality of space, but not on details such as the lattice

structure, the range or the precise form of the interactions. But why?

Kadanoff’s scaling picture

Early on (1065) Kadanoff made a few reasonable assumptions, which provided a plausible

scenario to the mechanism for the critical scaling. Subsequent developments of the renormal-

ization group method (Wilson’s work came in 1971) provided rigorous justifications for these

assumptions, as we will see shortly. For now, we will take these assumptions as granted, and

will explore what the consequences for the critical behavior may be.

We have seen that close to the critical point large fluctuations emerge, with a charac-

teristic spatial scale given by the correlation length ξ � a (much longer then the lattice
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spacing). If these large distance fluctuations dominate the critical behavior (as suggested

by the Ginzburg criterion), then it seems reasonable that the details of the system on short

scales (e.g. form of the lattice, or the interaction range) become irrelevant, as the large

fluctuations ”wash out” these details. If this is true, then all systems in the critical region

should behave in the qualitatively the same way (i.e. should have same critical exponents),

and should be described by the same effective theory. Kadanoff early work outlined how

such an effective theory should be constructed in principle, as follows.

Leo KadanoffLeo Kadanoff

1. Consider an Ising model on a lattice with spacing a, with Hamiltonian

−βH = K
∑
<ij>

SiSj + h
∑

i

Si.

We expect a second order phase transition to take place for K = Kc ∼ O(1), h = 0.

2. Near the critical point, we want to construct an effective theory describing large-scale

fluctuations, which we assume dominate the critical behavior. To do this, we want
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to introduce new variables (new degrees of freedom), describing large ”droplets”. To

do this, we group spins into ”blocks” of linear size ba (b > 1), thus containing Nb = bd

spins in each block. The block-spin variable

S̃k = ζ

Nb∑
ik=1

Sik ,

where the index ik runs over all the spins in the k-th block. The constant ζ will remain

unspecified; it is typically chosen so that the Hamiltonian retains the same form under

rescaling. Note that there are many different configuration of the spins {Sik} that

produce the same value of S̃k.

3. Now we want to eliminate the short distance fluctuations, by fixing the value of S̃k

for each block, but summing in the partition function over all different configurations

consistent with this constraint. Formally, we can write

Z =
∑
{Si}

e−βH[Si] =
∑
{eSi}

e−β eH[eSi],

e−β eH[eSi] =
∑
{Si}

∏
k

δ

(
S̃k − ζ

Nb∑
ik=1

Sik

)
e−βH[Si].

The procedure we outline here is in principle exact. What is not clear, though, is

what is the effective Hamiltonian −βH̃[S̃i] describing the block-spins, after we summed

over the internal configurations within each block. In principle, many new terms (e.g.

four-spin interactions of the form K4

∑
Si1Si2Si3Si4) can be generated!

4. We assume that we are lucky (or that we started with a correct ”bare” Hamiltonian),

and that the new Hamiltonian has precisely the same form

−βH̃ = K(b)
∑
<ij>

S̃iS̃j + h(b)
∑

i

S̃i,

except for new values K(b) and h(b) of the coupling constants. NOTE: if we strictly

consider the ”bare” theory with Ising spins Si = ±1, then the above definition will

produce variables S̃k which are not Ising spins any more (they can take many, not

two values). However, we temporarily disregard these ”details”. The essential content

of Kandanoff’s idea is that if we start with the right variables (not necessarily Ising

spins), then the form of the Hamiltonian will remain invariant.
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What have we accomplished? Well, the same partition function (i.e. the same free energy)

is now calculated from a new lattice model, with lattice spacing ã = ba, and new lattice

variables S̃k. Consider the free energy per unit cell (site) as f(K, h). The free energy per

unit volume is

fv = a−df(K, h).

At this point note that in general, the free energy per unit volume is a physical quantity

that can be calculated either from the old or the new lattice model. In contrast, the quantity

f(K, h) is a quantity associated with a given lattice model, and thus depends only on the

corresponding coupling constants. We get

fv = a−df(K, h) = (ba)−d f(Kb, hb),

or

f(h,K) = b−df(Kb, hb).

What about the correlation length? Well, the same argument can be used again! If we define

the correlation length per lattice spacing as ξ, and the quantity per unit length ξa = aξ,

then

ξa = aξ(K, h) = baξ(Kb, hb),

or

ξ(K, h) = bξ(Kb, hb),

Critical point and the β-function

The renormalization group (RG) procedure relates a lattice model with spacing a, and

coupling constants K and h, to another lattice model with spacing ba, and coupling constants

Kb and hb. The key assumption of Kadanoff is that both models describe precisely the same

physical system. However, each lattice model in question has a critical point at the same

K = Kc! But the coupling constants K and Kb are not the same! One is closer to Kc

then the other. Therefore, and as we can expect, one lattice model is closer to criticality

then the other. In particular, the ”rescaled” model has a shorter correlation length (since

ξ(Kb, hb) = ξ(K, h)/b), and is thus further from criticality.

From the physical point of view this makes perfect sense. Both models describe the same

physical system, but since the new model has a larger lattice spacing, then the correlation
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length per unit cell is shorter in the new model. What is interesting is that this result is

true on both sides of the transition! Since we expect ξ to decrease as we depart from the

critical point, we conclude that under rescaling, in RG language we say that under rescaling

the coupling constant ”flows” away from its critical value.

Next, we examine what happens if K is close to Kc. If K is precisely at Kc, then Kb = K;

otherwise it moves away. The critical point is identified as a ”fixed point” of the RG flow.

However, if we start close to Kc, then in each iteration we will move by a very small amount.

But what is the precise b-dependence? Note that making n iterations is identical as replacing

b by bn. We concentrate on the vicinity of the critical point, where we need many iterations

to move away. We can just as well consider a very large b, and we can use the continuum

approximation (i.e. think of b as a real number). We want to know by how much does t

change as we make one more iteration, i.e. if we change b infinitesimally. We define the

”β-function”

βK(K) =
dKb

d ln b
.

The critical point is identified by β(Kc) = 0, since then K does not change under iteration

(i.e. it is a fixed point). Generally, βK(K) is a smooth (analytic) function of K, and we can

write

βK(K) ≈ λt(K −Kc).

To solve the differential equation, we introduce the deviation from the critical point t =

K −Kc, and we find

t(b) = bλtt.

Similarly, in presence of a magnetic field, we get

h(b) = bλhh.

Critical exponents

Using these results, we obtain scaling expressions for physical quantities, from which all

critical exponents can be obtained. For example, the correlation length satisfies

ξ(t, h) = bξ(bλtt, bλhh).
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The scaling parameter b can be chosen at will, and by specifying b = t−1/λt , h = 0, we

conclude

ξ(t, 0) ∼ t−1/λt .

The correlation length exponent is

ν =
1

λt

.

Similarly, we obtain a scaling expression for the free energy density

f(t, h) = b−df(bλtt, bλhh).

By choosing again b = t−1/λt = t−ν , we find

f(t, h) = tdνf(1, h/tλtν).

This is precisely the form identical as the Widom’s scaling law, and we read-off the exponents

2− α = dν; ∆ = λhν.

Note that we have not only provided justification for Widom’s free energy scaling hypothesis,

but we have also derived the hyperscaling relation, which under phenomenological scaling

required an additional assumtion. These result provide our first glimpse to the beauty and

power of the RG approach.

What, of course, remains to be done, is to explicitly demonstrate that Kadanoff’s assump-

tions are valid. In the following lecures we examine several specific model calculations where

the RG construction can be carried our in technical detail, providing also explicit results for

the parameters λt and λh, thus giving values for all the critical exponents corresponding to

a given model.


