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In this chapter we shall study the dynamics of particles and fields. For a particle,

the relativistically correct equation of motion is

dp

dt
= F (1)

where p = mγu; the corresponding equation for the time rate of change of the

particle’s energy is
dE

dt
= F · u. (2)

The dynamics of the electromagnetic field is given by the Maxwell equations,

∇ · E(x, t) = 4πρ(x, t) ∇ ·B(x, t) = 0

∇× E(x, t) +
1

c

∂B(x, t)

∂t
= 0 ∇×B(x, t)− 1

c

∂E(x, t)

∂t
=

4π

c
J(x, t). (3)

These are tied together by the Lorentz force which gives F in terms of the electro-

magnetic fields

F = q
[
E +

1

c
(u×B)

]
(4)

and by the expressions for ρ(x, t) and J(x, t) in terms of the particles’ coordinates

and velocities

ρ(x, t) =
∑
i qiδ(x− xi(t))

J(x, t) =
∑
i qiui(t)δ(x− xi(t)).

(5)

In view of the fact that we already know all of this, what further do we want to

do? Two things: (1) Formulate appropriate covariant Lagrangians and Hamiltonians

from which covariant dynamical equations can be derived; and (2) applications.

1 Lagrangian and Hamiltonian of a Charged Par-

ticle in an External Field

We want to devise a Lagrangian for a charged particle in the presence of given applied

fields which are treated as parameters and not as dynamic variables. This Lagrangian
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is to yield the equations of motion Eqs. (1) and (2) with F given by the Lorentz force.

These equations can be written as

dpα

dt
=

q

mcγ
F αβpβ (6)

which is almost in Lorentz covariant form. A more obviously Lorentz covariant form

can be obtained by using the fact that the infinitesimal time element dt can be related

to an infinitesimal proper time element dτ by dt = γdτ . Then we have

dpα

dτ
=

q

mc
F αβpβ. (7)

To get a Lagrangian from which these equations follow, we postulate the existence

of the action A which may be expressed as an integral,

A =
∫ b

a
dA, (8)

over possible “paths” from a to b. The action is an extremum for the actual motion

of the system.

x

t
Possible paths which contribute to
the action.

In this case, the system consists of a single particle. The paths have the constraint

that they start at given (xa, ta) and end at (xb, tb).

Next comes a delicate point. We could say that the first postulate of relativity

requires that A be the same in all inertial frames1, which elevates the action and its

1This argument is (elegantly) made in The Classical Theory of Fields
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consequences to “law of nature” status. It seems better to regard the invariance of A

as an assumption or postulate in its own right and to see where that leads us.

Rewrite Eq. (8) as follows:

A =
∫ b

a
dA =

∫ tb

ta

dA

dt
dt ≡

∫ tb

ta
Ldt. (9)

This equation expresses nothing more than the parametrization of the integral using

the time and the definition of the Lagrangian L as the derivative of A with respect

to t. Let us further parametrize the integral using the proper time τ of the particle,

A =
∫ τb

τa
Lγdτ (10)

where we use dt = γdτ , γ = 1/
√

1− u2/c2, u being the particle’s velocity as measured

in the lab frame or the frame in which the time t is measured. The proper time is

an invariant, so if we believe that A is one also, we have to conclude that Lγ is an

invariant. This statement of invariance greatly limits the possible forms of L.

1.1 Lagrangian of a Free Particle

Consider first the case of a free particle. What invariants may we construct from the

properties of a free particle? We have only the four-vectors p̄ and x̄. The presumed

translational invariance of space rules out the use of the latter. That leaves only the

four-momentum and the single invariant pαpα = m2c2 which is a constant. Hence we

are led to Lγ = C where C is a constant. Hence, L = C/γ and

A = C
∫ τb

τa
dτ = C

∫ tb

ta
dt
√

1− u2/c2. (11)

We may find the constant C by appealing to the nonrelativistic limit and expanding

in powers of u2/c2.

A ≈ C
∫ tb

ta
dt

(
1− u2

2c2
+ · · ·

)
. (12)
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The term proportional to u2 should be the usual nonrelativistic Lagrangian of a free

particle, mu2/2. This condition leads to

C = −mc2 (13)

and so

Lf = −mc2
√

1− u2/c2 (14)

is the free-particle Lagrangian.

1.1.1 Equations of Motion

The equations of motion are found by requiring that A be an extremum,

δA = δ
(∫ tb

ta
dt L

)
= 0. (15)

The path x(t) is to be fixed at the end points ta and tb, δx(ta) = δx(tb) = 0. Writing

L as a function of the Cartesian components of the position and velocity, we have,

allowing for possible position-dependence which will appear if the particle is not free,

L = L(xi, ui, t), and

δA =
∑

i

∫ tb

ta
dt

[(
∂L

∂xi

)
δxi +

(
∂L

∂ui

)
δui

]
. (16)

But δui is related to δxi through ui = dxi/dt, so

δA =
∑

i

∫ tb

ta
dt

[(
∂L

∂xi

)
δxi +

(
∂L

∂ui

)
δ

(
dxi
dt

)]

=

(
∂L

∂ui

)
δxi

∣∣∣∣∣

tb

ta

+
∫ tb

ta
dt

[
∂L

∂xi
− d

dt

(
∂L

∂ui

)]
δxi(t) (17)

where we have integrated by parts to achieve the last step. The first term in the final

expression vanishes because δxi = 0 at the endpoints of the interval of integration.

Arguing that δxi(t) is arbitrary elsewhere, we conclude that the factor [...] in the

final expression must vanish everywhere,

d

dt

(
∂L

∂ui

)
− ∂L

∂xi
= 0 (18)
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for each i = 1, 2, 3.

These are the Euler-Lagrange equations of motion. Let’s apply them to the free-

particle Lagrangian Lf ,

∂Lf
∂xi

= 0 and
∂Lf
∂ui

= mγui, (19)

so
d

dt
(mγu) = 0 (20)

is the equation of motion. It is the same as

dp

dt
= 0 (21)

which is correct for a free particle.

1.2 Lagrangian of a Charged Particle in Fields

Next suppose that there are electric and magnetic fields of roughly the same order of

magnitude present so that the particle experiences some force and acceleration. Then

L = Lf +Lint where Lint is the “interaction” Lagrangian and contains the information

about the fields and forces. For the action to be an invariant, it must be the case

that

Aint ≡
∫ tb

ta
Lintdt (22)

is an invariant which means Lintγ has to be an invariant. Now, in the nonrelativistic

limit one has, to lowest order, L = T − V with V = qΦ, so we have in this limit

Lintγ = −qΦγ = −qEΦ/mc2 = −(q/mc)p0A
0. This is not an invariant but can be

made one by including the rest of p̄ · Ā2, and we expect that the result is valid not

just in the nonrelativistic limit but in general:

Lintγ = −
(
q

mc

)
pαA

α. (23)

2We have little choice other than this form since we only have the p, x and A four-vectors to

work with
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This choice of Lint gives the desired invariant and reduces to the correct static limit.

It is the simplest choice of the interaction Lagrangian with the following properties:

1. Translationally invariant (in the sense that it is independent of explicit depen-

dence on x; the potentials do depend on x)

2. Linear in the charge (as are the forces on the particle)

3. Linear in the momenta (as are the forces)

4. Linear in the fields (as are the equations of motion of the particle)

5. A function of no time derivatives of pα (appropriate for the equations of motion)

1.2.1 Equations of Motion

Let us proceed to the Euler-Lagrange equations of motion. The total Lagrangian is

L = −mc2
√

1− u2/c2 +
q

c
u ·A− qΦ; (24)

∂L

∂xi
=
q

c
u · ∂A

∂xi
− q ∂Φ

∂xi
∂L

∂ui
=

mc2

√
1− u2/c2

ui
c2

+
q

c
Ai, (25)

so
d

dt

(
∂L

∂ui

)
=

d

dt
(mγui) +

q

c

∂Ai
∂t

+
q

c
(u · ∇)Ai. (26)

Notice the last term on the right-hand side of this equation. It is there because when

we take the total time derivative, we must remember that the position variable x on

which A depends is really the position of the particle at time t, so, by application of

the chain rule, we pick up a sum of terms, each of which is the derivative of A with

respect to a component of x times the derivative of that component of x with respect

to t; the last is a component of the velocity of the particle.
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Finally, the equations of motion are

d

dt
(mγui) = −q

c

∂Ai
∂t
− q

c
(u · ∇)Ai − q

∂Φ

∂xi
+
q

c
u · ∂A

∂xi

= qEi +
q

c
u · ∂A

∂xi
− q

c
(u · ∇)Ai. (27)

These are supposed to be familiar; consider

(u×B)i = [u× (∇×A)]i = [∇(u ·A)− (u · ∇)A]i = u · ∂A

∂xi
− (u · ∇)Ai. (28)

Comparison of this expansion with Eq. (27) demonstrates that the latter can be

written as
dpi
dt

= qEi +
q

c
(u×B)i. (29)

1.3 Hamiltonian of a Charged Particle

One can also make a Hamiltonian description of the system. Introduce the canonical

three-momentum π with components

πi ≡
∂L

∂ui
= γmui +

q

c
Ai = pi +

q

c
Ai. (30)

Then the Hamiltonian3 is

H = π · u− L = π · u +mc2
√

1− u2/c2 + qΦ− q

c
(u ·A). (31)

We want H to depend on x and π but not on u. To this end consider how to write

u in terms of π,

π =
mu√

1− u2/c2
+
q

c
A, (32)

or (
π − q

c
A
)2
(

1− u2

c2

)
= m2u2 (33)

3The hamiltonian H(q, p) obtained from the Lagrangian through a Legendre transformation

H =
∑
i piq̇i − L(q, q̇)
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which may be solved for u to give

u = c
cπ − qA√

m2c4 + (cπ − qA)2
(34)

Use of this result in the expression for the Hamiltonian leads to

H =
√
m2c4 + (cπ − qA)2 + qΦ. (35)

The development of Hamilton’s equations will be left as an exercise.

The Hamiltonian is the 0th component of a four-vector. Notice, from Eq. (35),

that

(H − qΦ)2 − (cπ − qA)2 = m2c4, (36)

is an invariant. This invariant is the inner product of a four-vector with itself. The

spacelike components are cπ− qA = cp, and the timelike component is H− qΦ. The

vector is just the energy-momentum four-vector in the presence of fields,

pα = (E/c,p) =
(

1

c
(H − qΦ),π − e

c
A
)
. (37)

1.4 Invariant Forms

Next we are going to repeat everything that we have just done, but in a manner that

is “manifestly” covariant. That is, we want to rewrite the Lagrangian in terms of

invariant 4-vector products. We can write the free-particle Lagrangian as

Lf = −mc2
√

1− u2/c2 = −1

γ

√
E2 − p2c2 = − c

γ

√
pαpα = −mc

γ

√
UαUα (38)

where

Uα = (E/mc,p/m) ≡ dxα/dτ (39)

is a four-vector we shall call the four-velocity. The action of the free particle is

A = −
∫ tb

ta
dt γ−1mc

√
UαUα = −mc

∫ τb

τa
dτ
√
UαUα (40)
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Note the manifestly invariant form. However, note that we must also impose the

constraint UαUα = c2. Thus we may not freely vary this action to find the equations

of motion. There are two ways to overcome this. First, we could introduce a Lagrange

multiplier to impose the constraint4, or we could introduce an additional degree of

freedom into our equations, and use it to impose the constraint a posteriori. Following

Jackson, we will follow the later (less conventional) route. To this end we rewrite the

action, and introduce s.

A = −mc
∫ τb

τa

√
dxαdxα = −mc

∫ sb

sa
ds

√

gαβ
dxα

ds

dxβ

ds
(41)

where the path of integration has been parametrized using some (invariant) s. We

shall now treat each dxα/ds as an independent generalized velocity, and the La-

grangian takes on the functional form L(xα, dxα/ds, s). This (more general) parametriza-

tion of the action integral is just as good as the standard one using the time; the

Euler-Lagrange equations of motion, found by demanding that A be an extremum,

are familiar in appearance,

d

ds

(
∂L̃

∂(dxα/ds)

)
− ∂L̃

∂xα
= 0 (42)

In this case, we obtain the equation of motion

mc
d

ds


 dx

α/ds√
dxβ

ds

dxβ
ds


 = 0 (43)

These velocities are constrained by the condition
√

gαβ
dxα

ds

dxβ

ds
ds = cdτ (44)

because there are really only three independent generalized velocities, so that

m
d2xα

dτ 2
= 0 (45)

4This approach is discussed in Electrodynamics and Classical Theory of Fields and Par-

ticles by A.O. Barut, Dover, page 65
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Analyzing and including the interaction Lagrangian in the same manner leads to

a total Lagrangian and an action which is

A = −
∫ sb

sa
ds


mc

√

gαβ
dxα
ds

dxβ
ds

+
e

c

dxα
ds

Aα(x)


 ≡ −

∫ sb

sa
ds L̃. (46)

The equation of motion may be found in the same manner and in the present appli-

cation these turn out to be

m
d2xα

dτ 2
=
e

c
(∂αAβ − ∂βAα)

dxβ
dτ

, (47)

and they are correct, as one may show by comparing them with the standard forms.

The corresponding canonical momenta are

πα =
∂L̃

∂(dxα/ds)
= mUα +

e

c
Aα. (48)

Hence the Hamiltonian is

H̃ = παU
α − L̃ =

1

2m

(
πα −

eAα
c

)(
πα − eAα

c

)
− 1

2
mc2. (49)

Hamilton’s equations of motion5 are

dxα

dτ
=
∂H̃

∂πα
=

1

m

(
πα − e

c
Aα
)

dπα

dτ
= − ∂H̃

∂xα
=

e

mc

(
πβ −

eAβ
c

)
∂αAβ (50)

2 Lagrangian for the Electromagnetic Field

The electromagnetic field and fields in general have continuous degrees of freedom.

The analog of a generalized coordinate qi is the value of a field φk at a point x̄. There

are an infinite number of such points and so we have an infinite number of generalized

5For H(p, q) Hamiltons equations are q̇i = ∂H
∂pi

, are ṗi = −∂H∂qi , and ∂L
∂t = −∂H∂t
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coordinates. The corresponding “generalized velocities” are derivatives of the field

with respect to the variables, ∂φk(x̄)/∂xα or ∂φk(x̄)∂xα with α = 0, 1, 2, 3.

qi → φk(x̄)

q̇i →
∂φk(x̄)

∂xα
(51)

Instead of a Lagrangian L which depends on the coordinates and velocities qi and q̇i,

one now has a Lagrangian density L, and the Lagrangian is obtained by integrating

this density over position space,

L =
∫
d3x L(φk(x̄), ∂αφk(x̄)); (52)

The action is the integral of this over time, or

A =
∫
d4xL(φk(x̄) , ∂αφk(x̄)). (53)

Given that A and d4x are invariants, L must also be an invariant.

The Euler-Lagrange equations of motion are obtained as usual by demanding that

A be an extremum with respect to variation of the fields, or

δA/δφk(x̄) = 0 (54)

for each field φk. The resulting equations are, explicitly,

∂β
(

∂L
∂(∂βφk)

)
− ∂L
∂φk

= 0. (55)

Now let’s turn to the question of an appropriate Lagrangian density for the elec-

tromagnetic field. The things we have to work with are F αβ, Aα, and Jα, if we rule

out explicit dependence on space and time (a translationally invariant universe). We

must make an invariant out of these. One which practically suggests itself is

L = − 1

16π
FαβF

αβ − 1

c
JαA

α. (56)
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The various constants are a matter of definition; otherwise we have something which

is linear in components of Ā and of J̄ , and bilinear derivatives of components of Ā.

Let’s write it out in detail:

L = − 1

16π
(∂αAβ − ∂βAα)(∂αAβ − ∂βAα)− 1

c
JαA

α

= − 1

16π
gαγgβδ(∂

γAδ − ∂δAγ)(∂αAβ − ∂βAα)− 1

c
JαA

α (57)

The generalized fields (called φk above) are the components of Ā. Hence the

functional derivatives of L which enter the Euler-Lagrange equations are

∂L
∂(∂βAα)

=
1

4π
Fαβ and

∂L
∂Aα

= −1

c
Jα (58)

and so the equations of motion are

1

4π
∂βFβα =

1

c
Jα. (59)

These are indeed the four6 inhomogeneous Maxwell equations. The homogeneous

equations are automatically satisfied because we have constructed the Lagrangian

in terms of the potentials. The charge continuity equation follows from taking the

contravariant derivative of the equation above,

1

4π
∂α∂βFβα =

1

c
∂αJα; (60)

the left-hand side is zero when summed because Fαβ = −Fβα and so we have

∂αJα = 0. (61)

3 Stress Tensors and Conservation Laws

Conservation of energy emerges from the usual Lagrangian formulation if L has no

explicit dependence on the time; then dH/dt = 0 which means that the Hamiltonian

6Four equations come from the one scalar and one vector inhomogeneous Maxwell’s equations
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is a constant of the motion. If we want to carry this sort of thing over to our field

theory, we need to construct a Hamiltonian density H whose integral over all position

space, H, is interpreted as the energy. If one proceeds in analogy with the particle

case, he would take a Lagrangian density

L = L(φk(x̄), ∂αφk(x̄)); (62)

introduce momentum fields

Πk(x̄) ≡ ∂L/∂(∂φk/∂t); (63)

and a Hamiltonian density

H =
∑

k

Πk(x̄)(∂φk(x̄)/∂t)− L. (64)

We are going to generalize this procedure by introducing a rank-two tensor instead

of a simple Hamiltionian density. The reason is that if one has a simple density and

introduces H as

H =
∫
d3xH =

∫
dx0

d3x

dx0

H, (65)

and if one wants this to be an energy, which, as we have seen, transforms as the 0th

component of a four-vector, then H should be the (0,0) component of a rank-two

tensor. To this end, let us introduce

ψαk (x̄) ≡ ∂L/∂(∂αφk) (66)

and

T αβ ≡
∑

k

ψαk (x̄)∂βφk − gαβL. (67)

This rank-two tensor is called the canonical stress tensor.

3.1 Free Field Lagrangian and Hamiltonian Densities

Let’s see what form the Lagrangian density and canonical stress tensor take in the

absence of any sources Jα. In this case the Lagrangian density becomes Lff , the
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free-field Lagrangian density.

Lff = − 1

16π
FαβF

αβ (68)

By carrying out the implied manipulations we find

T αβ = − 1

4π
gαγFγδ∂

βAδ − gαβLff . (69)

Look in particular at T 00:

T 00 = − 1

4π
(F0γ∂

0Aγ)− 1

8π
(E2 −B2)

= − 1

4π

[
Ex

1

c

∂Ax
∂t

+ Ey
1

c

∂Ay
∂t

+ Ez
1

c

∂Az
∂t

]
− 1

8π
(E2 −B2)

=
1

4π
E2 + E · ∇Φ− 1

8π
(E2 −B2) =

1

8π
(E2 +B2) +

E · ∇Φ

4π
. (70)

This contains the expected and desired term (E2 +B2)/8π, which is the feild energy

density, but there is an additional term E · ∇Φ. Because ∇ · E = 0 for free fields, it

is the case that E · ∇Φ = ∇ · (EΦ) and so the integral over all space of this part of

T 00 will vanish for a localized field distribution. Hence we find that

∫
d3xT 00 =

1

8π

∫
d3x (E2 +B2) (71)

is indeed the field energy.

And what of the other components of the stress tensor? These too have some

unexpected properties. For example, one can show that

T 0i =
1

4π
(E×B)i +

1

4π
∇ · (AiE) (72)

and

T i0 =
1

4π
(E×B)i +

1

4π

[
(∇× (ΦB))i −

∂

∂x0

(ΦEi)

]
. (73)

Evidently, this tensor is not symmetric. Also, one would have hoped that these

components of the tensor would have turned out to be components of the Poynting
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vector, with appropriate scaling, so that we would have found an equation 0 = ∂αT
0α

which would have been equivalent to the Poynting theorem,

∂u

∂t
+∇ · S = 0. (74)

Although this is not going to happen, there is some sort of conservation law contained

in our stress tensor. One can show that

∂αT
αβ = 0 (75)

which gives not one but four conservation laws. To demonstrate this equation, con-

sider the following:

∂αT
αβ =

∑

k

∂α

[
∂L

∂(∂αφk)
∂βφk

]
− ∂βL

=
∑

k

[
∂α

(
∂L

∂(∂αφk)

)
∂βφk +

(
∂L

∂(∂αφk)

)
∂β(∂αφk)

]
− ∂βL

=
∑

k

[(
∂L
∂φk

)
∂βφk +

(
∂L

∂(∂αφk)

)
∂β(∂αφk)

]
− ∂βL (76)

where we have used the Euler-Lagrange equations of motion Eq. (55) on the first term

in the middle line. Now we can recognize that the terms summed over k in the last

line are ∂βL since L is a function of the fields φk and their derivatives ∂αφk. Hence

we have demonstrated that

∂αT
αβ = ∂βL − ∂βL = 0 (77)

These give familiar global conservation laws when integrated over all space for a

localized set of fields. Consider

0 =
∫
d3x ∂αT

αβ =
∂

∂x0

(∫
d3xT 0β

)
+
∫
d3x

∂

∂xi
(T iβ). (78)

The last term on the right-hand side is zero as one shows by integrating over that

coordinate with respect to which the derivative is taken and appealing to the fact that
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we have localized fields which vanish as |xi| becomes large. Hence our conclusion is

that
d

dt

(∫
d3xT 0β

)
= 0 (79)

If one looks at the explicit components of the tensor, one finds that these simply say

the total energy and total momentum are constant, using our identifications (from

chapter 6) of u and g as the energy and momentum density.

u =
1

8π

(
E2 +B2

)
g =

1

4πc
(E×B) (80)

3.2 Symmetric Stress Tensor

It is troubling that the canonical stress tensor is not symmetric. This becomes a

serious problem when one examines the angular momentum. Consider the rank-three

tensor

Mαβγ ≡ T αβxγ − T αγxβ. (81)

If this is to represent the angular momentum in some way we would like it to provide

a conservation law in the form ∂αM
αβγ = 0. But that doesn’t happen. Rather,

∂αM
αβγ = T γβ − T βγ + (∂αT

αβ)xγ − (∂αT
αγ)xβ = T γβ − T βγ (82)

which doesn’t vanish because T̄ is not symmetric.

The standard way out of this and other difficulties associated with the asymmetry

of the canonical stress tensor is to define a different stress tensor which works. By

regrouping terms in the canonical stress tensor one can write

T αβ =
1

4π

(
gαγFγδF

δβ +
1

4
gαβFγδF

γδ
)
− 1

4π
gαγFγδ∂

δAβ. (83)

Now, the second term is

− 1

4π
gαγFγδ∂

δAβ = − 1

4π
F αδ∂δA

β =
1

4π
F δα∂δA

β =

1

4π
(F δα∂δA

β + Aβ∂δF
δα) =

1

4π
∂δ(F

δαAβ). (84)
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This is a four-divergence, so for fields of finite extent, it must be the case that

∫
d3x ∂δ(F

δ0Aβ) = 0. (85)

Moreover, it has a vanishing four-divergence,

∂α∂δ(F
δαAβ) = 0, (86)

which follows from the antisymmetric character of the field tensor. Hence, if we

simply remove this piece from the stress tensor, leaving a new tensor θ̄, known as the

symmetric stress tensor,

θαβ ≡ 1

4π
(gαγFγδF

δβ +
1

4
gαβFγδF

γδ), (87)

then this tensor is such that

d

dt

(∫
d3x θ0β

)
= 0 and ∂αθ

αβ = 0. (88)

It is easy to work out the components of this tensor; they are (i, j = 1, 2, 3)

θ00 = 1
8π

(E2 +B2)

θi0 = θ0i = 1
4π

(E×B)

θij = − 1
4π

[EiEj +BiBj − 1
2
δij(E

2 +B2)].

(89)

Hence in block matrix form,

θαβ =




u cg

cg −T (M)
ij


 (90)

where T
(M)
ij is the ij component of the Maxwell stress tensor. The conservation laws

∂αθ
αβ = 0 (91)

are well-known to us. They are the Poynting theorem, for β = 0, and the momentum

conservation laws
∂gi
∂t
−
∑

j

∂T
(M)
ij

∂xj
= 0. (92)
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when β = i

Now consider once again the question of angular momentum. Define

Mαβγ ≡ θαβxγ − θαγxβ. (93)

Then the equations

∂αM
αβγ = 0 (94)

express angular momentum conservation as well as some other things.

3.3 Conservation Laws in the Presence of Sources

Finally, what happens if there are sources? Then we won’t find the same form for

the conservation laws. Consider

∂αθ
αβ =

1

4π

[
∂γ(FγδF

δβ) +
1

4
∂β(FγδF

γδ)
]

=
1

4π

[
(∂γFγδF

δβ + Fγδ(∂
γF γβ) +

1

2
Fγδ(∂

βF γδ)
]
. (95)

Making use of the Maxwell equations ∂γFγδ = 4π
c
Jδ, we can rewrite this as

∂αθ
αβ +

1

c
F βδJδ =

1

8π

[
Fγδ(∂

γF δβ + ∂γF δβ + ∂βF γδ)
]
. (96)

Now recall that (these are the homogeneous Maxwell’s equations)

∂γF δβ + ∂βF γδ + ∂δF βγ = 0, (97)

so Eq. (90) may be written as

∂αθ
αβ +

1

c
F βδJδ =

1

8π
Fγδ(∂

γF δβ − ∂δF βγ). (98)

However,

(∂γF δβ − ∂δF βγ)Fγδ = (∂γF δβ + ∂δF γβ)Fγδ (99)

is a contraction of an object symmetric in the indices γ and δ and one which is

antisymmetric; therefore it is zero. Hence we conclude that

∂αθ
αβ = −1

c
F βδJδ. (100)
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The four equations contained in this conservation law are the familiar ones

∂u

∂t
+∇ · S = −J · E when β = 0 (101)

and
∂gi
∂t
−
∑

j

∂

∂xj
T

(M)
ij = −[ρEi +

1

c
(J×B)i] when β = i . (102)

4 Examples of Relativistic Particle Dynamics

4.1 Motion in a Constant Uniform Magnetic Induction

Given an applied constant magnetic induction, the equations of motion for a particle

of charge q are
dE

dt
= F · u = 0,

dp

dt
=
q

c
(u×B) = mγ

du

dt
(103)

where the last step follows from the fact that p = mγu and the fact that γmc2,

the particle’s energy, is constant because magnetic forces do no work. Hence the

equations reduce to
du

dt
= u× ωB (104)

where ωB = qB/mγc. Notice that this frequency depends on the energy of the

particle. For definiteness, let B = Bε3. Also, write u = u‖ε3 + u⊥ where u⊥ · ε3 = 0.

1

2

3

B

u
a

From the equations of motion, one can see that u‖ is a constant while u⊥ obeys

du⊥
dt

= ωB(u⊥ × ε3), (105)
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or
dux
dt

= ωBuy and
duy
dt

= −ωBux. (106)

Combining these we find, e.g.,

d2ux
dt2

= −ω2
Bux (107)

with the general solution

ux = u0e
−iωBt (108)

where u0 is a complex constant. Further,

uy =
1

ωB

dux
dt

= −iux, (109)

so

u⊥ = u0(ε1 − iε2)e−iωBt. (110)

We may integrate over time to find the trajectory:

dx

dt
= u‖ε3 + u⊥ (111)

and so

x(t) = x(0) +
∫ t

0
dt′

[
u‖ε3 + u0(ε1 − iε2)e−iωBt

′]

= x(0) + u‖tε3 + i
u0

ωB
(ε1 − iε2)(e−iωBt − 1). (112)

The physical trajectory is the real part of this and is, for real u0,

x(t) = x(0) + u‖tε3 +
u0

ωB
[sin(ωBt)ε1 + (cos(ωBt)− 1)ε2]. (113)

This equation describes helical motion with the helix axis parallel to the z-axis. The

radius of the axis is a, where a = u0/ωB.

It is worthwhile to establish the connection betwen a and |p⊥| where p⊥ = mγu⊥

is the momentum in the plane perpendicular to the direction of B.

p⊥ = mγu0 = mγωBa = mγ
qB

mγc
a =

qBa

c
. (114)
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B

q
p

p

1

2

p > p
1 2

This relation, p⊥ = qBa/c, tells us the radius of curvature in the plane perpendicular

to B (which is not the same as the radius of curvature of the orbit) is a linear

function of p⊥, and it suggests a simple way to select particles of a given momentum

out of a beam containing particles with many momenta. One simply passes the beam

through a region of space where there is some B applied transverse to the direction of

the beam. The amount by which a particle is deflected will increase with decreasing

p⊥ and so the beam is spread out much as a prism separates the different frequency

components of a beam of light. The device is a momentum selector.

4.2 Motion in crossed E and B fields, E < B.

For E · B = 0 in frame K, we can find a frame K ′ where E′ = 0, provided E < B.

This may be seen from the form of the field transforms.

E′‖ = E‖ E′⊥ = γ[E⊥ + (β ×B)]

B′‖ = B‖ B′⊥ = γ[B⊥ − (β × E)]
(115)

In fact, we have already solved exactly this problem in chapter 11 where we found

that K ′ moves relative to K with a velocity which is v = c(E × B)/B2. If we let

E = Eε2 and B = Bε3, then v = c(E/B)ε1, and B′ = B
√

1− E2/B2ε3.
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K
K’

1

2

3

1

2

3

v
B B’

E

E’ = 0

Now imagine a particle is injected into this system with an initial velocity7 u(0) =

u0ε1. In the frame K ′, its initial velocity is

u′(0) =
u0 − v

1 + u0v/c2
ε1. (116)

From our first example, we know that the particle will proceed to execute circular

motion in this frame, always with the same speed u′(0). What then is its motion

in frame K? Superposed on the circular motion will be a drift velocity v. If q > 0

and u0 > v, we get the first motion shown below. But if u0 < v, we get the second

motion. For the special case of u0 = v, the particle is at rest in K ′ which means it

moves in K at a constant velocity u(t) = v.

u > v u < v u = v

qq
q

B

7We could be more general and include a component of u parallel to B; this would not lead to

anything significantly different from what we are about to find.
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Such a device can be employed as a velocity selector and so it complements the

device described in the first example which was a momentum selector. The idea is

that a particle coming in with a speed u0 greater than v will experience a magnetic

force greater than the electric force and so it will be deflected accordingly. But one

coming in with a speed smaller than v will experience an electric force greater than

the magnetic one, and it will be deflected in the other direction.

The picture chages after a while, however, because the particle will speed up and

slow down under the influence of the electric field. Suppose that initially u0 > v

(u0 < v). Then the B-field (the E-field) force dominates, and the particle is deflected

in such a way that it moves against (with) the electric field. This causes it to slow

down (speed up) so that after some time u0 < v (u0 > v). Then the electric (magnetic)

field force dominates, causing the particle to swing around so that it eventually moves

with (against) the electric field force. And so on. The end result is a trajectory that

produces a time-averaged velocity equal to v or c(E × B)/B2. This is called the E

cross B drift velocity. It is in the direction of E × B no matter what is the sign of

the charge.

4.3 Motion in crossed E and B fields, E > B

This time we want to consider the motion in a frame K ′ moving at velocity v =

c(E × B)/E2 → c(B/E)ε1, if we keep the same directions of the fields as in the

preceding example. In this frame there is only an electric field E′ = E
√

1−B2/E2

which will cause the particle to move away in the direction of E′. The equations of

motion in K ′ are

mc2dγ
′

dt′
= qE ′

dy′

dt′
and

dp′y
dt′

= qE ′; (117)

the components of the momentum in the other directions are constant. One easily

solves to find

p′(t′) = p′(0) + qE ′t′ε2 (118)
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and we can then find γ ′ directly from the dispersion relation,

γ′ =
1

mc2

√
m2c4 + p′(t′) · p′(t′)c2. (119)

The speed u′y is found easily from the equation of motion for γ ′ which integrates

trivially to produce

y′(t′) = y′(0) +
mc2

qE ′
(γ′(t′)− γ′(0))

= y′(0) +

√
m2c4 + (p′(t′))2c2 −

√
m2c4 + (p′(0))2c2

qE ′
. (120)

Consider also x′⊥, the component of x′ perpendicular to the electric field. Because

p′⊥/dt = 0, it is true that γ ′y′⊥ = γ′(0)u′⊥(0), a constant. Hence

u′⊥(t′) = u′⊥(0)
√

1 + (p′(0))2/m2c2/
√

1 + (p′(t′))2/m2c2. (121)

We can integrate the velocity over time to find the displacement of the particle. For

the special case that there is no component of p′(0) in the direction of the field, one

finds that

x′⊥(t)− x′⊥(0) =
p′⊥(0)

qE ′
ln



qE ′t′

mγ(0)
+

√√√√1 +

(
qE ′t′

mγ(0)

)2

 . (122)

We can combine Eqs. (113) and (115) to remove the time and so have an equation

that determines the shape of the trajectory. For simplicity, let x′⊥(0) = y′(0) = 0.

Then one finds

x′⊥qE
′

mγ′(0)u′(0)
= ln




√√√√
(

1 +
qE ′y′

mγ′(0)

)2

− 1 + 1 +
qE ′y′

mγ′(0)


 . (123)

For short times satisfying the condition |qE ′y′/mγ′(0)| << 1, the trajectory is a

parabola,
x′⊥qE

′

mγ′(0)u′(0)
≈
√

2qE ′y′

mγ′(0)
(124)

or

y′ =
qE ′x′2⊥

2mγ′(0)(u′(0))2
. (125)
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The long time behavior is displayed for |qE ′y′/mγ′(0)| >> 1, and it is such that

y′ =
mγ′(0)

2qE ′
exp

(
x′⊥qE

′

mγ′(0)u′(0)

)
. (126)

4.4 Motion for general uniform E and B.

Then we cannot find a frame where one of the fields can be made to vanish. But

there is a frame where the electric field and magnetic induction are parallel; here the

solution of the equations of motion is relatively simple and is left as an exercise.

4.5 Motion in slowly spatially varying B(x)

.

This problem is greatly simplified by (1) the fact that then energy, or γ, is a

constant and by (2) the assumption that B(x) does not vary much relative to its

magnitude over distances on the order of the radius of the particle’s orbit.
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