
Problem set 6

1 Calculate the specific heat (at constant density) and the linear magnetic suscetibility of a free elecron gas of

constant density in the low temperature limit. For simplicity, assume that the electronic density of states is

g(ω) = aω1/2, and keep only the first nonvanishing term in the low temperature expansion. Explicitely account

for the temperature dependence of the chemical potential in each case. How good was the approximation,

made in class, of ignoring the temperature dependence of µ? (The following (Somerfeld) expansion of the fermi

function may be useful f(ε) ≈ θ(µ− ε)− π2

6 (kBT )
2
δ′(ε− µ).)

Solution. In order to calculate the temperature dependence of the chemical potential, we must first calculate

the electron density n.
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Since the gas has constant density, n does not change. Thus to lowest order in T , we can write

n = n
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)3/2
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)
,

or solving for the chemical potential

µ(T )− µ0 = −π
2
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Now we are in a position to solve for the energy and specific heat.

e =

∫
dωωg(ω)f(ω) = 2a

∫ ∞

0

dωω3/2f(ω) ≈ 4

5
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1

2
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To lowest order in T , this is

=
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However, we cannot neglect the temperature dependence of µ
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Expanding, and keeping only the lowest powers in T , we obtain

e =
3

5
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5π2
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)
.

The specific heat at constant density is then given by

C = kB
kBT

µ0
n
π2

2
=

2π2

3
k2
BTg(µ0)

In order to calculate the linear susceptibility, we must determine the magnetization of the gas to lowest order

in the applied field H. This is given by the difference of the spin up and down densities. The spin up density

is for example

n↑ =

∫
dωg(ω + µBH)f(ω) ≈

∫
dω (g(ω) + µBHg

′(ω)) f(ω) .
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Then the magnetization is

m = µB(n↑ − n↓) = 2µ2
BH

∫
g′(ω)f(ω)dω ,

or, integrating by parts

m = −2µ2
BH

∫
dωg(ω)f ′(ω) .

Clearly the lowest nonvanishing term is the zero temperature result, for which f ′(w) = −δ(w − µ0)

m = 2µ2
BHg(µ0) χ = 2µ2

Bg(µ0) = 2µ2
Baµ

1/2
0

2. (from Pines and Nozieres) As described in the assignment, this problem reduces to the calculation of ∂N/∂µ

(or its inverse). We may use Eq. 112, and the formalism leading up to it. Since the local energy of a quasiparticle

at the fermi surface is always the chemical potential, when µ increases by an amount dµ, the local distribution

of particles changes to n(ε̃p − µ− dµ). Then

δn̄p = −dµ∂np

∂εp

For an isotropic system, δn̄p is isotropic and spin independent (symmetric). Then using Eq. 112, we find

δnp =
δn̄p

1 + F s0
= −∂np/∂εp

1 + F s0
dµ

If we integrate over all momentum state, then we get

∂N

∂µ
=
D(EF )

1 + F s0

Then, using the relation given in the assingment, we get for the speed of first sound

s2 =

(
p2
F

3mm∗

)
(1 + F s0 )

Using very similar arguments, we may calculate the Spin susceptibility of a fermi gas to lowest order using

the Landau Fermi Liquid theory. You should get

χP =
m∗pF
π2h̄3

β2

1 + F a0
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