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Chapter 1

First and second quantization

Quantum theory is the most complete microscopic theory we have today describing the
physics of energy and matter. It has successfully been applied to explain phenomena
ranging over many orders of magnitude, from the study of elementary particles on the
sub-nucleonic scale to the study of neutron stars and other astrophysical objects on the
cosmological scale. Only the inclusion of gravitation stands out as an unsolved problem
in fundamental quantum theory.

Historically, quantum physics first dealt only with the quantization of the motion of
particles leaving the electromagnetic field classical, hence the name quantum mechanics
(Heisenberg, Schrödinger, and Dirac 1925-26). Later also the electromagnetic field was
quantized (Dirac, 1927), and even the particles themselves got represented by quantized
fields (Jordan and Wigner, 1928), resulting in the development of quantum electrodynam-
ics (QED) and quantum field theory (QFT) in general. By convention, the original form of
quantum mechanics is denoted first quantization, while quantum field theory is formulated
in the language of second quantization.

Regardless of the representation, be it first or second quantization, certain basic con-
cepts are always present in the formulation of quantum theory. The starting point is
the notion of quantum states and the observables of the system under consideration.
Quantum theory postulates that all quantum states are represented by state vectors in
a Hilbert space, and that all observables are represented by Hermitian operators acting
on that space. Parallel state vectors represent the same physical state, and one therefore
mostly deals with normalized state vectors. Any given Hermitian operator A has a number
of eigenstates |ψα〉 that up to a real scale factor α is left invariant by the action of the
operator, A|ψα〉 = α|ψα〉. The scale factors are denoted the eigenvalues of the operator.
It is a fundamental theorem of Hilbert space theory that the set of all eigenvectors of any
given Hermitian operator forms a complete basis set of the Hilbert space. In general the
eigenstates |ψα〉 and |φβ〉 of two different Hermitian operators A and B are not the same.
By measurement of the type B the quantum state can be prepared to be in an eigenstate
|φβ〉 of the operator B. This state can also be expressed as a superposition of eigenstates
|ψα〉 of the operator A as |φβ〉 =

∑
α |ψα〉Cαβ. If one in this state measures the dynamical

variable associated with the operator A, one cannot in general predict the outcome with

1
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certainty. It is only described in probabilistic terms. The probability of having any given
|ψα〉 as the outcome is given as the absolute square |Cαβ|2 of the associated expansion
coefficient. This non-causal element of quantum theory is also known as the collapse of
the wavefunction. However, between collapse events the time evolution of quantum states
is perfectly deterministic. The time evolution of a state vector |ψ(t)〉 is governed by the
central operator in quantum mechanics, the Hamiltonian H (the operator associated with
the total energy of the system), through Schrödinger’s equation

i~∂t|ψ(t)〉 = H|ψ(t)〉. (1.1)

Each state vector |ψ〉 is associated with an adjoint state vector (|ψ〉)† ≡ 〈ψ|. One can
form inner products, “bra(c)kets”, 〈ψ|φ〉 between adjoint “bra” states 〈ψ| and “ket” states
|φ〉, and use standard geometrical terminology, e.g. the norm squared of |ψ〉 is given by
〈ψ|ψ〉, and |ψ〉 and |φ〉 are said to be orthogonal if 〈ψ|φ〉 = 0. If {|ψα〉} is an orthonormal
basis of the Hilbert space, then the above mentioned expansion coefficient Cαβ is found
by forming inner products: Cαβ = 〈ψα|φβ〉. A further connection between the direct and
the adjoint Hilbert space is given by the relation 〈ψ|φ〉 = 〈φ|ψ〉∗, which also leads to the
definition of adjoint operators. For a given operator A the adjoint operator A† is defined
by demanding 〈ψ|A†|φ〉 = 〈φ|A|ψ〉∗ for any |ψ〉 and |φ〉.

In this chapter we will briefly review standard first quantization for one and many-
particle systems. For more complete reviews the reader is refereed to the textbooks by
Dirac, Landau and Lifshitz, Merzbacher, or Shankar. Based on this we will introduce
second quantization. This introduction is not complete in all details, and we refer the
interested reader to the textbooks by Mahan, Fetter and Walecka, and Abrikosov, Gorkov,
and Dzyaloshinskii.

1.1 First quantization, single-particle systems

For simplicity consider a non-relativistic particle, say an electron with charge −e, moving
in an external electromagnetic field described by the potentials ϕ(r, t) and A(r, t). The
corresponding Hamiltonian is

H =
1

2m

(
~
i
∇r + eA(r, t)

)2

− eϕ(r, t). (1.2)

An eigenstate describing a free spin-up electron travelling inside a box of volume V
can be written as a product of a propagating plane wave and a spin-up spinor. Using the
Dirac notation the state ket can be written as |ψk,↑〉 = |k, ↑〉, where one simply lists the
relevant quantum numbers in the ket. The state function (also denoted the wave function)
and the ket are related by

ψk,σ(r) = 〈r|k, σ〉 = 1√V eik·rχσ (free particle orbital), (1.3)

i.e. by the inner product of the position bra 〈r| with the state ket.
The plane wave representation |k, σ〉 is not always a useful starting point for calcu-

lations. For example in atomic physics, where electrons orbiting a point-like positively
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Figure 1.1: The probability density |〈r|ψν〉|2 in the xy plane for (a) any plane wave
ν = (kx, ky, kz, σ), (b) the hydrogen orbital ν = (4, 2, 0, σ), and (c) the Landau orbital
ν = (3, ky, 0, σ).

charged nucleus are considered, the hydrogenic eigenstates |n, l,m, σ〉 are much more use-
ful. Recall that

〈r|n, l, m, σ〉 = Rnl(r)Yl,m(θ, φ)χσ (hydrogen orbital), , (1.4)

where Rnl(r) is a radial Coulomb function with n−l nodes, while Yl,m(θ, φ) is a spherical
harmonic representing angular momentum l with a z component m.

A third example is an electron moving in a constant magnetic field B = B ez, which
in the Landau gauge A = xB ey leads to the Landau eigenstates |n, ky, kz, σ〉, where n is
an integer, ky (kz) is the y (z) component of k, and σ the spin variable. Recall that

〈r|n, ky, kz, σ〉 = Hn(x/`−ky`)e−
1
2
(x/`−ky`)2 1√

LyLz
ei(kyy+kzz)χσ (Landau orbital), , (1.5)

where ` =
√
~/eB is the magnetic length and Hn is the normalized Hermite polynomial

of order n associated with the harmonic oscillator potential induced by the magnetic field.
Examples of each of these three types of electron orbitals are shown in Fig. 1.1.

In general a complete set of quantum numbers is denoted ν . The three examples
given above corresponds to ν = (kx, ky, kz, σ), ν = (n, l,m, σ), and ν = (n, ky, kz, σ) each
yielding a state function of the form ψν(r) = 〈r|ν〉. The completeness of a basis state
as well as the normalization of the state vectors play a central role in quantum theory.
Loosely speaking the normalization condition means that with probability unity a particle
in a given quantum state ψν(r) must be somewhere in space:

∫
dr |ψν(r)|2 = 1, or in the

Dirac notation: 1 =
∫

dr 〈ν|r〉〈r|ν〉 = 〈ν| (∫ dr |r〉〈r|) |ν〉. From this we conclude
∫

dr |r〉〈r| = 1. (1.6)

Similarly, the completeness of a set of basis states ψν(r) means that if a particle is in
some state ψ(r) it must be found with probability unity within the orbitals of the basis
set:

∑
ν |〈ν|ψ〉|2 = 1. Again using the Dirac notation we find 1 =

∑
ν〈ψ|ν〉〈ν|ψ〉 =

〈ψ| (∑ν |ν〉〈ν|) |ψ〉, and we conclude
∑

ν

|ν〉〈ν| = 1. (1.7)
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We shall often use the completeness relation Eq. (1.7). A simple example is the expansion
of a state function in a given basis: ψ(r) = 〈r|ψ〉 = 〈r|1|ψ〉 = 〈r| (

∑
ν |ν〉〈ν|) |ψ〉 =∑

ν〈r|ν〉〈ν|ψ〉, which can be expressed as

ψ(r) =
∑

ν

ψν(r)
(∫

dr′ ψ∗ν (r′)ψ(r′)
)

or 〈r|ψ〉 =
∑

ν

〈r|ν〉〈ν|ψ〉. (1.8)

It should be noted that the quantum label ν can contain both discrete and continuous
quantum numbers. In that case the symbol

∑
ν is to be interpreted as a combination

of both summations and integrations. For example in the case in Eq. (1.5) with Landau
orbitals in a box with side lengths Lx, Ly, and Lz, we have

∑
ν

=
∑

σ=↑,↓

∞∑

n=0

∫ ∞

−∞

Ly

2π
dky

∫ ∞

−∞

Lz

2π
dkz. (1.9)

In the mathematical formulation of quantum theory we shall often encounter the fol-
lowing special functions.

Kronecker’s delta-function δk,n for discrete variables,

δk,n =
{

1, for k = n,
0, for k 6= n.

(1.10)

Dirac’s delta-function δ(r) for continuous variables,

δ(r) = 0, for r 6= 0, while
∫

dr δ(r) = 1, (1.11)

and Heaviside’s step-function θ(x) for continuous variables,

θ(x) =
{

0, for x < 0,
1, for x > 0.

(1.12)

1.2 First quantization, many-particle systems

When turning to N -particle systems, i.e. a system containing N identical particles, say,
electrons, three more assumptions are added to the basic assumptions defining quantum
theory. The first assumption is the natural extension of the single-particle state function
ψ(r), which (neglecting the spin degree of freedom for the time being) is a complex wave
function in 3-dimensional space, to the N -particle state function ψ(r1, r2, . . . , rN ), which
is a complex function in the 3N -dimensional configuration space. As for one particle this
N -particle state function is interpreted as a probability amplitude such that its absolute
square is related to a probability:

|ψ(r1, r2, . . . , rN )|2
N∏

j=1

drj =





The probability for finding the N particles
in the 3N−dimensional volume

∏N
j=1 drj

surrounding the point (r1, r2, . . . , rN ) in
the 3N−dimensional configuration space.





(1.13)
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1.2.1 Permutation symmetry and indistinguishability

A fundamental difference between classical and quantum mechanics concerns the concept
of indistinguishability of identical particles. In classical mechanics each particle can be
equipped with an identifying marker (e.g. a colored spot on a billiard ball) without influ-
encing its behavior, and moreover it follows its own continuous path in phase space. Thus
in principle each particle in a group of identical particles can be identified. This is not
so in quantum mechanics. Not even in principle is it possible to mark a particle without
influencing its physical state, and worse, if a number of identical particles are brought to
the same region in space, their wavefunctions will rapidly spread out and overlap with one
another, thereby soon render it impossible to say which particle is where.

The second fundamental assumption for N -particle systems is therefore that identical
particles, i.e. particles characterized by the same quantum numbers such as mass, charge
and spin, are in principle indistinguishable.

From the indistinguishability of particles follows that if two coordinates in an N -
particle state function are interchanged the same physical state results, and the corre-
sponding state function can at most differ from the original one by a simple prefactor λ.
If the same two coordinates then are interchanged a second time, we end with the exact
same state function,

ψ(r1, .., rj , .., rk, .., rN ) = λψ(r1, .., rk, .., rj , .., rN ) = λ2ψ(r1, .., rj , .., rk, .., rN ), (1.14)

and we conclude that λ2 = 1 or λ = ±1. Only two species of particles are thus possible in
quantum physics, the so-called bosons and fermions1:

ψ(r1, . . . , rj , . . . , rk, . . . , rN ) = +ψ(r1, . . . , rk, . . . , rj , . . . , rN ) (bosons), (1.15a)

ψ(r1, . . . , rj , . . . , rk, . . . , rN ) = −ψ(r1, . . . , rk, . . . , rj , . . . , rN ) (fermions). (1.15b)

The importance of the assumption of indistinguishability of particles in quantum
physics cannot be exaggerated, and it has been introduced due to overwhelming experi-
mental evidence. For fermions it immediately leads to the Pauli exclusion principle stating
that two fermions cannot occupy the same state, because if in Eq. (1.15b) we let rj = rk

then ψ = 0 follows. It thus explains the periodic table of the elements, and consequently
the starting point in our understanding of atomic physics, condensed matter physics and
chemistry. It furthermore plays a fundamental role in the studies of the nature of stars
and of the scattering processes in high energy physics. For bosons the assumption is nec-
essary to understand Planck’s radiation law for the electromagnetic field, and spectacular
phenomena like Bose–Einstein condensation, superfluidity and laser light.

1This discrete permutation symmetry is always obeyed. However, some quasiparticles in 2D exhibit
any phase eiφ, a so-called Berry phase, upon adiabatic interchange. Such exotic beasts are called anyons
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1.2.2 The single-particle states as basis states

We now show that the basis states for the N -particle system can be built from any complete
orthonormal single-particle basis {ψν(r)},

∑
ν

ψ∗ν(r
′)ψν(r) = δ(r− r′),

∫
dr ψ∗ν(r)ψν′(r) = δν,ν′ . (1.16)

Starting from an arbitrary N -particle state ψ(r1, . . . , rN ) we form the (N −1)-particle
function Aν1(r2, . . . , rN ) by projecting onto the basis state ψν1

(r1):

Aν1(r2, . . . , rN ) ≡
∫

dr1 ψ∗ν1
(r1)ψ(r1, . . . , rN ). (1.17)

This can be inverted by multiplying with ψν1
(r̃1) and summing over ν1,

ψ(r̃1, r2, . . . , rN ) =
∑
ν1

ψν1
(r̃1)Aν1(r2, . . . , rN ). (1.18)

Now define analogously Aν1,ν2(r3, . . . , rN ) from Aν1(r2, . . . , rN ):

Aν1,ν2(r3, . . . , rN ) ≡
∫

dr2 ψ∗ν2
(r2)Aν1(r2, . . . , rN ). (1.19)

Like before, we can invert this expression to give Aν1 in terms of Aν1,ν2 , which upon
insertion into Eq. (1.18) leads to

ψ(r̃1, r̃2, r3 . . . , rN ) =
∑
ν1,ν2

ψν1
(r̃1)ψν2

(r̃2)Aν1,ν2(r3, . . . , rN ). (1.20)

Continuing all the way through r̃N (and then writing r instead of r̃) we end up with

ψ(r1, r2, . . . , rN ) =
∑

ν1,...,νN

Aν1,ν2,...,νN ψν1
(r1)ψν2

(r2) . . . ψνN
(rN ), (1.21)

where Aν1,ν2,...,νN is just a complex number. Thus any N -particle state function can be
written as a (rather complicated) linear superposition of product states containing N
factors of single-particle basis states.

Even though the product states
∏N

j=1 ψνj
(rj) in a mathematical sense form a perfectly

valid basis for the N -particle Hilbert space, we know from the discussion on indistin-
guishability that physically it is not a useful basis since the coordinates have to appear in
a symmetric way. No physical perturbation can ever break the fundamental fermion or bo-
son symmetry, which therefore ought to be explicitly incorporated in the basis states. The
symmetry requirements from Eqs. (1.15a) and (1.15b) are in Eq. (1.21) hidden in the coef-
ficients Aν1,...,νN . A physical meaningful basis bringing the N coordinates on equal footing
in the products ψν1

(r1)ψν2
(r2) . . . ψνN

(rN ) of single-particle state functions is obtained by
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applying the bosonic symmetrization operator Ŝ+ or the fermionic anti-symmetrization
operator Ŝ− defined by the following determinants and permanent:2

Ŝ±
N∏

j=1

ψνj
(rj) =

∣∣∣∣∣∣∣∣∣

ψν1
(r1) ψν1

(r2) . . . ψν1
(rN )

ψν2
(r1) ψν2

(r2) . . . ψν2
(rN )

...
...

. . .
...

ψνN
(r1) ψνN

(r2) . . . ψνN
(rN )

∣∣∣∣∣∣∣∣∣
±

, (1.22)

where nν′ is the number of times the state |ν ′〉 appears in the set {|ν1〉, |ν2〉, . . . |νN 〉}, i.e.
0 or 1 for fermions and between 0 and N for bosons. The fermion case involves ordinary
determinants, which in physics are denoted Slater determinants,

∣∣∣∣∣∣∣∣∣

ψν1
(r1) ψν1

(r2) . . . ψν1
(rN )

ψν2
(r1) ψν2

(r2) . . . ψν2
(rN )

...
...

. . .
...

ψνN
(r1) ψνN

(r2) . . . ψνN
(rN )

∣∣∣∣∣∣∣∣∣−

=
∑

p∈SN

( N∏

j=1

ψνj
(rp(j))

)
sign(p), (1.23)

while the boson case involves a sign-less determinant, a so-called permanent,
∣∣∣∣∣∣∣∣∣

ψν1
(r1) ψν1

(r2) . . . ψν1
(rN )

ψν2
(r1) ψν2

(r2) . . . ψν2
(rN )

...
...

. . .
...

ψνN
(r1) ψνN

(r2) . . . ψνN
(rN )

∣∣∣∣∣∣∣∣∣
+

=
∑

p∈SN

( N∏

j=1

ψνj
(rp(j))

)
. (1.24)

Here SN is the group of the N ! permutations p on the set of N coordinates3, and sign(p),
used in the Slater determinant, is the sign of the permutation p. Note how in the fermion
case νj = νk leads to ψ = 0, i.e. the Pauli principle. Using the symmetrized basis states the
expansion in Eq. (1.21) gets replaced by the following, where the new expansion coefficients
Bν1,ν2,...,νN are completely symmetric in their ν-indices,

ψ(r1, r2, . . . , rN ) =
∑

ν1,...,νN

Bν1,ν2,...,νN Ŝ±ψν1
(r1)ψν2

(r2) . . . ψνN
(rN ). (1.25)

We need not worry about the precise relation between the two sets of coefficients A and
B since we are not going to use it.

1.2.3 Operators in first quantization

We now turn to the third assumption needed to complete the quantum theory of N -
particle systems. It states that single- and few-particle operators defined for single- and

2Note that to obtain a normalized state on the right hand side in Eq. (1.22) a prefactor 1Q
ν′
√

nν′ !
1√
N !

must be inserted. For fermions nν′ = 0, 1 (and thus nν′ ! = 1) so here the prefactor reduces to 1√
N !

.
3For N = 3 we have, with the signs of the permutations as subscripts,

S3 =

8<:
0@ 1

2
3

1A
+

,

0@ 1
3
2

1A
−

,

0@ 2
1
3

1A
−

,

0@ 2
3
1

1A
+

,

0@ 3
1
2

1A
+

,

0@ 3
2
1

1A
−

9=;
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few-particle states remain unchanged when acting on N -particle states. In this course we
will only work with one- and two-particle operators.

Let us begin with one-particle operators defined on single-particle states described by
the coordinate rj . A given local one-particle operator Tj = T (rj ,∇rj

), say e.g. the kinetic

energy operator − ~2
2m∇2

rj
or an external potential V (rj), takes the following form in the

|ν〉-representation for a single-particle system:

Tj =
∑
νa,νb

Tνbνa |ψνb
(rj)〉〈ψνa

(rj)|, (1.26)

where Tνbνa =
∫

drj ψ∗νb
(rj) T (rj ,∇rj

) ψνa
(rj). (1.27)

In an N -particle system all N particle coordinates must appear in a symmetrical way,
hence the proper kinetic energy operator in this case must be the total (symmetric) kinetic
energy operator Ttot associated with all the coordinates,

Ttot =
N∑

j=1

Tj , (1.28)

and the action of Ttot on a simple product state is

Ttot|ψνn1
(r1)〉|ψνn2

(r2)〉 . . . |ψνnN
(rN )〉 (1.29)

=
N∑

j=1

∑
νaνb

Tνbνaδνa,νnj
|ψνn1

(r1)〉 . . . |ψνb
(rj)〉 . . . |ψνnN

(rN )〉.

Here the Kronecker delta comes from 〈νa|νnj 〉 = δνa,νnj
. It is straight forward to extend

this result to the proper symmetrized basis states.
We move on to discuss symmetric two-particle operators Vjk, such as the Coulomb

interaction V (rj−rk) = e2

4πε0

1
|rj−rk| between a pair of electrons. For a two-particle sys-

tem described by the coordinates rj and rk in the |ν〉-representation with basis states
|ψνa

(rj)〉|ψνb
(rk)〉 we have the usual definition of Vjk:

Vjk =
∑
νaνb

νcνd

Vνcνd,νaνb
|ψνc

(rj)〉|ψνd
(rk)〉〈ψνa

(rj)|〈ψνb
(rk)| (1.30)

where Vνcνd,νaνb
=

∫
drjdrk ψ∗νc

(rj)ψ
∗
νd

(rk)V (rj−rk)ψνa
(rj)ψνb

(rk). (1.31)

In the N -particle system we must again take the symmetric combination of the coordinates,
i.e. introduce the operator of the total interaction energy Vtot,

Vtot =
N∑

j>k

Vjk =
1
2

N∑

j,k 6=j

Vjk, (1.32)
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Figure 1.2: The position vectors of the two electrons orbiting the helium nucleus and the
single-particle probability density P (r1) =

∫
dr2

1
2 |ψν1

(r1)ψν2
(r2)+ψν2

(r1)ψν1
(r2)|2 for the

symmetric two-particle state based on the single-particle orbitals |ν1〉 = |(3, 2, 1, ↑)〉 and
|ν2〉 = |(4, 2, 0, ↓)〉. Compare with the single orbital |(4, 2, 0, ↓)〉 depicted in Fig. 1.1(b).

Vtot acts as follows:

Vtot|ψνn1
(r1)〉|ψνn2

(r2)〉 . . . |ψνnN
(rN )〉 (1.33)

=
1
2

N∑

j 6=k

∑
νaνb

νcνd

Vνcνd,νaνb
δνa,νnj

δνb,νnk
|ψνn1

(r1)〉 . . . |ψνc
(rj)〉 . . . |ψνd

(rk)〉 . . . |ψνnN
(rN )〉.

A typical Hamiltonian for an N -particle system thus takes the form

H = Ttot + Vtot =
N∑

j=1

Tj +
1
2

N∑

j 6=k

Vjk. (1.34)

A specific example is the Hamiltonian for the helium atom, which in a simple form
neglecting spin interactions can be thought of as two electrons with coordinates r = r1

and r = r2 orbiting around a nucleus with charge Z = +2 at r = 0,

HHe =
(
− ~

2

2m
∇2

1 −
Ze2

4πε0

1
r1

)
+

(
− ~

2

2m
∇2

2 −
Ze2

4πε0

1
r2

)
+

e2

4πε0

1
|r1 − r2|

. (1.35)

This Hamiltonian consists of four one-particle operators and one two-particle operator,
see also Fig. 1.2.

1.3 Second quantization, basic concepts

Many-particle physics is formulated in terms of the so-called second quantization represen-
tation also known by the more descriptive name occupation number representation. The
starting point of this formalism is the notion of indistinguishability of particles discussed
in Sec. 1.2.1 combined with the observation in Sec. 1.2.2 that determinants or permanent
of single-particle states form a basis for the Hilbert space of N -particle states. As we
shall see, quantum theory can be formulated in terms of occupation numbers of these
single-particle states.



10 CHAPTER 1. FIRST AND SECOND QUANTIZATION

1.3.1 The occupation number representation

The first step in defining the occupation number representation is to choose any ordered
and complete single-particle basis {|ν1〉, |ν2〉, |ν3〉, . . .}, the ordering being of paramount
importance for fermions. It is clear from the form Ŝ±ψνn1

(r1)ψνn2
(r2) . . . ψνnN

(rN ) of the
basis states in Eq. (1.25) that in each term only the occupied single-particle states |νnj 〉
play a role. It must somehow be simpler to formulate a representation where one just
counts how many particles there are in each orbital |ν〉. This simplification is achieved
with the occupation number representation.

The basis states for an N -particle system in the occupation number representation are
obtained simply by listing the occupation numbers of each basis state,

N−particle basis states : |nν1 , nν2 , nν3 , . . .〉,
∑

j

nνj = N. (1.36)

It is therefore natural to define occupation number operators n̂νj which as eigenstates have
the basis states |nνj 〉, and as eigenvalues have the number nνj of particles occupying the
state νj ,

n̂νj |nνj 〉 = nνj |nνj 〉. (1.37)

We shall show later that for fermions nνj can be 0 or 1, while for bosons it can be any
non-negative number,

nνj =
{

0, 1 (fermions)
0, 1, 2, . . . (bosons).

(1.38)

Naturally, the question arises how to connect the occupation number basis Eq. (1.36) with
the first quantization basis Eq. (1.23). This will be answered in the next section.

The space spanned by the occupation number basis is denoted the Fock space F . It
can be defined as F = F0⊕F1⊕F2⊕ . . ., where FN = span{|nν1 , nν2 , . . .〉 |

∑
j nνj = N}.

In Table. 1.1 some of the fermionic and bosonic basis states in the occupation number
representation are shown. Note how by virtue of the direct sum, states containing a
different number of particles are defined to be orthogonal.

1.3.2 The boson creation and annihilation operators

To connect first and second quantization we first treat bosons. Given the occupation num-
ber operator it is natural to introduce the creation operator b†νj that raises the occupation
number in the state |νj〉 by 1,

b†νj
| . . . , nνj−1 , nνj , nνj+1 , . . .〉 = B+(nνj ) | . . . , nνj−1 , nνj + 1, nνj+1 , . . .〉, (1.39)

where B+(nνj ) is a normalization constant to be determined. The only non-zero matrix
elements of b†νj are 〈nνj+1|b†νj |nνj 〉, where for brevity we only explicitly write the occupation
number for νj . The adjoint of b†νj is found by complex conjugation as 〈nνj + 1|b†νj |nνj 〉∗ =
〈nνj |(b†νj )†|nνj +1〉. Consequently, one defines the annihilation operator bνj

≡ (b†νj )†, which
lowers the occupation number of state |νj〉 by 1,

bνj
| . . . , nνj−1 , nνj , nνj+1 , . . .〉 = B−(nνj ) | . . . , nνj−1 , nνj − 1, nνj+1 , . . .〉. (1.40)
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Table 1.1: Some occupation number basis states for N -particle systems.

N fermion basis states |nν1 , nν2 , nν3 , . . .〉
0 |0, 0, 0, 0, ..〉
1 |1, 0, 0, 0, ..〉, |0, 1, 0, 0, ..〉, |0, 0, 1, 0, ..〉, ..

2 |1, 1, 0, 0, ..〉, |0, 1, 1, 0, ..〉, |1, 0, 1, 0, ..〉, |0, 0, 1, 1, ..〉, |0, 1, 0, 1, ..〉, |1, 0, 0, 1, ..〉, ..
...

...
...

...
...

N boson basis states |nν1 , nν2 , nν3 , . . .〉
0 |0, 0, 0, 0, ..〉
1 |1, 0, 0, 0, ..〉, |0, 1, 0, 0, ..〉, |0, 0, 1, 0, ..〉, ..

2 |2, 0, 0, 0, ..〉, |0, 2, 0, 0, ..〉, |1, 1, 0, 0, ..〉, |0, 0, 2, 0, ..〉, |0, 1, 1, 0, ..〉, |1, 0, 1, 0, ..〉, ..
...

...
...

...
...

The creation and annihilation operators b†νj and bνj
are the fundamental operators in the

occupation number formalism. As we will demonstrate later any operator can be expressed
in terms of them.

Let us proceed by investigating the properties of b†νj and bνj
further. Since bosons

are symmetric in the single-particle state index νj we of course demand that b†νj and b†νk

must commute, and hence by Hermitian conjugation that also bνj
and bνk

commute. The
commutator [A,B] for two operators A and B is defined as

[A,B] ≡ AB −BA, so that [A,B] = 0 ⇒ BA = AB. (1.41)

We demand further that if j 6= k then bνj
and b†νk commute. However, if j = k we must

be careful. It is evident that since an unoccupied state can not be emptied further we
must demand bνj

| . . . , 0, . . .〉 = 0, i.e. B−(0) = 0. We also have the freedom to normalize

the operators by demanding b†νj | . . . , 0, . . .〉 = | . . . , 1, . . .〉, i.e. B+(0) = 1. But since
〈1|b†νj |0〉∗ = 〈0|bνj

|1〉, it also follows that bνj
| . . . , 1, . . .〉 = | . . . , 0, . . .〉, i.e. B−(1) = 1.

It is clear that bνj
and b†νj do not commute: bνj

b†νj |0〉 = |0〉 while b†νjbνj
|0〉 = 0, i.e.

we have [bνj
, b†νj ] |0〉 = |0〉. We assume this commutation relation, valid for the state |0〉,

also to be valid as an operator identity in general, and we calculate the consequences of
this assumption. In summary, we define the operator algebra for the bosonic creation and
annihilation operators by the following three commutation relations:

[b†νj
, b†νk

] = 0, [bνj
, bνk

] = 0, [bνj
, b†νk

] = δνj ,νk
. (1.42)

By definition b†ν and bν are not Hermitian. However, the product b†νbν is, and by
using the operator algebra Eq. (1.42) we show below that this operator in fact is the
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Figure 1.3: The action of the bosonic creation operator b†ν and adjoint annihilation operator
bν in the occupation number space. Note that b†ν can act indefinitely, while bν eventually
hits |0〉 and annihilates it yielding 0.

occupation number operator n̂ν . Firstly, Eq. (1.42) leads immediately to the following
two very important commutation relations:

[b†νbν , bν ] = −bν [b†νbν , b
†
ν ] = b†ν . (1.43)

Secondly, for any state |φ〉 we note that 〈φ|b†νbν |φ〉 is the norm of the state bν |φ〉 and hence
a positive real number (unless |φ〉 = |0〉 for which bν |0〉 = 0). Let |φλ〉 be any eigenstate
of b†νbν , i.e. b†νbν |φλ〉 = λ|φλ〉 with λ > 0. Now choose a particular λ0 and study bν |φλ0〉.
We find that

(b†νbν)bν |φλ0〉 = (bνb
†
ν − 1)bν |φλ0〉 = bν(b

†
νbν − 1)|φλ0〉 = bν(λ0 − 1)|φλ0〉, (1.44)

i.e. bν |φλ0〉 is also an eigenstate of b†νbν , but with the eigenvalue reduced by 1 to (λ0 − 1).
If λ0 is not a non-negative integer this lowering process can continue until a negative
eigenvalue is encountered, but this violates the condition λ0 > 0, and we conclude that
λ = n = 0, 1, 2, . . .. Writing |φλ〉 = |nν〉 we have shown that b†νbν |nν〉 = nν |nν〉 and
bν |nν〉 ∝ |nν − 1〉. Analogously, we find that

(b†νbν)b
†
ν |nν〉 = (n + 1)b†ν |nν〉, (1.45)

i.e. b†ν |nν〉 ∝ |nν + 1〉. The normalization factors for b†ν and bν are found from

‖bν |nν〉‖2 = (bν |nν〉)†(bν |nν〉) = 〈nν |b†νbν |nν〉 = nν , (1.46a)

‖b†ν |nν〉‖2 = (b†ν |nν〉)†(b†ν |nν〉) = 〈nν |bνb
†
ν |nν〉 = nν + 1. (1.46b)

Hence we arrive at

b†νbν = n̂ν , b†νbν |nν〉 = nν |nν〉, nν = 0, 1, 2, . . . (1.47)

bν |nν〉 =
√

nν |nν − 1〉, b†ν |nν〉 =
√

nν + 1 |nν + 1〉, (b†ν)nν |0〉 =
√

nν ! |nν〉, (1.48)

and we can therefore identify the first and second quantized basis states,

Ŝ+|ψνn1
(r̃1)〉|ψνn2

(r̃2)〉 . . . |ψνnN
(r̃N )〉 = b†νn1

b†νn2
. . . b†νnN

|0〉, (1.49)

where both sides contain N -particle state-kets completely symmetric in the single-particle
state index νnj .



1.3. SECOND QUANTIZATION, BASIC CONCEPTS 13

1.3.3 The fermion creation and annihilation operators

Also for fermions it is natural to introduce creation and annihilation operators, now de-
noted c†νj and cνj

, being the Hermitian adjoint of each other:

c†νj
| . . . , nνj−1 , nνj , nνj+1 , . . .〉 = C+(nνj ) | . . . , nνj−1 , nνj +1, nνj+1 , . . .〉, (1.50)

cνj
| . . . , nνj−1 , nνj , nνj+1 , . . .〉 = C−(nνj ) | . . . , nνj−1 , nνj−1, nνj+1 , . . .〉. (1.51)

But to maintain the fundamental fermionic antisymmetry upon exchange of orbitals ap-
parent in Eq. (1.23) it is in the fermionic case not sufficient just to list the occupation
numbers of the states, also the order of the occupied states has a meaning. We must
therefore demand

| . . . , nνj = 1, . . . , nνk
= 1, . . .〉 = −| . . . , nνk

= 1, . . . , nνj = 1, . . .〉. (1.52)

and consequently we must have that c†νj and c†νk anti-commute, and hence by Hermitian
conjugation that also cνj

and cνk
anti-commute. The anti-commutator {A,B} for two

operators A and B is defined as

{A,B} ≡ AB + BA, so that {A,B} = 0 ⇒ BA = −AB. (1.53)

For j 6= k we also demand that cνj
and c†νk anti-commute. However, if j = k we again must

be careful. It is evident that since an unoccupied state can not be emptied further we
must demand cνj

| . . . , 0, . . .〉 = 0, i.e. C−(0) = 0. We also have the freedom to normalize

the operators by demanding c†νj | . . . , 0, . . .〉 = | . . . , 1, . . .〉, i.e. C+(0) = 1. But since
〈1|c†νj |0〉∗ = 〈0|cνj

|1〉 it follows that cνj
| . . . , 1, . . .〉 = | . . . , 0, . . .〉, i.e. C−(1) = 1.

It is clear that cνj
and c†νj do not anti-commute: cνj

c†νj |0〉 = |0〉 while c†νjcνj
|0〉 = 0,

i.e. we have {cνj
, c†νj} |0〉 = |0〉. We assume this anti-commutation relation to be valid as

an operator identity and calculate the consequences. In summary, we define the operator
algebra for the fermionic creation and annihilation operators by the following three anti-
commutation relations:

{c†νj
, c†νk

} = 0, {cνj
, cνk

} = 0, {cνj
, c†νk

} = δνj ,νk
. (1.54)

An immediate consequence of the anti-commutation relations Eq. (1.54) is

(c†νj
)2 = 0, (cνj

)2 = 0. (1.55)

Now, as for bosons we introduce the Hermitian operator c†νcν , and by using the operator
algebra Eq. (1.54) we show below that this operator in fact is the occupation number
operator n̂ν . In analogy with Eq. (1.43) we find

[c†νcν , cν ] = −cν [c†νcν , c
†
ν ] = c†ν , (1.56)

so that c†ν and cν steps the eigenvalues of c†νcν up and down by one, respectively. From
Eqs. (1.54) and (1.55) we have (c†νcν)

2 = c†ν(cνc
†
ν)cν = c†ν(1 − c†νcν)cν = c†νcν , so that
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Figure 1.4: The action of the fermionic creation operator c†ν and the adjoint annihilation
operator cν in the occupation number space. Note that both c†ν and cν can act at most
twice before annihilating a state completely.

c†νcν(c
†
νcν − 1) = 0, and c†νcν thus only has 0 and 1 as eigenvalues leading to a simple

normalization for c†ν and cν . In summary, we have

c†νcν = n̂ν , c†νcν |nν〉 = nν |nν〉, nν = 0, 1 (1.57)

cν |0〉 = 0, c†ν |0〉 = |1〉, cν |1〉 = |0〉, c†ν |1〉 = 0, (1.58)

and we can readily identify the first and second quantized basis states,

Ŝ−|ψνn1
(r̃1)〉|ψνn2

(r̃2)〉 . . . |ψνnN
(r̃N )〉 = c†νn1

c†νn2
. . . c†νnN

|0〉, (1.59)

where both sides contain normalized N -particle state-kets completely anti-symmetric in
the single-particle state index νnj in accordance with the Pauli exclusion principle.

1.3.4 The general form for second quantization operators

In second quantization all operators can be expressed in terms of the fundamental creation
and annihilation operators defined in the previous two sections. This rewriting of the first
quantized operators in Eqs. (1.29) and (1.33) into their second quantized form is achieved
by using the basis state identities Eqs. (1.49) and (1.59) linking the two representations.

For simplicity, let us first consider the single-particle operator Ttot from Eq. (1.29)
acting on a bosonic N -particle system. In this equation we then act with the bosonic
symmetrization operator S+ on both sides. Utilizing that Ttot and S+ commute and
invoking the basis state identity Eq. (1.49) we obtain

Ttotb
†
νn1

. . . b†νnN
|0〉 =

∑
νaνb

Tνbνa

N∑

j=1

δνa,νnj
b†νn1

. . .

site nj︷︸︸︷
b†νb

. . . b†νnN
|0〉, (1.60)

where on the right hand side of the equation the operator b†νb stands on the site nj . To
make the kets on the two sides of the equation look alike, we would like to reinsert the
operator b†νnj

at site nj on the right. To do this we focus on the state ν ≡ νnj . Originally,
i.e. on the left hand side, the state ν may appear, say, p times leading to a contribution
(b†ν)p|0〉. We have p > 0 since otherwise both sides would yield zero. On the right hand



1.3. SECOND QUANTIZATION, BASIC CONCEPTS 15

� � � �

� � � �

� � � � �

� � 	 �

� � � �

� � 
 �

� � � �

� � � � � � � 
 � �

Figure 1.5: A graphical representation of the one- and two-particle operators in second
quantization. The incoming and outgoing arrows represent initial and final states, respec-
tively. The dashed and wiggled lines represent the transition amplitudes for the one- and
two-particle processes contained in the operators.

side the corresponding contribution has changed into b†νb(b
†
ν)p−1|0〉. This is then rewritten

by use of Eqs. (1.42), (1.47) and (1.48) as

b†νb
(b†ν)

p−1|0〉 = b†νb

(1
p
bνb

†
ν

)
(b†ν)

p−1|0〉 =
(1

p
b†νb

bν

)
(b†ν)

p|0〉. (1.61)

Now, the p operators b†ν can be redistributed to their original places as they appear on
the left hand side of Eq. (1.60). The sum over j together with δνa,νnj

yields p identical
contributions cancelling the factor 1/p in Eq. (1.61), and we arrive at the simple result

Ttot

[
b†νn1

. . . b†νnN
|0〉

]
=

∑

a,b

Tνbνab
†
νb

bνa

[
b†νn1

. . . b†νnN
|0〉

]
. (1.62)

Since this result is valid for any basis state b†νn1
. . . b†νnN

|0〉, it is actually an operator
identity stating Ttot =

∑
ij Tνiνjb

†
νibνj

.
It is straightforward to generalize this result to two-particle (or any-number-of-particle)

operators acting on boson states, and a similar reasoning can be made for the fermion case
(see Exercise 1.1) when the necessary care is taken regarding the sign appearing from the
anti-commutators in this case. If we let a† denote either a boson operator b† or a fermion
operator c† we can state the general form for one- and two-particle operators in second
quantization:

Ttot =
∑
νi,νj

Tνiνj a†νi
aνj

, (1.63)

Vtot =
1
2

∑
νiνj

νkνl

Vνiνj ,νkνl
a†νi

a†νj
aνl

aνk
. (1.64)

In Fig. 1.5 a graphical representation of these fundamental operator expressions is shown.
Operators in second quantization are thus composed of linear combinations of products

of creation and annihilation operators weighted by the appropriate matrix elements of the
operator calculated in first quantization. Note the order of the indices, which is extremely
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important in the case of two-particle fermion operators. The first quantization matrix
element can be read as a transition induced from the initial state |νkνl〉 to the final state
|νiνj〉. In second quantization the initial state is annihilated by first annihilating state
|νk〉 and then state |νl〉, while the final state is created by first creating state |νj〉 and then
state |νi〉:

|0〉 = aνl
aνk
|νkνl〉, |νiνj〉 = a†νi

a†νj
|0〉. (1.65)

Note how all the permutation symmetry properties are taken care of by the operator
algebra of a†ν and aν . The matrix elements are all in the simple non-symmetrized form of
Eq. (1.31).

1.3.5 Change of basis in second quantization

Different quantum operators are most naturally expressed in different representations mak-
ing basis changes a central issue in quantum physics. In this section we give the general
transformation rules which are to be exploited throughout this course.

Let {|ψν1
〉, |ψν2

〉, . . .} and {|ψ̃µ1
〉, |ψ̃µ2

〉, . . .} be two different complete and ordered
single-particle basis sets. From the completeness condition Eq. (1.7) we have the basic
transformation law for single-particle states:

|ψ̃µ〉 =
∑

ν

|ψν〉〈ψν |ψ̃µ〉 =
∑

ν

〈ψ̃µ|ψν〉
∗ |ψν〉. (1.66)

In the case of single-particle systems we define quite naturally creation operators ã†µ and
a†ν corresponding to the two basis sets, and find directly from Eq. (1.66) that ã†µ|0〉 =
|ψ̃µ〉 =

∑
ν〈ψ̃µ|ψν〉∗ a†ν |0〉, which guides us to the transformation rules for creation and

annihilation operators (see also Fig. 1.6):

ã†µ =
∑

ν

〈ψ̃µ|ψν〉∗ a†ν , ãµ =
∑

ν

〈ψ̃µ|ψν〉 aν . (1.67)

The general validity of Eq. (1.67) follows from applying the first quantization single-particle
result Eq. (1.66) to the N -particle first quantized basis states Ŝ±|ψνn1

. . . ψνnN
〉 leading to

ã†µn1
ã†µn2

. . . ã†µnN
|0〉 =

(∑
νn1

〈ψ̃µn1
|ψνn1

〉∗a†νn1

)
. . .

(∑
νnN

〈ψ̃µnN
|ψνnN

〉∗a†νnN

)
|0〉. (1.68)

The transformation rules Eq. (1.67) lead to two very desirable results. Firstly, that the
basis transformation preserves the bosonic or fermionic particle statistics,

[ãµ1 , ã
†
µ2

]± =
∑
νjνk

〈ψ̃µ1
|ψνj

〉〈ψ̃µ2
|ψνk

〉∗[aνj
, a†νk

]± (1.69)

=
∑
νjνk

〈ψ̃µ1
|ψνj

〉〈ψνk
|ψ̃µ2

〉δνj ,νk
=

∑
νj

〈ψ̃µ1
|ψνj

〉〈ψνj
|ψ̃µ2

〉 = δµ1,µ2 ,

and secondly, that it leaves the total number of particles unchanged,
∑

µ

ã†µãµ =
∑

µ

∑
νjνk

〈ψνj
|ψ̃µ〉〈ψ̃µ|ψνk

〉a†νj
aνk

=
∑
νjνk

〈ψνj
|ψνk

〉a†νj
aνk

=
∑
νj

a†νj
aνj

. (1.70)
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Figure 1.6: The transformation rules for annihilation operators aν and ãµ̃ upon change of
basis between {|ψν〉} = {|ν〉} and {|ψ̃µ〉} = {|µ̃〉}.

1.3.6 Quantum field operators and their Fourier transforms

In particular one second quantization representation requires special attention, namely
the real space representation leading to the definition of quantum field operators. If we in
Sec. 1.3.5 let the transformed basis set {|ψ̃µ〉} be the continuous set of position kets {|r〉}
and, suppressing the spin index, denote ã†µ by Ψ†(r) we obtain from Eq. (1.67)

Ψ†(r) ≡
∑

ν

〈r|ψν〉∗ a†ν =
∑

ν

ψ∗ν (r) a†ν , Ψ(r) ≡
∑

ν

〈r|ψν〉 aν =
∑

ν

ψν(r) aν . (1.71)

Note that Ψ†(r) and Ψ(r) are second quantization operators, while the coefficients ψ∗ν (r)
and ψν(r) are ordinary first quantization wavefunctions. Loosely speaking, Ψ†(r) is the
sum of all possible ways to add a particle to the system at position r through any of the
basis states ψν(r). Since Ψ†(r) and Ψ(r) are second quantization operators defined in
every point in space they are called quantum field operators. From Eq. (1.69) it is straight
forward to calculate the following fundamental commutator and anti-commutator,

[Ψ(r1),Ψ
†(r2)] = δ(r1 − r2), boson fields (1.72a)

{Ψ(r1), Ψ
†(r2)} = δ(r1 − r2), fermion fields. (1.72b)

In some sense the quantum field operators express the essence of the wave/particle duality
in quantum physics. On the one hand they are defined as fields, i.e. as a kind of waves,
but on the other hand they exhibit the commutator properties associated with particles.

The introduction of quantum field operators makes it easy to write down operators
in the real space representation. By applying the definition Eq. (1.71) to the second
quantized single-particle operator Eq. (1.63) one obtains

T =
∑
νiνj

(∫
dr ψ∗νi

(r)Trψνj
(r)

)
a†νi

aνj

=
∫

dr
(∑

νi

ψ∗νi
(r)a†νi

)
Tr

(∑
νj

ψνj
(r)aνj

)
=

∫
dr Ψ†(r)TrΨ(r). (1.73)

So in the real space representation, i.e. using quantum field operators, second quantization
operators have a form analogous to first quantization matrix elements.
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Finally, when working with homogeneous systems it is often desirable to transform
between the real space and the momentum representations, i.e. to perform a Fourier trans-
formation. Substituting in Eq. (1.71) the |ψν〉 basis with the momentum basis |k〉 yields

Ψ†(r) =
1√V

∑

k

e−ik·r a†k, Ψ(r) =
1√V

∑

k

eik·r ak. (1.74)

The inverse expressions are obtained by multiplying by e±iq·r and integrating over r,

a†q =
1√V

∫
dr eiq·r Ψ†(r), aq =

1√V

∫
dr e−iq·r Ψ(r). (1.75)

1.4 Second quantization, specific operators

In this section we will use the general second quantization formalism to derive some ex-
pressions for specific second quantization operators that we are going to use repeatedly in
this course.

1.4.1 The harmonic oscillator in second quantization

The one-dimensional harmonic oscillator in first quantization is characterized by two con-
jugate variables appearing in the Hamiltonian: the position x and the momentum p,

H =
1

2m
p2 +

1
2
mω2x2, [p, x] =

~
i
. (1.76)

This can be rewritten in second quantization by identifying two operators a† and a satis-
fying the basic boson commutation relations Eq. (1.42). By inspection it can be verified
that the following operators do the job,

a ≡ 1√
2

(
x

`
+ i

p

~/`

)

a† ≡ 1√
2

(
x

`
− i

p

~/`

)





⇒





x ≡ `
1√
2
(a† + a),

p ≡ ~
`

i√
2
(a† − a),

(1.77)

where x is given in units of the harmonic oscillator length ` =
√
~/mω and p in units of

the harmonic oscillator momentum ~/`. Mnemotechnically, one can think of a as being
the (1/

√
2-normalized) complex number formed by the real part x/` and the imaginary

part p/(~/`), while a† is found as the adjoint operator to a . From Eq. (1.77) we obtain
the Hamiltonian, H, and the eigenstates |n〉:

H = ~ω
(
a†a +

1
2

)
and |n〉 =

(a†)n

√
n!
|0〉, with H|n〉 = ~ω

(
n +

1
2

)
|n〉. (1.78)

The excitation of the harmonic oscillator can thus be interpreted as filling the oscillator
with bosonic quanta created by the operator a†. This picture is particularly useful in the
studies of the photon and phonon fields, as we shall see during the course. If we as a
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Figure 1.7: The probability density |〈r|n〉|2 for n = 0, 1, 2, and 9 quanta in the oscillator
state. Note that the width of the wave function is

√
〈n|x2|n〉 =

√
n + 1/2 `.

measure of the amplitude of the oscillator in the state with n quanta, |n〉, use the square-
root of the expectation value of x2 = `2(a†a† + a†a + aa† + aa)/2, we find

√
〈n|x2|n〉 =√

n + 1/2 `. Thus the width of the oscillator wavefunction scales roughly with the square-
root of the number of quanta in the oscillator, as sketched in Fig. 1.7.

The creation operator can also be used to generate the specific form of the eigenfunc-
tions ψn(x) of the oscillator starting from the groundstate wavefunction ψ0(x):

ψn(x) = 〈x|n〉 = 〈x|(a
†)n

√
n!
|0〉 =

1√
n!
〈x|

(
x√
2`
− i

p
~
`

√
2

)n

|0〉 =
1√
2nn!

(
x

`
− `

d

dx

)n

ψ0(x).

(1.79)

1.4.2 The electromagnetic field in second quantization

Historically, the electromagnetic field was the first example of second quantization (Dirac,
1927). The quantum nature of the radiation field, and the associated concept of photons
play a crucial role in the theory of interactions between matter and light. In most of the
applications in this course we shall, however, treat the electromagnetic field classically.

The quantization of the electromagnetic field is based on the observation that the
eigenmodes of the classical field can be thought of as a collection of harmonic oscillators.
These are then quantized. In the free field case the electromagnetic field is completely
determined by the vector potential A(r, t) in a specific gauge. Normally, the transversality
condition ∇·A = 0 is chosen, in which case A is denoted the radiation field, and we have

B = ∇×A ∇·A = 0

E = −∂tA ∇2A− 1
c2

∂2
t A = 0.

(1.80)

We assume periodic boundary conditions for A enclosed in a huge box taken to be a cube
of volume V and hence side length L = 3

√V. The dispersion law is ωk = kc and the
two-fold polarization of the field is described by polarization vectors ελ, λ = 1, 2. The
normalized eigenmodes uk,λ(r, t) of the wave equation Eq. (1.80) are seen to be

uk,λ(r, t) = 1√V ελei(k·r−ωkt), λ = 1, 2, ωk = ck

kx = 2π
L nx, nx = 0,±1,±2, . . . (same for y and z).

(1.81)
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The set {ε1, ε2,k/k} forms a right-handed orthonormal basis set. The field A takes only
real values and hence it has a Fourier expansion of the form

A(r, t) =
1√V

∑

k

∑

λ=1,2

(
Ak,λei(k·r−ωkt) + A∗k,λe−i(k·r−ωkt)

)
ελ, (1.82)

where Ak,λ are the complex expansion coefficients. We now turn to the Hamiltonian H
of the system, which is simply the field energy known from electromagnetism. Using
Eq. (1.80) we can express H in terms of the radiation field A,

H =
1
2

∫
dr

(
ε0|E|2 +

1
µ0
|B|2

)
=

1
2
ε0

∫
dr (ω2

k|A|2 + c2k2|A|2) = ε0ω
2
k

∫
dr |A|2. (1.83)

In Fourier space, using Parceval’s theorem and the notation Ak,λ = AR
k,λ + iAI

k,λ for the
real and imaginary part of the coefficients, we have

H = ε0ω
2
k

∑

k,λ

2|Ak,λ|2 = 4ε0ω
2
k

1
2

∑

k,λ

(
|AR

k,λ|2 + |AI
k,λ|2

)
. (1.84)

If in Eq. (1.82) we merge the time dependence with the coefficients, i.e. Ak,λ(t) =
Ak,λe−iωkt, the time dependence for the real and imaginary parts are seen to be

ȦR
k,λ = +ωk AI

k,λ ȦI
k,λ = −ωk AR

k,λ. (1.85)

From Eqs. (1.84) and (1.85) it thus follows that, up to some normalization constants, AR
k,λ

and AI
k,λ are conjugate variables: ∂H

∂AR
k,λ

= −4ε0ωkȦ
I
k,λ and ∂H

∂AI
k,λ

= +4ε0ωkȦ
R
k,λ. Proper

normalized conjugate variables Qk,λ and Pk,λ are therefore introduced:

Qk,λ ≡ 2
√

ε0A
R
k,λ

Pk,λ ≡ 2ωk

√
ε0A

I
k,λ

}
⇒





H =
∑

k,λ

1
2

(
P 2

k,λ + ω2
kQ2

k,λ

)

Q̇k,λ = Pk,λ, Ṗk,λ = −ω2
kQk,λ

∂H

∂Qk,λ
= −Ṗk,λ,

∂H

∂Pk,λ
= Q̇k,λ.

(1.86)

This ends the proof that the radiation field A can thought of as a collection of harmonic
oscillator eigenmodes, where each mode are characterized by the conjugate variable Qk,λ

and Pk,λ. Quantization is now obtained by imposing the usual condition on the commu-
tator of the variables, and introducing the second quantized Bose operators a†k,λ for each
quantized oscillator:

[Pk,λ, Qk,λ] =
~
i
⇒





H =
∑

k,λ

~ωk(a†k,λak,λ +
1
2
), [ak,λ, a†k,λ] = 1,

Qk,λ =

√
~

2ωk

(a†k,λ + ak,λ), Pk,λ =

√
~ωk

2
i(a†k,λ − ak,λ).

(1.87)
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To obtain the final expression for A in second quantization we simply express Ak,λ in
terms of Pk,λ and Qk,λ, which in turn is expressed in terms of a†k,λ and ak,λ:

Ak,λ = AR
k,λ + iAI

k,λ →
Qk,λ

2√ε0
+ i

Pk,λ

2ωk
√

ε0
=

√
~

2ε0ωk

ak,λ, and A∗k,λ →
√

~
2ε0ωk

a†k,λ.

(1.88)
Substituting this into the expansion Eq. (1.82) our final result is:

A(r, t) =
1√V

∑

k

∑

λ=1,2

√
~

2ε0ωk

(
ak,λei(k·r−ωkt) + a†k,λe−i(k·r−ωkt)

)
ελ. (1.89)

1.4.3 Operators for kinetic energy, spin, density, and current

In the following we establish the second quantization representation of the four important
single-particle operators associated with kinetic energy, spin, particle density, and particle
current density.

First, we study the kinetic energy operator T , which is independent of spin and hence
diagonal in the spin indices. In first quantization it has the representations

Tr,σ′σ = − ~
2

2m
∇2

r δσ′,σ, real space representation, (1.90a)

〈k′σ′|T |kσ〉 =
~2k2

2m
δk′,k δσ′,σ, momentum representation. (1.90b)

Its second quantized forms with spin indices follow directly from Eqs. (1.63) and (1.73)

T =
∑

k,σ

~2k2

2m
a†k,σak,σ = − ~

2

2m

∑
σ

∫
dr Ψ†

σ(r)
(
∇2

rΨσ(r)
)

. (1.91)

The second equality can also be proven directly by inserting Ψ†(r) and Ψ(r) from Eq. (1.74).
For particles with charge q a magnetic field can be included in the expression for the ki-
netic energy by substituting the canonical momentum p with the kinetic momentum4

p− qA,

TA =
1

2m

∑
σ

∫
dr Ψ†

σ(r)
(
~
i
∇r − qA

)2

Ψσ(r). (1.92)

Next, we treat the spin operator s for electrons. In first quantization it is given by
the Pauli matrices

s =
~
2
τ , with τ =

{(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)}
. (1.93)

4In analytical mechanics A enters through the Lagrangian: L = 1
2
mv2 − V + qv ·A, since this by the

Euler-Lagrange equations yields the Lorentz force. But then p = ∂L/∂v = mv + qA, and via a Legendre
transform we get H(r,p) = p ·v − L(r,v) = 1

2
mv2 + V = 1

2m
(p − qA)2 + V . Considering infinitesimal

variations δA we get δH = H(A + δA)−H(A) = −qv·δA = −q
R

dr J·δA, an expression used to find J.
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To obtain the second quantized operator we pull out the spin index explicitly in the basis
kets, |ν〉 = |µ〉|σ〉, and obtain with fermion operators the following vector expression,

s =
∑

µσµ′σ′
〈µ′|〈σ′|s|σ〉|µ〉 c†µ′σ′cµσ =

~
2

∑
µ

∑

σ′σ

〈σ′|(τx, τy, τ z)|σ〉 c†µσ′cµσ, (1.94a)

with components

sx =
~
2

∑
µ

(c†µ↓cµ↑ + c†µ↑cµ↓) sy = i
~
2

∑
µ

(c†µ↓cµ↑ − c†µ↑cµ↓) sz =
~
2

∑
µ

(c†µ↑cµ↑ − c†µ↓cµ↓).

(1.94b)
We then turn to the particle density operator ρ(r). In first quantization the fundamen-

tal interpretation of the wave function ψµ,σ(r) gives us ρµ,σ(r) = |ψµ,σ(r)|2 which can also
be written as ρµ,σ(r) =

∫
dr′ ψ∗µ,σ(r′)δ(r′ − r)ψµ,σ(r′), and thus the density operator for

spin σ is given by ρσ(r) = δ(r′− r). In second quantization this combined with Eq. (1.63)
yields

ρσ(r) =
∫

dr′ Ψ†
σ(r′)δ(r′ − r)Ψσ(r′) = Ψ†

σ(r)Ψσ(r). (1.95)

From Eq. (1.75) the momentum representation of this is found to be

ρσ(r) =
1
V

∑

kk′
ei(k−k′)·ra†k′σakσ =

1
V

∑

kq

e−iq·ra†k+qσakσ =
1
V

∑
q

(∑

k

a†kσak+qσ

)
eiq·r,

(1.96)
where the momentum transfer q = k′ − k has been introduced.

The fourth and last operator to be treated is the particle current density operator
J(r). It is related to the particle density operator ρ(r) through the continuity equation
∂tρ +∇·J = 0. This relationship can be used to actually define J. However, we shall take
a more general approach based on analytical mechanics, see Eq. (1.92) and the associated
footnote. This allows us in a simple way to take the magnetic field, given by the vector
potential A, into account. By analytical mechanics it is found that variations δH in the
Hamiltonian function due to variations δA in the vector potential is given by

δH = −q

∫
dr J·δA (1.97)

We use this expression with H given by the kinetic energy Eq. (1.92). Variations due to
a varying parameter are calculated as derivatives if the parameter appears as a simple
factor. But expanding the square in Eq. (1.92) and writing only the A dependent terms of
the integrand, −Ψ†

σ(r) q~
2mi [∇·A+A·∇]Ψσ(r) + q2

2mA2Ψ†
σ(r)Ψσ(r), reveals one term where

∇ is acting on A. By partial integration this ∇ is shifted to Ψ†(r), and we obtain

H = T +
∑

σ

∫
dr

{
q~

2mi
A·

[(
∇Ψ†

σ(r)
)

Ψσ(r)−Ψ†
σ(r)

(
∇Ψσ(r)

)]
+

q2

2m
A2Ψ†

σ(r)Ψσ(r)
}

.

(1.98)
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The variations of Eq. (1.97) can in Eq. (1.98) be performed as derivatives and J is imme-
diately read off as the prefactor to δA. The two terms in the current density operator are
denoted the paramagnetic and the diamagnetic term, J∇ and JA, respectively:

Jσ(r) = J∇σ (r) + JA
σ (r), (1.99a)

paramagnetic : J∇σ (r) =
~

2mi

[
Ψ†

σ(r)
(
∇Ψσ(r)

)
−

(
∇Ψ†

σ(r)
)

Ψσ(r)
]
, (1.99b)

diamagnetic : JA
σ (r) = − q

m
A(r)Ψ†

σ(r)Ψσ(r). (1.99c)

The momentum representation of J is found in complete analogy with that of ρ

J∇σ (r) =
~

mV
∑

kq

(k +
1
2
q)eiq·ra†kσak+q,σ, JA

σ (r) =
−q

mVA(r)
∑

kq

eiq·ra†kσak+q,σ.

(1.100)
The expression for J in an arbitrary basis is treated in Exercise 1.2.

1.4.4 The Coulomb interaction in second quantization

The Coulomb interaction operator V is a two-particle operator not involving spin and
thus diagonal in the spin indices of the particles. Using the same reasoning that led from
Eq. (1.63) to Eq. (1.73) we can go directly from Eq. (1.64) to the following quantum field
operator form of V :

V (r2 − r1) =
1
2

∑
σ1σ2

∫
dr1dr2

e2
0

|r2 − r1|
Ψ†

σ1
(r1)Ψ

†
σ2

(r2)Ψσ2
(r2)Ψσ1

(r1). (1.101)

Here we have introduced the abbreviation e2
0 = e2/4πε0.We can also write the Coulomb

interaction directly in the momentum basis by using Eq. (1.31) and Eq. (1.64) with
|ν〉 = |k, σ〉 and ψk,σ(r) = 1√V eik·rχσ. We can interpret the Coulomb matrix element
as describing a transition from an initial state |k1σ1,k2σ2〉 to a final state |k3σ1,k4σ2〉
without flipping any spin, and we obtain

V =
1
2

∑
σ1σ2

∑

k1k2
k3k4

〈k3σ1,k4σ2|V |k1σ1,k2σ2〉 a†k3σ1
a†k4σ2

ak2σ2
ak1σ1

(1.102)

=
1
2

∑
σ1σ2

∑

k1k2
k3k4

(
e2
0

V2

∫
dr1dr2

ei(k1·r1+k2·r2−k3·r1−k4·r2)

|r2 − r1|
)

a†k3σ1
a†k4σ2

ak2σ2
ak1σ1

.

Since r2 − r1 is the relevant variable for the interaction, the exponential is rewritten as
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Figure 1.8: A graphical representation of the Coulomb interaction in second quantization.
Under momentum and spin conservation the incoming states |k1, σ1〉 and |k2, σ2〉 are with
probability amplitude Vq scattered into the outgoing states |k1 + q, σ1〉 and |k2 − q, σ2〉.

ei[(k1−k3)·r1+(k2−k4)·r2] = ei(k1−k3+k2−k4)·r1 ei(k2−k4)·(r2−r1) leaving us with two integrals,
which with the definitions q ≡ k2 − k4 and r ≡ r2 − r1 become

∫
dr1 ei(k1−k3+q)·r1 = V δk3,k1+q, Vq ≡

∫
dr

e2
0

r
eiq·r =

4πe2
0

q2
. (1.103)

These integrals express the Fourier transform of the Coulomb interaction5 and the explicit
momentum conservation obeyed by the interaction. The momenta k3 and k4 of the final
states can now be written as k3 = k1 + q and k4 = k2 − q. The final second quantized
form of the Coulomb interaction in momentum space is

V =
1

2V
∑
σ1σ2

∑

k1k2q

Vq a†k1+qσ1
a†k2−qσ2

ak2σ2
ak1σ1

. (1.104)

We shall study this operator thoroughly in Sec. 2.2 in connection with the interacting
electron gas. Here, in Fig. 1.8, we just show a graphical representation of the operator.

1.4.5 Basis states for systems with different kinds of particles

In the previous sections we have derived different fermion and boson operators. But so far
we have not treated systems where different kinds of particles are coupled. In this course
one important example of such a system is the fermionic electrons in a metal interacting
with the bosonic lattice vibrations (phonons). We study this system in Chap. 3. Another
example is electrons interacting with the photon field. Here we will briefly clarify how to
construct the basis set for such composed systems in general.

Let us for simplicity just study two different kinds of particles. The arguments are
easily generalized to include more complicated systems. The starting point is the case
where the two kinds of particles do not interact with each other. Let the first kind of
particles be described by the Hamiltonian H1 and a complete set of basis states {|ν〉}.
Likewise we have H2 and {|µ〉} for the second kind of particles. For the two decoupled

5We show in Exercise 1.5 how to calculate the Fourier transform V ks
q of the Yukawa potential V ks(r) =

e
2
0
r

e−ksr. The result is V ks
q =

4πe
2
0

q2+k2
s

from which Eq. (1.103) follows by setting ks = 0.
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systems an example of separate occupation number basis sets is

|ψ(1)〉 = |nν1 , nν2 , . . . , nνj , . . .〉 (1.105a)

|ψ(2)〉 = |nµ1 , nµ2 , . . . , nµj , . . .〉 (1.105b)

When a coupling H12 between the two system is introduced, we need to enlarge the Hilbert
space. The natural definition of basis states is the outer product states written as

|ψ〉 = |ψ(1)〉|ψ(2)〉
= |nν1 , nν2 , . . . , nνj , . . .〉|nµ1 , nµ2 , . . . , nµl

, . . .〉
= |nν1 , nν2 , . . . , nνj , . . . ; nµ1 , nµ2 , . . . , nµl

, . . .〉 (1.106)

In the last line all the occupation numbers are simply listed within the same ket but
the two groups are separated by a semicolon. A general state |Φ〉 can of course be any
superposition of the basis states:

|Φ〉 =
∑

{νj}{µl}
C{νj},{µl} |nν1 , nν2 , . . . , nνj , . . . ; nµ1 , nµ2 , . . . , nµl

, . . .〉. (1.107)

As a concrete example we can write down the basis states for interacting electrons and
photons in the momentum representation. The electronic basis states are the plane wave
orbitals |kσ〉 of Eq. (1.3), and the photon states are |qλ〉 given in Eq. (1.81). We let nkσ

and Nqλ denote the occupation numbers for electrons and photons, respectively. A basis
state |ψ〉 in this representation has the form:

|ψ〉 = |nk1σ1 , nk2σ2 , . . . , nkjσj , . . . ; Nq1λ1 , Nq2λ2 , . . . , Nqlλl
, . . .〉. (1.108)

1.5 Second quantization and statistical mechanics

The basic assumption of statistical mechanics is the ergodicity assumption. It states that
as time evolves a system assume all possible states complying with the given external
constraints, e.g. with a given total energy E. In other words, because of the randomness
of the system all of the available phase space is covered. The time it takes for the system
to visit all of the phase is the ergodicity time, which is assumed to be smaller than typical
time scales of the observation.

Suppose we are interested in some small system connected to the outside world, the
so-called reservoir, and assume that, taken as a whole, they constitute a closed system with
total energy ET . Let us call the energy of the small system Es and that of the reservoir
Er, i.e. ET = Es + Er. Based on the ergodicity assumption it is natural to conjecture
that the probability for a subsystem to have a definite energy Es is proportional to the
number of ways that the subsystem can have that energy. The density of states is defined
as d(E) = dN(E)/dE, where N(E) is the number of states with an energy less than
E. We denote the density of states of the total system at a given total energy d(ET ),
while the small system and the reservoir have the densities of states ds(Es) and dr(Er),
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respectively. Since for a given small energy interval ∆E the number of states in the
reservoir is much larger than the number states in smaller subsystem, the total density
of states is dominated by that of the reservoir and hence d(ET ) ≈ dr(ET ). From the
assumption about the probability being proportional to the number of states, we have for
the probability for the subsystem to have energy Es that

P (Es) ∝ dr(ET − Es) ∆E. (1.109)

Now, we do not expect this probability to be dependent on the size of the reservoir,
i.e. if we make it smaller by cutting it in half by some wall, nothing should happen to the
state of the small system, provided of course that it is still much smaller than the new
reservoir. This means that if we consider the ratio of two probabilities

P (Es)
P (E′

s)
=

dr(ET − Es)
dr(ET − E′

s)
, (1.110)

it must only depend on the energies Es and E′
s and neither on the total energy ET nor

on dr. But because the energy is only defined up to an additive constant, it can thus only
depend on the difference Es − E′

s. The only function P (E) that satisfies the condition

P (Es)
P (E′

s)
=

dr(ET − Es)
dr(ET − E′

s)
= f(Es − E′

s), (1.111)

is
P (E) ∝ e−βE . (1.112)

We have thus arrived at the famous Boltzmann or Gibbs distribution which of course
should be normalized. In conclusion: from statistical mechanics we know that both for
classical and a quantum mechanical systems which are connected to a heat bath the
probability for a given state s with energy Es to be occupied is given by the Boltzmann
distribution

P (Es) =
1
Z

exp(−βEs), (1.113)

where β is the inverse temperature, β = 1/kBT , and where the normalization factor, Z,
is the partition function

Z =
∑

s

exp(−βEs). (1.114)

When we sum over states, we must sum over a set of states which cover the entire
space of possible states, i.e. the basis set that we use to compute the energy must be a
complete set. For a quantum system with many particles, the states s are, as we have
seen, in general quite complicated to write down, and it is therefore an advantage to have
a form which is independent of the choice of basis states. Also for a quantum system it is
not clear what is meant by the energy of a given state, unless of course it is an eigenstate
of the Hamiltonian. Therefore the only meaningful interpretation of Eq. (1.114) is that
the sum of states runs over eigenstates of the Hamiltonian. Using the basis states |ν〉
defined by

H|ν〉 = Eν |ν〉, (1.115)
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it is now quite natural to introduce the so-called density matrix operator ρ corresponding
to the classical Boltzmann factor e−βE ,

ρ ≡ e−βH =
∑

ν

|ν〉e−βEν 〈ν|. (1.116)

We can thus write the expression Eq. (1.114) for the partition function as

Z =
∑

ν

〈ν|ρ|ν〉 = Tr[ρ]. (1.117)

Likewise, the thermal average of any quantum operator A is easily expressed using the
density matrix ρ. Following the elementary definition we have

〈A〉 =
1
Z

∑
ν

〈ν|A|ν〉e−βEν =
1
Z

Tr[ρA] =
Tr[ρA]
Tr[ρ]

. (1.118)

Eqs. (1.117) and (1.118) are basis-independent expressions, since the sum over states is
identified with the trace operation.6 This is of course true whatever formalism we use to
evaluate the trace. In first quantization the trace runs over for example the determinant
basis, which in second quantization translates to the Fock space of the corresponding
quantum numbers. For the canonical ensemble the trace is however restricted to run over
states with a given number of particles.

For the grand canonical ensemble the number of particles is not conserved. The small
system is allowed to exchange particles with the reservoir while keeping its average particle
number constant, and we introduce a chemical potential µ of the reservoir to accommodate
this constraint. Basically, the result obtained from the canonical ensemble is carried over to
the grand canonical ensemble by the substitution H → H − µN , where N is the particle
number operator. The corresponding density matrix ρG and partition function ZG are
defined as:

ρG ≡ e−β(H−µN), ZG = Tr[ρG]. (1.119)

where the trace now includes states with any number of particles. Likewise, it is useful to
introduce the Hamiltonian HG corresponding to the grand canonical ensemble,

HG ≡ H − µN. (1.120)

Unfortunately, the symbol H is often used instead of HG for the grand canonical Hamil-
tonian, so the reader must always carefully check whether H refers to the canonical or to
the grand canonical ensemble. In this book we shall for brevity write H in both cases.
This ought not cause any problems, since most of the times we are working in the grand
canonical ensemble, i.e. we include the term µN in the Hamiltonian.

The partition functions are fundamental quantities in statistical mechanics. They
are more than merely normalization factors. For example the free energy F ≡ U −

6Remember that if tν = Tr [A] is the trace of A in the basis |ν〉, then in the transformed basis U |ν〉 we
have tUν = Tr

�
UAU−1

�
= Tr

�
AU−1U

�
= Tr [A] = tν . Here we have used that the trace is invariant under

cyclic permutation, i.e. Tr [ABC] = Tr [BCA].
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TS, important in the grand canonical ensemble, and the thermodynamic potential Ω ≡
U − TS − µN , important in the canonical ensemble, are directly related to Z and ZG,
respectively:

Z = e−βF (1.121a)

ZG = e−βΩ. (1.121b)

Let us now study the free energy, which is minimal when the entropy is maximal.
Recall that

F = U − TS = 〈H〉 − TS. (1.122)

In various approximation schemes, for example the mean field approximation in Chap. 4,
we shall use the principle of minimizing the free energy. This is based on the following
inequality

F ≤ 〈H〉0 − TS0, (1.123)

where both 〈H〉0 and S0 are calculated in the approximation ρ ≈ ρ0 = exp(−βH0), for
example

〈H〉0 =
Tr[ρ0H]
Tr[ρ0]

. (1.124)

This inequality ensures that by minimizing the free energy calculated from the approximate
Hamiltonian, we are guaranteed to make the best possible approximation based on the
trial Hamiltonian, H0.

1.5.1 The distribution function for non-interacting fermions

As the temperature is raised from zero in a system of non-interacting fermions the occu-
pation number for the individual energy eigenstates begins to fluctuate rather than being
constantly 0 or constantly 1. Using the grand canonical ensemble we can derive the famous
Fermi–Dirac distribution nF(ε).

Consider the electron state |kσ〉 with energy εk. The state can contain either 0 or 1
electron. The average occupation nF(εk) is therefore

nF(εk) =
Tr[ρGnk]
Tr[ρG]

=

∑

nk=0,1

nke−β(nkεk−µnk)

∑

nk=0,1

e−β(nkεk−µnk)
=

0 + e−β(εk−µ)

1 + e−β(εk−µ)
=

1
eβ(εk−µ) + 1

. (1.125)

We shall study the properties of the Fermi–Dirac distribution in Sec. 2.1.3. Note that
the Fermi–Dirac distribution is defined in the grand canonical ensemble. The proper
Hamiltonian is therefore HG = H − µN . This is reflected in the single-particle energy
variable. From Eq. (1.125) we see that the natural single-particle energy variable is not
εk but rather ξk given by

ξk ≡ εk − µ (1.126)

For small excitation energies εk varies around µ whereas ξk varies around 0.
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1.5.2 Distribution functions for non-interacting bosons

Next we find the distribution function for non-interacting bosons. Again using the grand
canonical ensemble we derive the equally famous Bose–Einstein distribution nB(ε). It is
derived like its fermionic counterpart, the Fermi–Dirac distribution nF(ε).

Consider a bosonic state characterized by its fundamental energy εk. The occupation
number of the state can be any non-negative integer nk = 0, 1, 2, . . .. In the grand canonical
ensemble the average occupation number nB(εk) is found by writing λk = e−β(εk−µ) and
using the formulas

∑∞
n=0 nλn = λ d

dλ

∑∞
n=0 λn and

∑∞
n=0 λn = 1

1−λ :

nB(εk) =

∞∑

nk=0

nk e−β(nkεk−µnk)

∞∑

nk=0

e−β(nkεk−µnk)

=

λk

d

dλk

∞∑

nk=0

λ
nk
k

∞∑

nk=0

λ
nk
k

=

λk
(1−λk)2

1
1−λk

=
1

eβ(εk−µ) − 1
. (1.127)

The Bose–Einstein distribution differs from the Fermi–Dirac distribution by having −1 in
the denominator instead of +1. Both distributions converge towards the classical Maxwell–
Boltzmann distribution, nk = e−β(εk−µ), for very small occupation numbers, where the
particular particle statistics is not felt very strongly.

1.6 Summary and outlook

In this chapter we have introduced second quantization, the representation of quantum
mechanics we are going to use throughout this course. The basic concepts are the oc-
cupation number basis states and the fundamental creation and annihilation operators,
b†ν and bν in the bosonic case (see Eq. (1.42)), and c†ν and cν in the fermionic case (see
Eq. (1.54)). The intricate permutation symmetries are manifestly ensured by the basic
(anti-)commutator relations of these fundamental operators. The main result of the chap-
ter is the derivation of the general form of one- and two-particle operators, Eqs. (1.63)
and (1.64) and Fig. 1.5. In fact, perhaps after some measure of acquaintance, this main
result appears so simple and intuitively clear that one could choose to define quantum the-
ory directly in second quantization rather than going the cumbersome way from first to
second quantization. However, students usually learn basic quantum theory in first quanti-
zation, so for pedagogical reasons we have chosen to start from the usual first quantization
representation.

In Sec. 1.4 we presented a number of specific examples of second quantization operators,
and we got a first glimpse of how second quantization leads to a formulation of quantum
physics in terms of creation and annihilation of particles and field quanta. In the following
three chapters we shall get more acquainted with second quantization through studies
of simplified stationary problems for non-interacting systems or systems where a given
particle only interacts with the mean field of the other particles. First in Chap. 5 will the
question be raised of how to treat time evolution in second quantization. With an answer
to that question we can proceed with the very interesting but also rather difficult studies
of the full time dependent dynamics of many-particle quantum systems.
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Chapter 2

The electron gas

The study of the interacting electron gas moving in a charge compensating background of
positively charged ions is central in this course. Not only is this system a model of the solids
that surrounds us, such as metals, semiconductors, and insulators, but historically this
system played a major role as testing ground for the development of quantum field theory.
In this chapter we shall study the basic properties of this system using the formalism of
time-independent second quantization as developed in Chap. 1. The main emphasis will
be on the non-interacting electron gas, since it will be clear that we need to develop our
theoretical tools further to deal with the electron-electron interactions in full.

Any atom in a metal consists of three parts: the positively charged heavy nucleus at
the center, the light cloud of the many negatively charged core electrons tightly bound to
the nucleus, and finally, the outermost few valence electrons. The nucleus with its core
electrons is denoted an ion. The ion mass is denoted M , and if the atom has Z valence
electrons the charge of the ion is +Ze. To a large extend the inner degrees of freedom of
the ions do not play a significant role leaving the center of mass coordinates Rj and total
spin Sj of the ions as the only dynamical variables. In contrast to the core electrons the
Z valence electrons, with mass m and charge −e, are often free to move away from their
respective host atoms forming a gas of electrons swirling around among the ions. This is
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Figure 2.1: A sketch showing N free atoms merging into a metal. The ions are unchanged
during the process where they end up by forming a periodic lattice. The valence electrons
are freed from their host atoms and form an electron gas holding the ionic lattice together.
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true for the alkali metals. The formation of a metal from N independent atoms is sketched
in Fig. 2.1.

The Hamiltonian H of the system is written as the sum of kinetic and potential energy
of the ionic system and the electronic system treated independently, and the Coulomb
interaction between the two systems,

H = (Tion + Vion−ion) + (Tel + Vel−el) + Vel−ion. (2.1)

The individual terms are easily written down in second quantization:

Tion + Vion−ion =
∫

dR Ψ†
ion(R)

(
− ~2

2M
∇2

R

)
Ψion(R) (2.2)

+
1
2

∫
dR1dR2 Ψ†

ion(R1)Ψ
†
ion(R2)

Z2e2
0

|R1 −R2|Ψion(R2)Ψion(R1),

Tel + Vel−el =
∑

σ

∫
dr Ψ†

σ(r)
(
− ~

2

2m
∇2

r

)
Ψσ(r) (2.3)

+
1
2

∑
σ1σ2

∫
dr1dr2 Ψ†

σ1
(r1)Ψ†

σ2
(r2)

e2
0

|r1 − r2|Ψσ2
(r2)Ψσ1

(r1),

Vel−ion =
∑

σ

∫
drdR Ψ†

σ(r)Ψ†
ion(R)

(−Ze2
0)

|R− r|Ψion(R)Ψσ(r). (2.4)

Note that no double counting is involved in Vel−ion since two different types of fields, Ψ†
σ(r)

and Ψ†
ion(R) are involved, hence no factor 1

2 .
At zero temperature the ground state of the system is a periodic ion lattice hold

together by the cohesive forces of the surrounding electron gas. In principle it is possible
in ab initio calculations to minimize the energy of the system and find the crystal structure
and lattice parameters, i.e. the equilibrium positions Rj of the ions in the lattice. From the
obtained ground state one can then study the various excitations of the system: phonons
(ion vibrations), electron-hole excitations (single-particle excitations), plasmons (collective
electronic charge density waves), magnons (spin waves), etc. In this course we will not
plunge into such full fledged ab initio calculations. Two approximation schemes will be
used instead. One is the phenomenological lattice approach. We take the experimental
determination of the crystal structure, lattice parameters and elasticity constants as input
to the theory, and from there calculate the electronic and phononic properties. The other
approximation scheme, the so-called jellium model, is in fact an ab initio calculation, where
however the discrete nature of the ionic system is approximated by a positively charged,
continuous and homogeneous fluid, the ion ’jellium’. Fortunately, most electronic and
phononic properties of the system can be derived with good accuracy from the Hamiltonian
describing the ion jellium combined with the electron gas.

2.1 The non-interacting electron gas

We first study the lattice model and the jellium model in the case of no electron-electron
interaction. Later in Sec. 2.2 we attempt to include this interaction.
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2.1.1 Bloch theory of electrons in a static ion lattice

Let us first consider the phenomenological lattice model. X-ray experiments show that the
equilibrium positions of the ions form a periodic lattice. This lattice has an energy Elatt

and an electrical potential Vel−latt associated with it, both originating from a combination
of Tion, Vion−ion, and Vel−ion in the original Hamiltonian Eq. (2.1). At finite temperature
the ions can vibrate around their equilibrium positions with the total electric field acting as
the restoring force. As will be demonstrated in Chap. 3, these vibrations can be described
in terms of quantized harmonic oscillators (much like the photon field of Sec. 1.4.2) giving
rise to the concept of phonons. The non-interacting part of the phonon field is described
by a Hamiltonian Hph. Finally, the electrons are described by their kinetic energy Tel,
their mutual interaction Vel−el, and their interaction with both the static part of the
lattice, Vel−latt, and the vibrating part, i.e. the phonons, Vel−ph. The latter term must
be there since a vibrating ion is giving rise to a vibrating electrical potential influencing
the electrons. Thus the Hamiltonian for the phenomenological lattice model changes H of
Eq. (2.1) into

H = (Elatt + Hph) + (Tel + Vel−el) + (Vel−latt + Vel−ph). (2.5)

At zero temperature the ions are not vibrating except for their quantum mechanical zero
point motion. Thus we can drop all the phonon related terms of the Hamiltonian. If one
furthermore neglects the electron-electron interaction (in Sec. 2.2 we study when this is
reasonable) one arrives at the Hamiltonian HBloch used in Bloch’s theory of non-interacting
electrons moving in a static, periodic ion lattice:

HBloch = Tel + Vel−latt(r),
{

Vel−latt(r + R) = Vel−latt(r)
for any lattice vector R.

(2.6)

To solve the corresponding Schrödinger equation, and later the phonon problem, we have
to understand the Fourier transform of periodic functions.

Let the static ion lattice be described by the ionic equilibrium positions R in terms of
the lattice basis vectors {a1,a2,a3}:

R = n1a1 + n2a2 + n3a3, n1, n2, n3 ∈ Z. (2.7)

Working with periodic lattices it is often convenient to Fourier transform from the direct
space to k-space, also known as the reciprocal space, RS. It is useful to introduce the
reciprocal lattice, RL, in RS defined by

RL =
{
G ∈ RS

∣∣∣eiG ·R = 1
}

⇒ G = m1b1 +m2b2 +m3b3, m1,m2,m3 ∈ Z, (2.8)

where the basis vectors {b1,b2,b3} in RL are defined as

b1 = 2π
a2 × a3

a1 · a2 × a3

, b2 = 2π
a3 × a1

a2 · a3 × a1

, b3 = 2π
a1 × a2

a3 · a1 × a2

. (2.9)



34 CHAPTER 2. THE ELECTRON GAS

An important concept is the first Brillouin zone, FBZ, defined as all k in RS lying closer
to G = 0 than to any other reciprocal lattice vector G 6= 0. Using vectors k ∈ FBZ, any
wavevector q ∈ RS can be decomposed (the figure shows the FBZ for a 2D square lattice):

�

��� � � �

�� �

� �

FBZ =
{
k ∈ RS

∣∣∣ |k| < |k−G |, for all G 6= 0
}

⇓
∀q, ∃k ∈ FBZ, ∃G ∈ RL : q = k + G .

(2.10)

The Fourier transform of any function periodic in the lattice is as follows:

V (r + R) = V (r), for all R ⇔ V (r) =
∑

G∈RL

VGeiG ·r. (2.11)

The solution of the Schrödinger equation HBlochψ = Eψ can be found in the plane wave
basis |kσ〉, which separates in spatial part eik·r and a spin part χσ, e.g. χ↑ =

(
1
0

)
:

ψσ(r) ≡ 1
V

∑

k′
ck′ e

ik′·rχσ ⇒ 〈kσ|HBloch|ψσ〉 =
∑

k′

(
εkδk,k′ +

∑

G

VG δk,k′+G

)
ck′ , (2.12)

so the Schrödinger equation for a given k is

ckεk +
∑

G

VG ck−G = E ck. (2.13)

We see that any given coefficient ck only couples to other coefficients of the form ck+G ,
i.e. each Schrödinger equation of the form Eq. (2.13) for ck couples to an infinite, but
countable, number of similar equations for ck−G . Each such infinite family of equations
has exactly one representative k ∈ FBZ, while any k outside FBZ does not give rise to
a new set of equations. The infinite family of equations generated by a given k ∈ FBZ
gives rise to a discrete spectrum of eigenenergies εnk, where n ∈ N. The corresponding
eigenfunctions ψnkσ are given by:

ψnkσ(r) =
1
V

∑

G

c
(n)
k+G ei(G+k)·rχσ =

( 1
V

∑

G

c
(nk)
G

)
eik·rχσ ≡ unk(r) eik·r χσ. (2.14)

According to Eq. (2.11) the function unk(r) is periodic in the lattice, and thus we end
with Bloch’s theorem1:

HBlochψnkσ = εnkψnkσ, ψnkσ(r) = unk(r)eik·rχσ,





k ∈ FBZ,
n is the band index,
unk(r + R) = unk(r).

(2.15)

1An alternative derivation of Bloch’s theorem with emphasis on the group theoretic aspects builds on
the translation operator TR, with TRf(r) ≡ f(r+R). We get [H, TR] = 0 ⇒ TRψ = λRψ for an eigenstate
ψ. Applying TP after TR leads to λP λR = λP+R ⇒ λR = eik·R ⇒ ψnk(r) = unk(r)eik·r.
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Figure 2.2: Bloch’s theorem illustrated for a 1D lattice with lattice constant a. (a) The
parabolic energy band for free electrons. (b) The Bloch bands viewed as a break-up of the
parabolic free electron band in Brillouin zones (the extended zone scheme, k ∈ RS). (c)
All wavevectors are equivalent to those in the FBZ, so it is most natural to displace all
the energy branches into the FBZ (the reduced zone scheme, k ∈ FBZ).

The eigenfunctions are seen to be plane waves modulated by a periodic function unk(r)
having the same periodicity as the lattice. For many applications it turns out that the
Bloch electrons described by ψnkσ(r) can be approximated by plane waves if at the same
time the electronic mass m is changed into a material dependent effective mass m∗. We
shall use this so-called effective mass approximation throughout this course:2

The effective mass
approximation

:





ψnkσ → 1√
V eik·rχσ

m → m∗

k unrestricted.

(2.16)

In the following, when no confusion is possible, m∗ is often simply written as m.

2.1.2 Non-interacting electrons in the jellium model

In the effective mass approximation of the lattice model the electron eigenstates are plane
waves. Also the jellium model results in plane wave solutions, which are therefore of major
interest to study.

In the jellium model the ion charges are imagined to be smeared out to form a homo-
geneous and, to begin with, static positive charge density, +Zρjel, the ion jellium. The
periodic potential, Vel−latt, present in a real lattice becomes the constant potential Vel−jel

as sketched in Fig. 2.3. If we concentrate on the homogeneous part of the electron gas, i.e.
discard the part of Vel−el that leads to inhomogeneities, we notice that this part together
with the ion jellium forms a completely charge neutral system. In other words, in H of
Eq. (2.1) we have Vion−ion + Vel−el + Vel−ion = 0, and we simply end up with

Hjel = Tel. (2.17)

For a box with side lengths Lx, Ly, and Lz and volume V = LxLyLz the single-particle
basis states are the simple plane wave solutions to the free particle Schrödinger equation

2For a derivation of the effective mass approximation see e.g. Kittel or Ashcroft and Mermin.
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with periodic boundary conditions ψ(L, y, z) = ψ(0, y, z) and ψ′(L, y, z) = ψ′(0, y, z) (like-
wise for the y and z directions). We prefer the periodic boundary conditions rather than
the Dirichlet boundary conditions ψ(0, y, z) = 0 and ψ(L, y, z) = 0 (likewise for the y
and z directions), since the former gives current carrying eigenstates well suited for the
description of transport phenomena, while the latter yield standing waves carrying no
current. The single-particle basis states are thus

Hjelψkσ =
~2k2

2m
ψkσ, ψkσ(r) =

1√
V

eik·rχσ,





kx = 2π
Lx

nx (same for y and z)
nx = 0,±1,±2, . . .
V = LxLyLz,

(2.18)

and with this basis we obtain Hjel in second quantization:

Hjel =
∑

σ

∫
dr Ψ†

σ(r)
(
− ~

2

2m
∇2

)
Ψσ(r) =

∑

kσ

~2k2

2m
c†kσckσ. (2.19)

Note how the quantization of k means that one state fills a volume 2π
Lx

2π
Ly

2π
Lz

= (2π)3

V in
k-space, from which we obtain the following important rule of great practical value:

∑

k

→ V
(2π)3

∫
dk . (2.20)

For the further analysis in second quantization it is natural to order the single-particle
states ψkσ(r) = |kσ〉 according to their energies εk = ~2k2

2m in ascending order,

|k1, ↑〉, |k1, ↓〉|k2, ↑〉, |k2, ↓〉, . . . , where εk1
≤ εk2

≤ εk3
≤ . . . (2.21)

The ground state for N electrons at zero temperature is denoted the Fermi sea or the Fermi
sphere |FS〉. It is obtained by filling up the N states with the lowest possible energy,

|FS〉 ≡ c†kN/2↑c
†
kN/2↓ . . . c†k2↑c

†
k2↓c

†
k1↑c

†
k1↓|0〉. (2.22)

The energy of the topmost occupied state is denoted the Fermi energy, εF. Associated
with εF is the Fermi wavenumber kF , the Fermi wave length λF, and the Fermi velocity
vF:

kF =
1
~
√

2mεF, λF =
2π

kF

, vF =
~kF

m
. (2.23)

Vel-latt

0 L
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0 L
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Figure 2.3: A sketch showing the periodic potential, Vel−latt, present in a real lattice, and
the imagined smeared out potential Vel−jel of the jellium model.
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Figure 2.4: Two aspects of |FS〉 in k-space. To the left the dispersion relation εk is plotted
along the line k = (kx, 0, 0), and εF and kF are indicated. To the right the occupation of
the states is shown in the plane k = (kx, ky, 0). The Fermi sphere is shown as a circle with
radius kF. Filled and empty circles represent occupied and unoccupied states, respectively.

Thus in |FS〉 all states with εk < εF or |k| < kF are occupied and the rest are unoccupied.
A sketch of |FS〉 in energy- and k-space is shown in Fig. 2.4.

As a first exercise we calculate the relation between the macroscopic quantity n = N/V,
the density, and the microscopic quantity kF, the Fermi wavenumber.

N = 〈FS|N̂ |FS〉 = 〈FS|
∑

kσ

nkσ|FS〉 =
∑

σ

V
(2π)3

∫
dk 〈FS|nkσ|FS〉. (2.24)

The matrix element is easily evaluated, since nkσ|FS〉 = |FS〉 for |k| < kF and 0 otherwise.
This is written in terms of the theta function3

N =
∑

σ

V
(2π)3

∫
dk θ(kF−|k|)〈FS|FS〉 =

2V
(2π)3

∫ kF

0
dk k2

∫ 1

−1
d(cos θ)

∫ 2π

0
dφ 1 =

V
3π2

k3
F ,

(2.25)
and we arrive at the extremely important formula:

k3
F = 3π2n. (2.26)

This formula allows us to obtain the values of the microscopic parameters kF, εF, and vF.
Hall measurements yield the electron density of copper4, n = 8.47×1028 m−3, and from
Eqs. (2.23) and (2.26) it thus follows that for copper

kF = 13.6 nm−1 εF = 7.03 eV = 81600 K
λF = 0.46 nm vF = 1.57×106 m/s = 0.005 c.

(2.27)

3θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0
4The density can also be estimated as follows. The inter-atomic distances are typically ' 2 Å. In

monovalent Cu one electron thus occupies a volume ' (2×10−10 m)3, and n ≈ 1029 m−3 follows.
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Note that the Fermi energy corresponds to an extremely high temperature, which we shall
return to shortly, and even though the Fermi velocity is large it is still less than a percent
of the velocity of light, and we need not invoke relativistic considerations.

We move on to calculate the ground state energy E(0):

E(0) = 〈FS|Hjel|FS〉 =
∑

kσ

~2k2

2m
〈FS|nkσ|FS〉 = 2

V
(2π)3

~2

2m

∫
dk k2θ(kF − |k|)

=
2V

(2π)3
~2

2m

∫ kF

0
dk k4

∫ 1

−1
d(cos θ)

∫ 2π

0
dφ 1 =

V
5π2

~2

2m
k5

F =
3
5
NεF. (2.28)

In the last equation we again used Eq. (2.26). The result is reasonable, since the system
consists of N electrons each with an energy 0 < εk < εF. The kinetic energy per particle
becomes an important quantity when we in the next section begin to study the Coulomb
interaction. By Eqs. (2.26) and (2.28) it can be expressed in terms of n:

E(0)

N
=

3
5
~2

2m
kF

2 =
3
5
~2

2m
(3π2)

2
3 n

2
3 . (2.29)

The next concept to be introduced for the non-interacting electron gas is the density
of states D(ε) = dN

dε , counting the number ∆N of states in the energy interval ∆ε around
the energy ε, ∆N = D(ε)∆ε, and the density of states per volume d(ε) = D(ε)/V = dn

dε .
Again using Eq. (2.26) we find

εF =
~2

2m
kF

2 =
~2

2m
(3π2)

2
3 n

2
3 ⇒ n(ε) =

1
3π2

(
2m

~2

) 3
2

ε
3
2 , for ε > 0, (2.30)

and from this

d(ε) =
dn

dε
=

1
2π2

(
2m

~2

) 3
2

ε
1
2 θ(ε), D(ε) =

dN

dε
=

V
2π2

(
2m

~2

) 3
2

ε
1
2 θ(ε). (2.31)

The density of states is a very useful function. In the following we shall for example
demonstrate how in terms of D(ε) to calculate the particle number, N =

∫
dε D(ε), and

the total energy, E(0) =
∫

dε ε D(ε).

2.1.3 Non-interacting electrons at finite temperature

Finally, before turning to the problem of the Coulomb interaction, we study some basic
temperature dependencies. As temperature is raised from zero the occupation number is
given by the Fermi-Dirac distribution nF(εk), see Eq. (1.125). The main characteristics of
this function is shown in Fig. 2.5. Note that to be able to see any effects of the temperature
in Fig. 2.5, kT is set to 0.03 εF corresponding to T ≈ 2400 K. Room temperature yields
kT/εF ≈ 0.003, thus the low temperature limit of nF(εk) is of importance:

nF(εk) =
1

eβ(εk−µ) + 1
−→
T→0

θ(µ− εk), −∂nF

∂εk

=
β

4
1

cosh2[β
2 (εk − µ)]

−→
T→0

δ(µ− εk).

(2.32)
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Figure 2.5: The Fermi-Dirac distribution nF(εk), its derivative −∂nF
∂εk

, and its product with
the density of states, nF(εk)d(εk), shown at the temperature kT = 0.03 εF, corresponding
to T = 2400 K in metals. This rather high value is chosen to have a clearly observable
deviation from the T = 0 case, which is indicated by the dashed lines.

Note that, as mentioned in Sec. 1.5.1, the natural single-particle energy variable in these
fundamental expressions actually is ξk = εk − µ and not εk itself.

At T = 0 the chemical potential µ is identical to εF. But in fact µ varies slightly with
temperature. A careful analysis based on the so-called Sommerfeld expansion combined
with the fact that the number of electrons does not change with temperature yields

n(T = 0) = n(T ) =
∫ ∞

0
dε d(ε)f(ε) ⇒ µ(T ) = εF

[
1− π2

12

(
kT

εF

)2

+ . . .

]
(2.33)

Because εF according to Eq. (2.27) is around 80000 K for metals, we find that even at the
melting temperature of metals only a very limited number ∆N of electrons are affected
by thermal fluctuations. Indeed, only the states within 2kT of εF are actually affected,
and more precisely we have ∆N/N = 6kT/εF (≈ 10−3 at room temperature). The Fermi
sphere is not destroyed by heating, it is only slightly smeared. Now we have at hand an
explanation of the old paradox in thermodynamics, as to why only the ionic vibrational
degrees of freedom contribute significantly to the specific heat of solids. The electronic
degrees of freedom are simply ’frozen’ in. Only at temperatures comparable to εF they
begin to play a major role. As we shall see in Sec. 2.3.1 this picture is not true for
semiconductors, where the electron density is much smaller than in metals.

2.2 Electron interactions in perturbation theory

We now apply standard perturbation theory to take the inhomogeneous part of the
electron-electron interaction Vel−el of Eq. (2.3) into account. The homogeneous part, which
in k-space (see Eqs. (1.103) and (1.104)) corresponds to a vanishing wavevector q = 0, has
already been taken into account in the jellium model to cancel the homogeneous positive
background. We thus exclude the q = 0 term in the following sums, which is indicated by
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a prime:

V ′
el−el =

1
2V

∑

k1k2q

′ ∑
σ1σ2

4πe2
0

q2
c†k1+qσ1

c†k2−qσ2
ck2σ2

ck1σ1
. (2.34)

However, as we shall see, the direct use of this interaction with the tools developed so
far becomes the story of the rise and fall of simple minded perturbation theory. The first
order calculation works well and good physical conclusions can be drawn, but already in
second order the calculation collapses due to divergent integrals. It turns out that to get
rid of these divergences the more powerful tools of quantum field theory must be invoked.
But let us see how we arrive at these conclusions.

A natural question arises: under which circumstances can the non-interacting electron
gas actually serve as a starting point for a perturbation expansion in the interaction
potential. The key to the answer lies in the density dependence of the kinetic energy
Ekin = E(0)/N ∝ n

2
3 displayed in Eq. (2.29). This is to be compared to the typical

potential energy of particles with a mean distance d̄, Epot ' e2
0/d̄ ∝ n

1
3 . So we find that

Epot

Ekin
∝ n

1
3

n
2
3

= n−
1
3 −→

n→∞ 0, (2.35)

revealing the following perhaps somewhat counter intuitive fact: the importance of the
electron-electron interacting diminishes as the density of the electron gas increases. Due to
the Pauli exclusion principle the kinetic energy simply becomes the dominant energy scale
in the interacting electron gas at high densities. Consequently, we approach the problem
from this limit in the following analysis.

We begin the perturbation treatment by establishing the relevant length scale and
energy scale for the problem of interacting charges. The prototypical example is of course
the hydrogen atom, where a single electron orbits a proton. The ground state is a
spherical symmetric s-wave with a radius denoted the Bohr radius a0 and an energy E0.
The following considerations may be helpful mnemotechnically. The typical length scale
a0 yields a typical momentum p = ~/a0. Writing E0 as the sum of kinetic energy p2/2m

and potential energy −e2
0/a0, we arrive at E0 = ~2

2ma0
2 − e2

0
a0

. The values of a0 and E0 are

found either by minimization, ∂E0
∂a0

= 0, or by using the virial theorem Ekin = −1
2Epot:

a0 =
~2

me2
0

= 0.053 nm, E0 = − e2
0

2a0

= −13.6 eV, 1 Ry =
e2
0

2a0

= 13.6 eV. (2.36)

Here we have also introduced the energy unit 1 Ry often encountered in atomic physics
as defining a natural energy scale. Lengths are naturally measured in units a0, and the
dimensionless measure rs of the average inter-electronic distance in the electron gas is
introduced as the radius in a sphere containing exactly one electron:

4π

3
(rs a0)

3 =
1
n

=
3π2

kF
3 ⇒ a0kF =

(9π

4

) 1
3
r−1
s ⇒ rs =

(9π

4

) 1
3 1
a0kF

. (2.37)
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Figure 2.6: The two possible processes in first order perturbation theory for two states
|k1σ1〉 and |k2σ2〉 in the Fermi sea. The direct process having q = 0 is already taken into
account in the homogeneous part, hence only the exchange process contributes to V ′

el−el.
Also the geometry for the k-integration is shown for an arbitrary but fixed value of q.

Rewriting the energy E(0) of the non-interacting electron gas to these units we obtain:
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This constitutes the zero’th order energy in our perturbation calculation.

2.2.1 Electron interactions in 1st order perturbation theory

The first order energy E(1) is found by the standard perturbation theory procedure:

E(1)

N
=
〈FS|V ′

el−el|FS〉
N

=
1

2VN

∑
q

′ ∑

k1,k2

∑
σ1,σ2

4πe2
0

q2
〈FS|c†k1+qσ1

c†k2−qσ2
ck2σ2

ck1σ1
|FS〉.

(2.39)
The matrix element is evaluated as follows. First, the two annihilation operators can only
give a non-zero result if both |k1| < kF and |k2| < kF. Second, the factor 〈FS| demands
that the two creation operators bring us back to |FS〉, thus either q = 0 (but that is
excluded from V ′

el−el) or k2 = k1 + q and σ2 = σ1. These possibilities are sketched in
Fig. 2.6. For q 6= 0 we therefore end with

〈FS|c†k1+qσ1
c†k2−qσ2

ck2σ2
ck1σ1

|FS〉= δk2,k1+qδσ1,σ2〈FS|c†k1+qσ1
c†k1σ1

ck1+qσ1
ck1σ1

|FS〉
= −δk2,k1+qδσ1,σ2〈FS|nk1+qσ1

nk1σ1
|FS〉

= −δk2,k1+qδσ1,σ2θ(kF−|k1+q|)θ(kF−|k1|), (2.40)

where q 6= 0 leads to k1 + q 6= k1, which results in a simple anticommutator yielding the
occupation number operators with a minus in front. Since only one k-vector appears we
now drop the index 1.

The k- and q-sum are converted into integrals, and polar coordinates (q, θq, φq) and
(k, θk, φk) are employed. First note, that the integral is independent of the direction of q
so that

∫ 1
−1 d(cos θq)

∫ 2π
0 dφq = 4π. Second, only for 0 < q < 2kF does the theta function
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product give a non-zero result. For a given fixed value of q the rest of the integral is just
the overlap volume between two spheres of radius kF displaced by q. The geometry of
this volume is sketched in Fig. 2.6, and is calculated by noting that q/2kF < cos θk < 1,
and that for a given cos θk we have q/(2 cos θk) < k < kF. The last variable is free:
0 < φk < 2π. We thus get

E(1)

N
= −4πe2

0

2VN
2(4π)

V
(2π)3

∫ 2kF

0
dq

q2

q2
2(2π)

∫ 1

q
2k

F

d(cos θk)
V

(2π)3

∫ kF

q
2 cos θk

dk k2, (2.41)

where the prefactors are a factor 2 for spin, 2 for symmetry, 4π for q-angles, 2π for φk, and
twice V/(2π)3 for the conversions of k- and q-sums to integrals. The integral is elementary
and results in

E(1)

N
= −e2

0

2
V
N

kF
4

2π3
= − e2

0

2a0

(a0kF)
kF

3

2π3n
= − e2

0

2a0

((9π

4

) 1
3 1
rs

)
3
2π

≈ −0.916
rs

Ry. (2.42)

The final result for the first order perturbation theory is thus the simple expression

E

N
−→
rs→0

E(0) + E(1)

N
=

(
2.211

r2
s

− 0.916
rs

)
Ry. (2.43)

This result shows that the electron gas is stable when the repulsive Coulomb interaction is
turned on. No external confinement potential is needed to hold the electron gas in the ion
jellium together. There exists an optimal density n∗, or inter-particle distance r∗s , which
minimizes the energy and furthermore yields an energy E∗ < 0. The negative exchange
energy overcomes the positive kinetic energy. The equilibrium situation is obtained from
∂

∂rs
(E(0) + E(1)) = 0, and we can compare the result with experiment:

r∗s = 4.83, E∗
N = −0.095 Ry = −1.29 eV (1st order perturbation theory)

rs = 3.96, E
N = −0.083 Ry = −1.13 eV (experiment on Na)

(2.44)
We note that the negative binding energy is due to the exchange energy of the Coulomb
interaction. Physically this can be interpreted as an effect of the Pauli exclusion principle:
the electrons are forced to avoid each other, since only one electron at a time can be at a
given point in space. The direct “classical” Coulomb interaction does not take this into
account and is therefore over-estimating the energy, and the exchange part corrects for
this by being negative.

One may wonder what happens to the Fermi sphere as the interaction is turned on.
We found before that thermal smearing occurs but is rather insignificant compared to the
huge Fermi energy, εF ≈ 7 eV. However, now we have learned that the interaction energy
per particle is ≈ 1.3 eV, i.e. smaller than but certainly comparable to εF. One of the great
results of quantum field theory, which we are going to study later in the course, is the
explanation of why the Fermi surface is not destroyed by the strong Coulomb interaction
between the electrons.



2.2. ELECTRON INTERACTIONS IN PERTURBATION THEORY 43

� � � �
�

� �
�

��� 	
 � 


Figure 2.7: (a) The energy per particle E/N of the 3D electron gas in first order pertur-
bation theory Eq. (2.43) as a function of the dimensionless inter-particle distance rs. Due
to the exchange interaction the electron gas is stable at rs = r∗s = 4.83 with an ionization
energy E/N = E∗/N = −1.29 eV.

2.2.2 Electron interactions in 2nd order perturbation theory

One may try to improve on the first order result by going to second order perturbation
theory. However, the result is disastrous. The matrix elements diverge without giving
hope for a simple cure.

Here we can only reveal what goes wrong, and then later learn how to deal correctly
with the infinities occurring in the calculations. According to second order perturbation
theory E(2) is given by

E(2)

N
=

1
N

∑

|ν〉6=|FS〉

〈FS|V ′
el−el|ν〉〈ν|V ′

el−el|FS〉
E(0) −Eν

, (2.45)

where all the intermediate states |ν〉 must be different from |FS〉. As sketched in Fig. 2.8
this combined with the momentum conserving Coulomb interaction yields intermediate
states where two particles are injected out of the Fermi sphere. From such an intermediate
state, |FS〉 is restored by putting the excited electrons back into the holes they left behind.
Only two types of processes are possible: the direct and the exchange process.

We now proceed to show that the direct interaction process gives a divergent con-
tribution E

(2)
dir to E(2) due to the singular behavior of the Coulomb interaction at small

momentum transfers q. For the direct process the constraint |ν〉 6= |FS〉 leads to

|ν〉 = θ(|k1+q|−kF)θ(|k2−q|−kF)θ(kF−|k1|)θ(kF−|k2|)c†k1+qσ1
c†k2−qσ2

ck2σ2
ck1σ1

|FS〉. (2.46)

To restore |FS〉 the same momentum transfer q must be involved in both 〈ν|V ′
el−el|FS〉 and

〈FS|V ′
el−el|ν〉, and writing Vq = 4πe2

0
q2 we find

E
(2)
dir =

1
V2

∑
q

∑

k1σ1
k2σ2

(1
2Vq)2

E(0) − Eν
θ(|k1+q|−kF)θ(|k2−q|−kF)θ(kF−|k1|)θ(kF−|k2|). (2.47)
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Figure 2.8: The two possible processes in second order perturbation theory for two states
|k1σ1〉 and |k2σ2〉 in the Fermi sea. The direct process gives a divergent contribution to
E/N while the exchange process gives a finite contribution.

The contribution from small values of q to E
(2)
dir is found by noting that

V 2
q ∝ 1

q4
(2.48a)

E0 −Eν ∝ k2
1 + k2

2 − (k1 + q)2 − (k2 − q)2 ∝
q→0

q (2.48b)
∑

k1

. . . θ(|k1+q|−kF)θ(kF−|k1|) ∝
q→0

q, (2.48c)

from which we obtain

E
(2)
dir ∝

∫

0
dq q2 1

q4

1
q

q q =
∫

0
dq

1
q

= ln(q)
∣∣∣
0
∝ ∞. (2.49)

The exchange process does not lead to a divergence since in this case the momentum
transfer in the excitation part is q, but in the relaxation part it is k2 − k1 − q. Thus V 2

q

is replaced by VqVk2−k1−q ∝ q−2 for q → 0, which is less singular than V 2
q ∝ q−4.

This divergent behavior of second order perturbation theory is a nasty surprise. We
know that physically the energy of the electron gas must be finite. The only hope for
rescue lies in regularization of the divergent behavior by taking higher order perturbation
terms into account. In fact, as we shall see in Chap. 13, it turns out that one has to
consider perturbation theory to infinite order, which is possible using the full machinery
of quantum field theory to be developed in the coming chapters.

2.3 Electron gases in 3, 2, 1, and 0 dimensions

We end this chapter on the electron gas by mentioning a few experimental realizations of
electron gases in 3D, 2D, and 1D. To work in various dimensions is a good opportunity
to test ones understanding of the basic principles of the physics of electron gases. But
as will become clear, this is not just an academic exercise. Electron gases at reduced
dimensionality is of increasing experimental importance.
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Figure 2.9: (a) A generic bandstructure for a metal. The Fermi level εF lies in the
middle of a band resulting in arbitrarily small possible excitations energies. (b) A generic
bandstructure for an insulator or a semiconductor. The Fermi level εF lies at the top of
the valence band resulting in possible excitations energies of at least Egap, the distance
up to the unoccupied conduction band.

2.3.1 3D electron gases: metals and semiconductors

Bloch’s theory of non-interacting electrons moving in a periodic lattice provides an expla-
nation for the existence of metals, semiconductors, and band insulators. The important
parameter is the position of the Fermi energy εF relative to the bands as sketched in
Fig. 2.9. In the metallic case εF lies in the middle of a band. Consequently there is no
energy gap between the last occupied level and the first unoccupied level, and any however
small external field can excite the system and give rise to a significant response. In an
insulator εF is at the top of a band, the so-called filled valence band, and filled bands does
not carry any electrical or thermal current5. The system can only be excited by providing
sufficient energy for the electrons to overcome the energy band gap Egap between the top
of the valence band and the bottom of the next empty band, the so-called conduction
band. This is not possible for small external fields, and hence the inability of insulators
to conduct electronic thermal and electrical currents. Semiconductors are insulators at
T = 0, but their band gap Egap is relatively small, typically less than 2 eV, such that
at room temperature a sufficient number of electrons are excited thermally up into the
conduction band to yield a significant conductivity.

We emphasize that at room temperature the electron gas in a metal is a degenerate
Fermi gas since kBT ¿ εF. A semiconductor, on the other hand, is normally described as
a classical gas since for energies εk in the conduction band we have εk−µ > Egap/2 À kBT ,
and consequently nF(εk) → e−(εk−µ)/kBT , i.e. the Maxwell-Boltzmann distribution.

Finally, we note that in a typical metal most of the electron states at the Fermi surface
are far away from the regions in k-space where the free electron dispersion relation is
strongly distorted by the periodic lattice. Therefore one finds effective masses m∗, see

5Transport properties are tightly connected to the electron velocity vk = 1
~

∂ε
k

∂k
. The current density

is J = 2
P

k∈FBZ
1
V vk = 2

R
FBZ

dk
(2π)3

1
~

∂ε
k

∂k
. Likewise, for the thermal current Jth = 2

P
k∈FBZ

1
V εkvk =R

FBZ
dk

(2π)3
1
~

∂(ε
2
k
)

∂k
. Both currents are integrals over FBZ of gradients of periodic functions and therefore

zero.
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Figure 2.10: (a) A picture of a GaAs-device fabricated at the Ørsted Laboratory, Niels
Bohr Institute. The metal contacts and wires are seen attached to the GaAs structure,
which by wet etching has gotten a device geometry imprinted in its surface. (b) A sketch
showing the different layers in the semiconductor structure as well as some surface gates
defining the geometry of the device.

Eq. (2.16), close to the vacuum mass m. In contrast, all the electron states contributing
to the transport properties in a semiconductor are close to these regions in k-space, and
one finds strongly modified effective masses, typically m∗ ≈ 0.1 m.

2.3.2 2D electron gases: GaAs/Ga1−xAlxAs heterostructures

For the past three decades it has been possible to fabricate 2D electron gases at semi-
conductor interfaces, the first realization being inversion layers in the celebrated silicon
MOSFETs, the key component in integrated electronic circuits, and the more resent re-
alization being in the gallium-arsenide/gallium-aluminum-arsenide (GaAs/Ga1−xAlxAs)
heterostructures. In the latter system one can obtain extremely long mean free paths
(more than 10 µm), which is technologically important for high-speed electronics, and
which is essential for the basic research of many quantum effects in condensed matter
physics.

The interface between the GaAs and the Ga1−xAlxAs semiconductor crystals in the
GaAs/Ga1−xAlxAs heterostructure can be grown with mono-atomic-layer precision in
molecular beam epitaxy (MBE) machines. This is because the two semiconductor crys-
tals have nearly the same crystal structure leading to a stress-free interface. In Fig. 2.10
a picture of an actual device is shown as well as a sketch of the various layers in a GaAs
heterostructure. The main difference between the two semiconductor crystals is the values
of the bottom of the conduction band. For x = 0.3 the conduction band in Ga1−xAlxAs is
300 meV higher than the one in GaAs. Hence the electrons in the former conduction band
can gain energy by moving to the latter. At T = 0 there are of course no free carriers in any
of the conduction bands for pure semiconductor systems, but by doping the Ga1−xAlxAs
with Si, conduction electrons are provided, which then accumulate on the GaAs side of
the interface due to the energy gain. However, not all donor electrons will be transferred.
The ionized Si donors left in the Ga1−xAlxAs provide an electrostatic energy that grows
with an increasing number of transferred electrons. At some point the energy gained by
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Figure 2.11: The conduction band in a GaAs/GaAlAs heterostructure. Note the triangular
well forming at the interface. The wavefunctions ζn(z) and eigenvalues of the lowest three
electron eigenstates in the triangular well.

transferring electrons to the GaAs layer is balanced by the growth in electrostatic energy.
This is sketched in Fig. 2.11 where the resulting conduction band in equilibrium is shown
as function of the position z perpendicular to the interface. The conduction band is not
flat due to the curvature induced by the charge densities, as calculated from Poisson’s
equation: ∇2V = −e2n3D/ε∗ .

The key point to notice is the formation of the almost triangular quantum well at
the GaAs side of the interface. The well is so narrow that a significant size-quantization
is obtained. Without performing the full calculation we can get a grasp of the order of
magnitude by the following estimate. We consider the positively charged layer of the
ionized Si donors as one plate of a plate capacitor, while the conduction electrons at the
GaAs/GaAlAs interface forms the other plate. The charge density outside this capacitor
is zero. The electrical field E at the interface is then found simply by forming a cylindrical
Gauss box with its axis along the z direction and one circular ’bottom lid’ at the interface
and the other ’top lid’ deep into the GaAs. All the contributions stems from the ’bottom
lid’, since for symmetry reasons E must be perpendicular to the z axis, yielding zero from
the side of the cylindrical box, and since for the reason of charge neutrality, E = 0 at the
’top lid’. Thus at the interface E = en/ε∗ , n being the 2D electron density at the interface.
The typical length scale l for the width of the triangular well is found by balancing the
potential energy and the kinetic quantum energy: eEl = ~2

m∗l2 ⇒ l3 = 1
4π

ε∗/ε0
m∗/m

a0
n , where

we have used the Bohr radius a0 of Eq. (2.36) to bring in atomic units. The experimental
input for GaAs is ε∗ = 13ε0, m∗ = 0.067m, and typically n = 3× 1015 m−2, which yields
l ≈ 5 nm. From this we get the typical quantization energy ∆E due to the triangular well:
∆E = 13.6 eV m

m∗
a0

2

l2
≈ 20 meV.

The significance of this quantization energy is the following. Due to the triangular well
the 3D free electron wavefunction is modified,

ψkσ(r) =
1√V eikxxeikyyeikzz χσ −→ ψkxkynσ(r) =

1√
A

eikxxeikyy ζn (z) χσ, (2.50)

where ζn (z) is the nth eigenfunction of the triangular well having the eigenenergy εn, see
Fig. 2.11. Only the z direction is quantized leaving the x and y direction unaltered, and



48 CHAPTER 2. THE ELECTRON GAS

the total energy for all three spatial directions is

εkx,ky ,n =
~2

2m∗
(
k2

x + k2
y

)
+ εn, kF

2 = 2πn ⇒ εF ≈ 10 meV, (2.51)

where we have given the 2D version of the fundamental relation between kF and n (see
Exercise 2.4 and compare to Eq. (2.26) for the 3D case). The highest occupied state has
the energy E0 + εF while the lowest unoccupied state has the energy E1. The difference
is E1 − (E0 + εF) = ∆E − εF ≈ 10 meV ≈ 100 K, and we arrive at our conclusion:
At temperatures T ¿ 100 K all occupied electron states have the same orbital in the
z direction, ζ0(z). Any changes of this orbital requires an excitation energy of at least
10 meV. If this is not provided the system has effectively lost one spatial degree of freedom
and is dynamically a 2D system. This means that theoretical studies of 2D electron gases
is far from an academic exercise; 2D systems do indeed exist in reality.

2.3.3 1D electron gases: carbon nanotubes

Since the mid-nineties a new research field has developed involving studies of the cylindri-
cally shaped carbon based molecule, the so-called carbon nanotube. The carbon nanotube
can be viewed as a normal graphite sheet rolled up into a cylinder with a radius R0 ≈ 2 nm
and a length more than a thousand times R0, see Fig. 2.12. These long and thin carbon
molecules have some extraordinary material characteristics. They are believed to be the
strongest material in the world, and depending on the specific way the cylinder is rolled up
the nanotubes are either metallic, semiconducting or insulating. In the same dynamical
sense as the GaAs heterostructure is a 2D metal sheet, a metallic nanotube is a nearly
ideal 1D wire, i.e. two of the three spatial degrees of freedom are frozen in. We briefly
sketch how this comes about.

The cylindrical symmetry of the nanotube makes it natural to change the basis func-
tions from the 3D (x, y, z) plane waves to cylindrical (x, r, φ) wavefunctions:

ψkσ(r) =
1√V eikxxeikyyeikzz χσ −→ ψkx,n,l,σ(r) =

1√
L

eikxx Rnl(r) Yl(φ) χσ. (2.52)

This is of course more than just a mathematical transformation. The electrons are strongly
bound to the surface of the cylinder in quantum states arising from the original π-bonds
of the graphite system. This means that the extension ∆R of the radial wave function
Rnl(r) around the mean value R0 is of atomic scale, i.e. ∆R ≈ 0.1 nm, resulting in a radial
confinement energy ER

0 ∼ ~2
2m∆R2 ∼ 10 eV. Likewise, in the azimuthal angle coordinate

φ, there is a strong confinement, since the perimeter must contain an integer number
of electron wavelengths λn, i.e. λn = 2πR0/n < 2 nm. The corresponding confinement
energy is Eφ

n ∼ ~2
2mλ2

n
∼ 1 eV n. There are no severe constraints along the cylinder axis,

i.e. in the x direction. We therefore end up with a total energy

εkx,n,l = ER
0 + Eφ

n +
~2

2m
k2

x, (2.53)
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Figure 2.12: (a) Carbon atoms forming a sheet of graphite with a characteristic hexagonal
lattice. (b) A carbon nanotube molecule is formed by rolling up a graphite sheet into a
cylindrical geometry. (c) An atomic force micrograph taken at the Ørsted Laboratory,
Niels Bohr Institute, showing a bundle of carbon nanotubes placed across a gap between
two metal electrodes, thereby connecting them and allowing for electrical measurements
on single molecules.

with a considerable gap ∆E from the center of the (n, l) = (0, 0) band (the position of εF

for the metallic case) to the bottom of the (n, l) = (0, 1) band:

∆E =
1
2
(Eφ

1 − Eφ
0 ) ≈ 1 eV ∼ 12000 K. (2.54)

Thus at room temperature the only available degree of freedom is the axial one described
by the continuous quantum number kx and the associated plan waves eikxx.

Not only are the nanotube very interesting from an experimental point of view, also
from a pure theoretical point of view do they play an important role. The nanotubes is
one of only a couple of systems exhibiting a nearly ideal 1D behavior. In particular that
makes the nanotubes a key testing ground for the diagonizable so-called Luttinger liquid
model, a central quantum model for describing interacting electrons in 1D.

2.3.4 0D electron gases: quantum dots

Naturally one can think of confining the electrons in all three spatial dimensions. This
has been realized experimentally in the so-called quantum dot systems, for example by
using the device shown in Fig. 2.10(b). A simplified model of a quantum dot is studied in
Exercise 8.4.

This section will be expanded in the next edition of these notes.
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Chapter 3

Phonons; coupling to electrons

In this chapter we study the basic properties of ionic vibrations. These vibrations are well
described by harmonic oscillators and therefore we can employ the results from Sec. 1.4.1
to achieve the second quantized form of the corresponding Hamiltonian. The quantized
vibrations are denoted phonons, a name pointing to the connection between sound waves
and lattice vibrations. Phonons play are fundamental role in our understanding of sound,
specific heat, elasticity, and electrical resistivity of solids. And more surprising may be
the fact that the electron-phonon coupling is the cause of conventional superconductivity.
In the following sections we shall study the three types of matter oscillation sketched in
Fig. 3.1. The ions will be treated using two models: the jellium model, where the ions
are represented by a smeared-out continuous positive background, and the lattice model,
where the ions oscillate around their equilibrium positions forming a regular crystal lattice.

Since phonons basically are harmonic oscillators, they are bosons according to the
results of Sec. 1.4.1. Moreover, they naturally occur at finite temperature, so we will
therefore often need the thermal distribution function for bosons, the Bose-Einstein dis-
tribution nB(ε) given in Eq. (1.127).

� � � � � � � � �

Figure 3.1: Three types of oscillations in metals. The grayscale represent the electron
density and the dots the ions. (a) Slow ionic density oscillations in a static electron gas
(ion plasma oscillations). The restoring force is the long range Coulomb interaction. (b)
slow ion oscillations followed by the electron gas (sound waves, acoustic phonons). The
restoring force is the compressibility of the disturbed electron gas. (c) Fast electronic
plasma oscillations in a static ionic lattice (electronic plasma oscillations). The restoring
force is the long range Coulomb interaction.
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3.1 Jellium oscillations and Einstein phonons

Our first encounter with phonons will be those arising from a semiclassical treatment of
the charge neutral jellium system. Let ρ0

ion be the particle density of the ion jellium, and
ρel = Zρ0

ion that of the homogeneous electron gas. We begin as depicted in Fig. 3.1(a) by
studying oscillations in the smeared out ion density while neglecting the electron dynamics,
i.e. we keep ρel fixed. If we study the limit of small harmonic deviations from equilibrium
δρion(r, t) = δρion(r)e−iΩt, we obtain linear equations of motion with solutions of the form

ρion(r, t) = ρ0
ion + δρion(r) e−iΩt. (3.1)

A non-zero δρion corresponds to a charge density Ze δρion and hence is associated with an
electric field E obeying

∇ ·E =
Ze

ε0
δρion ⇒ ∇ · f =

Z2e2ρ0
ion

ε0
δρion. (3.2)

In the second equation we have introduced the force density f , which to first order in δρion

becomes f = ZeρionE ≈ Zeρ0
ionE. This force equation is supplemented by the continuity

equation, ∂tρion+∇·(ρionv) = 0, which to first order in δρion becomes ∂tδρion+ρ0
ion∇·v = 0,

since the velocity v is already a small quantity. Differentiating this with respect to time
and using Newton’s second law f = Mρion∂tv we obtain

∂2
t δρion+

1
M
∇ · f = 0 ⇒ Ω2δρion =

Z2e2ρ0
ion

ε0M
δρion ⇒ Ω =

√
Z2e2ρ0

ion

ε0M
=

√
Ze2ρel

ε0M
.

(3.3)
Ω is the ionic plasma frequency. The ionic oscillations in the continuous jellium model

are thus described by harmonic oscillators, which all have the same frequency Ω. Hence,
the second quantization formalism leads to the following phonon Hamiltonian:

Hph =
∑
q

~Ω
(
b†qbq +

1
2

)
. (3.4)

These quantized ion oscillations are denoted phonons, and a model like this was proposed
by Einstein in 1906 as the first attempt to explain the decrease of heat capacity C ion

V of
solids as a function of decreasing temperature (see Sec. 3.5). Note that the origin of the
ionic plasma frequency is the long-range Coulomb interaction, which entered the analysis
through the Maxwell equation ∇ ·E = Zeδρion/ε0.

However, the Einstein phonons (also denoted optical phonons, see Sec. 3.3) are not a
very good description of solids. Although it is correct that C ion

V decreases at low temper-
ature, the exact behavior is described by the Debye-model incorporating phonons with a
photon-like dispersion ωq = vs q, where vs is the sound velocity, instead of the Einstein
dispersion ωq = Ω. These Debye phonons are also denoted acoustical phonons due to
their relation to sound propagation. This is explained in details in Secs. 3.3 and 3.5. To
fully understand how the optical Einstein phonons get renormalized to become the acous-
tic Debye phonons requires the full machinery of quantum field theory, but we hint at the
solution of the problem in Fig. 3.1b and in Sec. 3.2.
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3.2 Electron-phonon interaction and the sound velocity

Compared to the light and very mobile valence electrons, the ions are much heavier, more
than a factor of 104, and much slower. Consequently one would expect the electrons to
follow the motion of the ions adiabatically and thereby always maintaining local charge
neutrality and thus lowering the high ionic plasma frequency Ω, which is due to long-range
charge Coulomb forces from the charge imbalance. This situation is depicted in Fig. 3.1b,
and to illustrate its correctness we now use it to estimate the sound velocity in metals.
The kinetic energy density associated with a sound wave is of the order 1

2Mv2
s ρion, while

the potential energy density associated with the restoring force must be related to the
density dependent energy content of the compressed electron gas, i.e. of the order 3

5ρelεF.
In a stationary state these two energy densities must be of the same order of magnitude.
This gives an estimate for vs, which in a more detailed treatment (see Exercise 3.4) is
expressed by the Bohm-Staver formula,

vs =

√
Zm

3M
vF, (3.5)

which for typical numbers yields vs ' 3000 m/s as found experimentally. Note how this es-
timate builds on classical considerations of the ionic motion while using the quantum result
for the energy content of a degenerate electron gas. Surprisingly, an ordinary macroscopic
phenomenon as sound propagation is deeply rooted in quantum physics.

3.3 Lattice vibrations and phonons in 1D

Even though we are not yet able to demonstrate how to turn the optical ion plasma
oscillations into acoustical phonons, we can nevertheless learn a lot from simply postulating
the existence of a periodic ion lattice (as observed in nature), in which the ions can execute
small oscillatory motion around their equilibrium positions. The surroundings somehow
provide the restoring force.

We begin by a simple one dimensional quantum mechanical model consisting of a 1D
box of length L containing N ions of mass M each interacting with its two neighbors
through a linear force field (a spring) with the force constant K. The equilibrium position
of the j’th ion is denoted R0

j , while its displacement away from this position is denoted uj .
The lattice spacing is denoted a = R0

j − R0
j−1, so we have L = Na. This setup is shown

in Fig. 3.2. The Hamiltonian is simply the sum of the kinetic energy of the ions and the
potential energy of the springs, while the ion momentum pj and the displacement uj are
canonical variables:

Hph =
N∑

j=1

[
1

2M
p2

j +
1
2
K(uj − uj−1)

2

]
, [pj1

, uj2
] =

~
i

δj1,j2 . (3.6)

As for the photon model and the jellium model we impose periodic boundary conditions,
uN+1 = u1. Since the equilibrium system is periodic with the lattice spacing a it is natural



54 CHAPTER 3. PHONONS; COUPLING TO ELECTRONS

������������ ���
���
������ ���
���
������ ���
���
������ 	�	
	�	

�

�
������������


�


�

���
��� ������
���
��� ������
���
��� ������
���
��� ������
���
��� ������
���
���

�� �� �� � !"#$

%& '( )* +, -. /0

1 23 4 5 1 23 4 6 1 23 1 23 7 6

8 3 4 5 8 3 4 6 8 3 8 3 7 6

9:9;9:9:9

<:<;<:<:<

Figure 3.2: A 1D lattice of ions with mass M , lattice constant a, and a nearest neighbor
linear force coupling of strength K. The equilibrium positions shown in the top row are
denoted R0

j , while the displacements shown in the bottom row are denoted uj .

to solve the problem in k-space by performing a discrete Fourier transform. In analogy
with electrons moving in a periodic lattice, also the present system of N ions forming
a periodic lattice leads to a first Brillouin zone, FBZ, in reciprocal space. By Fourier
transformation the N ion coordinates becomes N wave vectors in FBZ:

FBZ =
{
−π

a
+ ∆k,−π

a
+ 2∆k, . . . ,−π

a
+ N∆k

}
, ∆k =

2π

L
=

2π

a

1
N

. (3.7)

The Fourier transforms of the conjugate variables are:

pj ≡ 1√
N

∑

k∈FBZ

pke
ikR0

j , uj ≡ 1√
N

∑

k∈FBZ

uke
ikR0

j , δ
R0

j ,0
=

1
N

∑

k∈FBZ

eikR0
j ,

pk ≡ 1√
N

N∑

j=1

pje
−ikR0

j , uk ≡ 1√
N

N∑

j=1

uje
−ikR0

j , δk,0 =
1
N

N∑

j=1

e−ikR0
j .

(3.8)
By straight forward insertion of Eq. (3.8) into Eq. (3.6) we find

H =
∑

k

[
1

2M
pkp−k+

1
2
Mω2

kuku−k

]
, ωk =

√
K

M
2
∣∣∣sin ka

2

∣∣∣, [pk1
, uk2

] =
~
i
δk1,−k2 . (3.9)

This looks almost like the Hamiltonian for a set of harmonic oscillators except for some
annoying details concerning k and −k. Note that while pj in real space is a nice Hermitian
operator, pk in k-space is not self-adjoint. In fact, the hermiticity of pj and the definition

of the Fourier transform lead to p†k = p−k. Although the commutator in Eq. (3.9) tells us
that uk and p−k form a pair of conjugate variables, we will not use this pair in analogy
with x and p in Eq. (1.77) to form creation and annihilation operators. The reason is
that the Hamiltonian in the present case contains products like pkp−k and not p2

k as in
the original case. Instead we combine uk and pk in the definition of the annihilation and
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Figure 3.3: The phonon dispersion relation for three different 1D lattices. (a) A system
with lattice constant a and one ion of mass M1 (black disks) per unit cell. (b) As in (a)
but now substituting every second ion of mass M1 with one of mass M2 (white disks)
resulting in two ions per unit cell and a doubling of the lattice constant. To the left is
shown the extended zone scheme, and to the right the reduced zone scheme. (c) As in (a)
but now with the addition of mass M2 ions in between the mass M1 ions resulting in two
ions per unit cell, but the same lattice constant as in (a).

creation operators bk and b†−k:

bk ≡ 1√
2

(
uk

`k
+ i

pk

~/`k

)
, uk ≡ `k

1√
2
(b†−k + bk), `k =

√
~

Mωk
,

b†−k ≡ 1√
2

(
uk

`k
− i

pk

~/`k

)
, pk ≡ ~

`k

i√
2
(b†−k − bk).

(3.10)

Note how both the oscillator frequency ωk = ω−k and the oscillator length `k = `−k

depends on the wavenumber k. Again by direct insertion it is readily verified that

Hph =
∑

k

~ωk

(
b†kbk +

1
2

)
, [bk1

, b†k2
] = δk1,k2 . (3.11)

This is finally the canonical form of a Hamiltonian describing a set of independent har-
monic oscillators in second quantization. The quantized oscillations are denoted phonons.

Their dispersion relation is shown in Fig. 3.3(a). It is seen from Eq. (3.9) that ωk−→
k→0

√
K
M ak,

so our solution Eq. (3.11) does in fact bring about the acoustical phonons. The sound

velocity is found to be vs =
√

K
M a, so upon measuring the value of it, one can determine

the value of the free parameter K, the force constant in the model.
If, as shown in Fig. 3.3(b), the unit cell is doubled to hold two ions, the concept of

phonon branches must be introduced. It is analogous to the Bloch bands for electrons.
These came about as a consequence of breaking the translational invariance of the system
by introducing a periodic lattice. Now we break the discrete translational invariance given
by the lattice constant a. Instead the new lattice constant is 2a. Hence the original BZ
is halved in size and the original dispersion curve Fig. 3.3(a) is broken into sections. In
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Figure 3.4: (a) An acoustical and (b) an optical phonon having the same wave length for
a 1D system with two ions, • and ◦, per unit cell. In the acoustical case the two types of
ions oscillate in phase, while in the optical case they oscillate π radians out of phase.

the reduced zone scheme in Fig. 3.3(b) we of course find two branches, since no states can
be lost. The lower branch resembles the original dispersion so it corresponds to acoustic
phonons. The upper band never approaches zero energy, so to excite these phonons high
energies are required. In fact they can be excited by light, so they are known as optical
phonons. The origin of the energy difference between an acoustical and an optical phonon
at the same wave length is sketched in Fig. 3.4 for the case of a two-ion unit cell. For
acoustical phonons the size of the displacement of neighboring ions differs only slightly
and the sign of it is the same, whereas for optical phonons the sign of the displacement
alternates between the two types of ions.

The generalization to p ions per unit cell is straight forward, and one finds the ap-
pearance of 1 acoustic branch and (p-1) optical branches. The N appearing above, e.g.
in Eq. (3.8), should be interpreted as the number of unit cells rather than the number
of ions, so we have Nion = pN . A branch index λ, analogous to the band index n for
Bloch electrons is introduced to label the different branches, and in the general case the
Hamiltonian Eq. (3.11) is changed into

Hph =
∑

kλ

~ωkλ

(
b†kλbkλ +

1
2

)
, [bk1λ1

, b†k2λ2
] = δk1,k2

δλ1,λ2
. (3.12)

3.4 Acoustical and optical phonons in 3D

The fundamental principles for constructing the second quantized phonon fields established
for the 1D case carries over to the 3D case almost unchanged. The most notable difference
is the appearance in 3D of polarization in analogy to what we have already seen for the
photon field. We treat the general case of any monatomic Bravais lattice. The ionic
equilibrium positions are denoted R0

j and the displacements by u(R0
j ) with components

uα(R0
j ), α = x, y, z. The starting point of the analysis is a second order Taylor expansion

in uα(R0
j ) of the potential energy U [u(R0

1), . . . ,u(R0
N )],

U ≈ U0 +
1
2

∑

R0
1R

0
2

∑

αβ

uα(R0
1)

∂2U

∂uα(R0
1) ∂uβ(R0

2)

∣∣∣∣∣
u=0

uβ(R0
2). (3.13)

Note that nothing has been assumed about the range of the potential. It may very well
go much beyond the nearest neighbor case studied in the 1D case. The central object in
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the theory is the force strength matrix ∂2U
∂uα ∂uβ

(generalizing K from the 1D case) and its

Fourier transform, the so-called dynamical matrix D(k) with components Dαβ(k):

Dαβ(R0
1−R0

2) =
∂2U

∂uα(R0
1) ∂uβ(R0

2)

∣∣∣∣∣
u=0

, Dαβ(k) =
∑

R

Dαβ(R) e−ik·R. (3.14)

The discrete Fourier transform in 3D is a straight forward generalization of the one in 1D,
and for an arbitrary function f(R0

j ) we have

f(R0
j ) ≡ 1√

N

∑

k∈FBZ

f(k) eik·R0
j , δ

R0
j ,0

=
1
N

∑

k∈FBZ

eik·R0
j ,

f(k) =
1√
N

N∑

j=1

f(R0
j ) e−ik·R0

j , δk,0 =
1
N

N∑

j=1

e−ik·R0
j .

(3.15)

Due to the lattice periodicity Dαβ(R0
1 −R0

2) depends only on the difference between any
two ion positions. The D-matrix has the following three symmetry properties1

[
D(R0)

]t
= D(R0),

0∑

R

D(R0) = 0, D(−R0) = D(R0). (3.16)

Using these symmetries in connection with D(k) we obtain

D(k) =
∑

R0

D(R0) e−ik·R0
=

1
2

(∑

R0

D(R0) e−ik·R0
+

∑

R0

D(−R0) eik·R0

)

=
1
2

∑

R0

D(R0)
(
eik·R0

+ e−ik·R0 − 2
)

= −2
∑

R0

D(R0) sin2
(1

2
k·R0

)
.(3.17)

Thus D(k) is real and symmetric, hence diagonalizable in an orthonormal basis.
The classical equation of motions for the ions are simply

Müα(R0
1) = − ∂U

∂uα(R0
1)

⇒ −M ü(R0
1) =

∑

R0
2

D(R0
2−R0

1) u(R0
2). (3.18)

We seek simple harmonic solutions to the problem and find

u(R0 , t) ∝ ε ei(k·R0−ωt) ⇒ Mω2ε = D(k) ε . (3.19)

Since D(k) is a real symmetric matrix there exists for any value of k an orthonormal basis
set of vectors {εk,1, εk,2, εk,3}, the so-called polarization vectors, that diagonalizes D(k),
i.e. they are eigenvectors:

D(k) εkλ = Kkλ εkλ, εkλ ·εkλ′ = δλ,λ′ , λ, λ′ = 1, 2, 3. (3.20)

1The first follows from the interchangeability of the order of the differentiation in Eq. (3.14). The
second follows from the fact that U = 0 if all the displacements are the same, but arbitrary, say d, because
then 0 =

P
R1R2

d ·D(R0
1−R0

2) · d = Nd · [P0
RD(R0)] · d. The third follows from inversion symmetry

always present in monatomic Bravais lattices.
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Figure 3.5: (a) Three examples of polarization in phonon modes: transverse, longitudinal
and general. (b) A generic phonon spectrum for a system with 3 ions in the unit cell. The
9 modes divides into 3 acoustical and 6 optical modes.

We have now found the classical eigenmodes ukλ of the 3D lattice vibrations characterized
by the wavevector k and the polarization vector εkλ:

Mω2εkλ = Kkλεkλ ⇒ ukλ(R0 , t) = εkλ ei(k·R0−ωkλt), ωkλ ≡
√

Kkλ

M
. (3.21)

Using as in Eq. (3.10) the now familiar second quantization procedure of harmonic oscil-
lators we obtain

ukλ ≡ `kλ
1√
2

(
b†−k,λ + bk,λ

)
εkλ, `kλ ≡

√
~

Mωkλ

, (3.22)

Hph =
∑

kλ

~ωkλ

(
b†kλbkλ +

1
2

)
, [bkλ, b†k′λ′ ] = δk,k′ δλ,λ′ . (3.23)

Now, what about acoustical and optical phonons in 3D? It is clear from Eq. (3.17)
that D(k) ∝ k2 for k → 0, so the same holds true for its eigenvalues Kkλ. The dispersion
relation in Eq. (3.19) therefore becomes ωkλ = vλ(θk, φk) k, which describes an acoustical
phonon with a sound velocity vλ(θk, φk) in general depending on both the direction of k
and the polarization λ. As in 1D the number of ions in the unit cell can be augmented from
1 to p. In that case it can be shown that of the resulting 3p modes 3 are acoustical and
3(p−1) optical modes. The acoustical modes are appearing because it is always possible to
construct modes where all the ions have been given nearly the same displacement resulting
in an arbitrarily low energy cost associated with such a deformation of the lattice. In
Fig. 3.5 is shown the phonon modes for a unit cell with three ions.

A 3D lattice with N unit cells each containing p ions, each of which can oscillate in
3 directions, is described by 3pN modes. In terms of phonon modes we end up with 3p
so-called phonon branches ωkλ, which for each branch index λ are defined in N discrete
points in k-space. Thus in 3D the index λ contains information on both which polarization
and which of the acoustical or optical modes we are dealing with.
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3.5 The specific heat of solids in the Debye model

Debye’s phonon model is a simple model, which describes the temperature dependence of
the heat capacitance CV = ∂E

∂T of solids exceedingly well, although it contains just one
material dependent free parameter. The phonon spectrum Fig. 3.5(b) in the reduced zone
scheme has 3p branches. In Fig. 3.6(a) is shown the acoustic and optical phonon branch in
the extended zone scheme for a 1D chain with two ions per unit cell. Note how the optical
branch appears as an extension of the acoustical branch. In d dimensions a reasonable
average of the spectrum can be obtained by representing all the phonon branches in the
reduced zone scheme with d acoustical branches in the extended zone scheme, each with a
linear dispersion relation ωkλ = vλk. Furthermore, since we will use the model to calculate
the specific heat by averaging over all modes, we can even employ a suitable average vD

out the polarization dependent velocities vλ and use the same linear dispersion relation
for all acoustical branches,

ωkλ ≡ vDk ⇒ ε = ~vD k. (3.24)

Even though we have deformed the phonon spectrum we may not change the number of
phonon modes. In the 3D Debye model we have 3Nion modes, in the form of 3 acoustic
branches each with Nion allowed wavevectors, where Nion is the number of ions in the
lattice. Since we are using periodic boundary conditions the counting of the allowed
phonon wavevectors is equivalent to that of Sec. 2.1.2 for plane wave electron states, i.e.
Nion = [V/(2π)3]×[volume in k-space]. Since the Debye spectrum Eq. (3.24) is isotropic
in k-space, the Debye phonon modes must occupy a sphere in this space, i.e. all modes
with |k| < kD, where kD is denoted the Debye wave number determined by

Nion =
V

(2π)3
4
3
π k3

D. (3.25)

Inserting kD into Eq. (3.24) yields the characteristic Debye energy, ~ωD and hence the
characteristic Debye temperature TD:

~ωD ≡ kBTD ≡ ~vD kD ⇒ 6π2 Nion (~vD)3 = V (kBTD)3. (3.26)

Continuing the analogy with the electron case the density of phonon states Dph(ε) is found
by combining Eq. (3.24) and Eq. (3.25) and multiplying by 3 for the number of acoustic
branches,

Nion(ε) =
V

6π2

1
(~vD)3

ε3 ⇒ Dph(ε) = 3
dNion(ε)

dε
=

V
2π2

1
(~vD)3

ε2, 0 < ε < kBTD.

(3.27)
The energy Eion(T ) of the vibrating lattice is now easily computed using the Bose-Einstein
distribution function nB(ε) Eq. (1.127) for the bosonic phonons:

Eion(T ) =
∫ kBTD

0
dε εDph(ε)nB(ε) =

V
2π2

3
(~vD)3

∫ kBTD

0
dε

ε3

eβε − 1
. (3.28)
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Figure 3.6: (a) The linear Debye approximation to the phonon spectrum with the Debye
wave vector kD shown. (b) Comparison between experiment and the Debye model of heat
capacitance applied for lead, silver, aluminum, and diamond.

It is now straight forward to obtain C ion
V from Eq. (3.28) by differentiation:

C ion
V (T ) =

∂Eion

∂T
= 9NionkB

( T

TD

)3
∫ TD/T

0
dx

x4 ex

(ex − 1)2
, (3.29)

where the integrand is rendered dimensionless by introducing TD from Eq. (3.26). Note
that TD is the only free parameter in the Debye model of heat capacitance; vD dropped
out of the calculation. Note also how the model reproduces the classical Dulong-Petit
value in the high temperature limit, where all oscillators are thermally excited. In the low
temperature limits the oscillators “freeze out” and the heat capacitance drops as T 3,

C ion
V (T ) −→

T¿TD

12π4

5
NionkB

( T

TD

)3
, C ion

V (T ) −→
TÀTD

3NionkB. (3.30)

In Fig. 3.6(b) the Debye model is compared to experiment. A remarkable agreement
is obtained over the wide temperature range from 10 K to 1000 K after fitting TD for each
of the widely different materials lead, aluminum, silver and diamond.

We end this section by a historical remark. The very first published application of
quantum theory to a condensed matter problem was in fact Einstein’s work from 1906,
reproduced in Fig. 3.7(a), explaining the main features of Weber’s 1875 measurements on
diamond. In analogy with Planck’s quantization of the oscillators related to the black
body radiation, Einstein quantized the oscillators corresponding to the lattice vibrations,
assuming that all oscillators had the same frequency ωE . So instead of Eq. (3.27), Einstein
employed the much simpler DE

ion(ε) = δ(ε− ~ωE), which immediately leads to

C ion,E
V (T ) = 3NionkB

(TE

T

)2 eTE/T

(eTE/T − 1)2
, TE ≡ ~ωE/kB. (3.31)

While this theory also gives the classical result 3NionkB in the high temperature limit,
it exaggerates the decrease of C ion

V at low temperatures by predicting an exponential
suppression. In Fig. 3.7(b) is shown a comparison of Debye’s and Einstein’s models.
Nowadays, Einstein’s formula is still in use, since it provides a fairly accurate description
of the optical phonons which in many cases have a reasonably flat dispersion relation.
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Figure 3.7: (a) The first application of quantum theory to condensed matter physics.
Einstein’s 1906 theory of heat capacitance of solids. The theory is compared to Weber’s
1875 measurements on diamond. (b) A comparison between Debye’s and Einstein’s model.

3.6 Electron-phonon interaction in the lattice model

In Chap. 2 we mentioned that in the lattice model the electron-ion interaction splits in
two terms, one arising from the static lattice and the other from the ionic vibrations,
Vel−ion = Vel−latt +Vel−ph. The former has already been dealt with in the HBloch, so in this
section the task is to derive the explicit second quantized form of the latter. Regarding
the basis states for the combined electron and phonon system we are now in the situation
discussed in Sec. 1.4.5. We will simply use the product states given in Eq. (1.108).

Our point of departure is the simple expression for the Coulomb energy of an electron
density in the electric potential Vion(r−Rj) of an ion placed at the position Rj ,

Vel−ion =
∫

dr (−e)ρel(r)
N∑

j=1

Vion(r−Rj). (3.32)

As before the actual ion coordinates are given by Rj = R0
j + uj , where R0

j are the ionic
equilibrium positions, i.e. the static periodic lattice, and where uj denotes the lattice
vibrations. The respective contributions from these two sets of coordinates are separated
by a Taylor expansion, Vion(r −Rj) ≈ Vion(r −R0

j ) −∇rVion(r −R0
j ) · uj , note the sign

of the second term, and we obtain

Vel−ion =
∫

dr (−e)ρel(r)
N∑

j=1

Vion(r−R0
j )−

∫
dr (−e)ρel(r)

N∑

j=1

∇rVion(r−R0
j ) ·uj . (3.33)

The first term is the one entering HBloch in Eq. (2.6), while the second is the electron-
phonon interaction, also sketched in Fig. 3.8,

Vel−ph =
∫

dr ρel(r)
{∑

j

e uj · ∇rVion(r−R0
j )

}
. (3.34)

Vel−ph is readily defined in real space, but a lot easier to use in k-space, so we will proceed
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Figure 3.8: (a) Being in an eigenstate a Bloch electron moves through a perfect lattice
without being scattered. (b) A displaced ion results in an electric dipole relative to the
perfect background, and this can scatter Bloch electrons from |k, σ〉 to |k′, σ〉.

by Fourier transforming it. Let us begin with the ionic part, the u ·∇V -term. The Fourier
transform of uj is given in Eq. (3.22), where we note that the phonon wavevector k is
restricted to the Brillouin zone k ∈ FBZ. Defining Vion(r) = 1

V
∑

p Vpeip·r, we see that
∇r simply brings down a factor ip. To facilitate comparison to the phonon wavevector k
we decompose p as in Eq. (2.10): p = q + G , where q ∈ FBZ and G ∈ RL. All in all we
have

∇rVion(r−R0
j ) =

1
V

∑

q∈FBZ

∑

G∈RL

i(q + G)Vq+Gei(q+G )·(r−R0
j ), (3.35)

uj =
1√
N

∑

k∈FBZ

∑

λ

`kλ√
2

(
bk,λ + b†−k,λ

)
εkλ eik·R0

j . (3.36)

These expressions, together with
∑

j eik·Rj = Nδk,0, and multiplying by e, lead to

∑

j

e uj · ∇rVel(r−R0
j ) =

1
V

∑

q∈FBZ

G∈RL,λ

gq,G ,λ

(
bq,λ + b†−q,λ

)
ei(q+G )·r, (3.37)

where we have introduced the phonon coupling strength gq,G ,λ given by

gq,G ,λ = ie

√
N~

2Mωqλ

(q + G)·εqλ Vq+G . (3.38)

The final result, Vel−ph, is now obtained by inserting the Fourier representation of the
electron density, ρel(r) = 1

V
∑

kpσ e−ip·rc†k+pσckσ, derived in Eq. (1.96), together with
Eq. (3.37) into Eq. (3.34), and utilizing

∫
dr eik·r = Vδk,0:

Vel−ph =
1
V

∑

kσ

∑

qλ

∑

G

gq,G ,λ c†k+q+G ,σckσ

(
bq,λ + b†−q,λ

)
. (3.39)

The interpretation of this formula is quite simple. Under momentum conservation (but
only up to an undetermined reciprocal lattice vector due to the periodicity of the lattice)
and spin conservation the electrons can be scattered from any initial state |k, σ〉el to the
final state |k + q + G , σ〉el either by absorbing a phonon from the state |qλ〉ph or by
emitting a phonon into the state |−qλ〉ph. A graphical representation of this fundamental
process is shown in Fig. 3.9.
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Figure 3.9: A graphical representation of the fundamental electron-phonon coupling. The
electron states are represented by the straight lines, the phonon states by curly spring-like
lines, and the coupling strength by a dot. To the left the electron is scattered by absorbing
a phonon, to the right by emitting a phonon.

The normal processes, i.e. processes where per definition G = 0, often tend to dominate
over the so-called umklapp processes, where G 6= 0, so in the following we shall completely
neglect the latter.2 Moreover, we shall treat only isotropic media, where εqλ is either
parallel to or perpendicular to q, i.e. q·εqλ in gq,G=0,λ is only non-zero for longitudinally
polarized phonons. So in the Isotropic case for Normal phonon processes we have

V IN
el−ph =

1
V

∑

kσ

∑

qλl

gq,λl
c†k+q,σckσ

(
bq,λl

+ b†−q,λl

)
. (3.40)

Finally, the most significant physics of the electron-phonon coupling can often be extracted
from considering just the acoustical modes. Due to their low energies they are excited
significantly more than the high energy optical phonons at temperatures lower than the
Debye temperature. Thus in the Isotropic case for Normal Acoustical phonon processes
only the longitudinal acoustical branch enters and we have

V INA
el−ph =

1
V

∑

kσ

∑
q

gq c†k+q,σckσ

(
bq + b†−q

)
. (3.41)

If we for ions with charge +Ze approximate Vq by a Yukawa potential, Vq = Ze
ε0

1
q2+k2

s
(see

Exercise 1.5), the explicit form of the coupling constant gq is particularly simple:

gq = i
Ze2

ε0

q

q2 + k2
s

√
N~

2Mωq
. (3.42)

3.7 Electron-phonon interaction in the jellium model

Finally, we return to the case of Einstein phonons in the jellium model treated in Sec. 3.1.
The electron-phonon interaction in this case is derived in analogy with the that of normal

2There are mainly two reasons why the umklapp processes often can be neglected: (1) Vq+G is small

due to the 1/(q + G)2 dependence, and (2) At low temperatures the phase space available for umklapp
processes is small.
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lattice phonons in the isotropic case, Eq. (3.41). If we as in Sec. 3.1 neglect the weak
dispersion of the Einstein phonons and simply assume that they all vibrate with the ion
plasma frequency Ω of Eq. (3.3), the result for N vibrating ions in the volume V is

V jel
el−ph =

1
V

∑

kσ

∑
q

gjel
q c†k+q,σckσ

(
bq + b†−q

)
, (3.43)

with

gjel
q = i

Ze2

ε0

1
q

√
N~

2MΩ
. (3.44)

3.8 Summary and outlook

In this chapter we have derived the second quantized form of the Hamiltonian of the
isolated phonon system and the electron-phonon coupling. The solution of the phonon
problem actually constitutes our first solution of a real interacting many-particle system,
each ion is coupled to its neighbors. Also the treatment of the electron-phonon coupling
marks an important step forward: here we dealt for the first time with the coupling
between to different kinds of particles, electrons and phonons.

The electron-phonon coupling is a very important mechanism in condensed matter
systems. It is the cause of a large part of electrical resistivity in metals and semiconductors,
and it also plays a major role in studies of heat transport. In Exercise 3.1 and Exercise 3.2
give a first hint at how the electron-phonon coupling leads to a scattering or relaxation
time for electrons.

We shall return to the electron-phonon coupling in Chap. 16, and there see the first
hint of the remarkable interplay between electrons and phonons that lies at the heart of the
understanding of conventional superconductivity. The very successful microscopic theory
of superconductivity, the so-called BCS theory, is based on the electron-phonon scattering,
even the simple form given in Eqs. (3.41) and (3.42) suffices to cause superconductivity.



Chapter 4

Mean field theory

The physics of interacting particles is often very complicated because the motions of
the individual particles depend on the position of all the others, or in other words the
particles motions become correlated. This is clearly the case for a system of charged
particles interacting by Coulomb forces, such as e.g. the electron gas. There we expect the
probability to find two electrons in close proximity to be small due to the strong repulsive
interaction. Consequently, due to these correlation effects there is a suppressed density in
the neighborhood of every electron, and one talks about a “correlation hole”.

Nevertheless, in spite of this complicated problem there are a number of cases where a
more crude treatment, not fully including the correlations, gives a good physical model. In
these cases it suffices to include correlations “on the average”, which means that the effect
of the other particles is included as a mean density (or mean field), leaving an effective
single particle problem, which is soluble. This idea is illustrated in Fig. 4.1. The mean
fields are chosen as those which minimize the free energy, which in turn ensure that the
method is consistent, as we shall see shortly. This approximation scheme is called “mean
field theory”. Upon performing the mean field approximation we can neglect the detailed
dynamics and the time-independent second quantization method described in Chap. 1
suffices.

There exist numerous examples of the success of the mean field method and its ability
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Figure 4.1: Illustration of the mean field idea. Left box shows the real physical system
where the interaction leads to correlation between the particle motions. To the right are
the interactions felt by the black particle replaced by an average interaction due to the
average density of the white particles.
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to explain various physical phenomena. In this chapter, we shall discuss a few examples
from condensed matter physics , but before going to specific examples let us discuss the
mathematical structure of the mean field theory.

First we consider a system with two kinds of particles, described by operators aν and
bµ, respectively. Let us assume that only interactions between different kind of particles
are important. The Hamiltonian is

H = H0 + Vint, (4.1a)

H0 =
∑

ν

ξa
νa†νaν +

∑
µ

ξb
µb†µbµ, (4.1b)

Vint =
∑

νν′,µµ′
Vνµ,ν′µ′a

†
νb
†
µbµ′aν′ . (4.1c)

Now suppose that we expect, based on physical arguments, that the density operators
a†νaν′ and b†µbµ′ deviate only little from their average values, 〈a†νaν′〉 and 〈b†µbµ′〉. It is then
natural to use this deviation as a small parameter and perform an expansion. In order to
do so we define the deviation operators

dνν′ = a†νaν′ − 〈a†νaν′〉, (4.2a)

eµµ′ = b†µbµ′ − 〈b†µbµ′〉, (4.2b)

and insert them into (4.1a), which gives

H = H0 + VMF +

neglected in mean field︷ ︸︸ ︷∑

νν′,µµ′
Vνµ,ν′µ′dνν′eµµ′ , (4.3)

where

VMF =
∑

νν′,µµ′
Vνµ,ν′µ′

(
a†νaν′〈b†µbµ′〉+ b†µbµ′〈a†νaν′〉

)
−

∑

νν′,µµ′
Vνµ,ν′µ′〈a†νaν′〉〈b†µbµ′〉, (4.4)

Because dνν′ and eµµ′ are assumed to be small the second term in Eq. (4.3) is neglected,
and the interaction Vint is approximated by the mean field interaction VMF resulting in
the so-called mean field Hamiltonian HMF given by

HMF = H0 + VMF. (4.5)

The mean field Hamiltonian HMF contains only single-particle operators, and thus the
original many-body problem has been reduced to a single-particle problem, which in prin-
ciple is always soluble.1

1To see that a single-particle problem or a quadratic Hamiltonian can always be diagonalized, write H
as H =

P
ij a†i hijaj . Now since h is a hermitian matrix there exists a transformation, αi =

P
j Uijaj , with

U being a unitary matrix, such that h is diagonal,
P

kk′ U
†
ikhkk′Uk′j = δijεi. In terms of the new basis

the Hamiltonian then becomes H =
P

i α†i εiαi, and {εi} are thus the eigenvalues of h.
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Looking at Eq. (4.4) we can formulate the mean field procedure in a different way: If
we have an interaction term involving two operators A and B given by a product of the
two

HAB = AB, (4.6)

then the mean field approximation is given by A coupled to the mean field of B plus B
coupled to the mean field of A and finally to avoid double counting subtracted by the
product of the mean fields (such that 〈HMF

AB 〉 = 〈A〉〈B〉):
HMF

AB = A〈B〉+ 〈A〉B − 〈A〉〈B〉. (4.7)

The question is however how to find the averages 〈a†νaν′〉 and 〈b†µbµ′〉. There are two
possible routes which in fact are equivalent. Method 1: The average is to be determined
self-consistently, i.e. when calculating the averages

n̄a
νν′ ≡ 〈a†νaν′〉, (4.8a)

n̄b
µµ′ ≡ 〈b†µbµ′〉, (4.8b)

using the new mean field Hamiltonian, the same answer should come out. This means for
n̄a (and similarly for n̄b) that

n̄a
νν′ ≡ 〈a†νaν′〉MF =

1
ZMF

Tr
(
e−βHMFa†νaν′

)
, (4.9)

where ZMF is the mean field partition function given by

ZMF = Tr
(
e−βHMF

)
. (4.10)

Eq. (4.9) and the similar one for n̄b are called the self-consistency equations (because n̄a

and n̄b are given in terms of HMF and ZMF, which themselves depend on n̄a and n̄b).
Next we turn to the alternative route. Method 2: Use the nνν′ that minimizes the free

energy FMF of the mean field Hamiltonian. Using the expression for the free energy given
in Sec. 1.5, we get

0 =
d

dn̄a
νν′

FMF =
d

dn̄a
νν′

(
− 1

β
lnZMF

)

=
1

ZMF
Tr

(
e−βHMF

d

dn̄a
νν′

HMF

)

=
1

ZMF
Tr


e−βHMF


∑

µµ′
Vνµ,ν′µ′

(
b†µbµ′ − n̄b

µµ′
)






=
∑

µµ′
Vνµ,ν′µ′

(
〈b†µbµ′〉MF − n̄b

µµ′
)

. (4.11)

This should hold for any pair (ν, ν ′) and hence the last parenthesis has to vanish and we
arrive at the self-consistency equation for n̄b. Similarly by minimizing with respect to n̄b

we get Eq. (4.9). Thus the two methods are equivalent.
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We can gain some more understanding of the physical content of the mean field approx-
imation if we look at average interaction energy 〈Vint〉. A natural approximation would
be to evaluate the expectation value of a and b operator separately,

〈Vint〉 ≈
∑

νν′,µµ′
Vνµ,µ′ν′〈a†νaν′〉〈b†µbµ′〉, (4.12)

which is equivalent to assuming that the a and b particles are uncorrelated2. This is in
essence the approximation done in the mean field approach. To see this let us evaluate
〈Vint〉 using the mean field Hamiltonian

〈Vint〉MF =
1

ZMF
Tr

(
e−βHMFVint

)
. (4.13)

Because the mean field Hamiltonian can be separated into a part containing only a-
operators and a part containing only b-operators, HMF = Ha

MF + Hb
MF, the average fac-

torizes exactly as in Eq. (4.12), and we get

〈Vint〉MF =
∑

νν′,µµ′
Vνµ,ν′µ′〈a†νaν′〉MF〈b†µbµ′〉MF. (4.14)

The mean field approach hence provides a consistent and physically sensible method
to study interacting systems where correlations are less important. Here “less important”
should be quantified by checking the validity of the mean field approximation. That is,
one should check that d indeed is small by calculating 〈d〉, using the neglected term in
(4.3) as a perturbation, and then compare the result to 〈a†νaν′〉. If it is not small, one has
either chosen the wrong mean field parameter, or the method simply fails and other tools
more adequate to deal with the problem at hand must be applied.

4.1 The art of mean field theory

In practice one has to assume something about the averages 〈a†νaν′〉 and 〈b†µbµ′〉 because
even though (4.9) gives a recipe on how to find which averages are important, there are
simply too many possible combinations. Suppose we have N different quantum numbers,
then there are in principle N2 different combinations, which gives N2 coupled non-linear
equations, which of course is only tractable for small systems. With modern computers
one can treat hundreds of particles in this way, but for a condensed matter system, it
is out of the question. Therefore, one must provide some physical insight to reduce the
number of mean field parameters.

Often symmetry arguments can help reducing the number of parameters. Suppose for
example that the Hamiltonian that we are interested in has translational symmetry, such
that momentum space is a natural choice. For a system of particles described by operators
c and c†, we then have

〈c†kck′〉 =
1
V

∫
dr

∫
dr′e−ik′·r′eik·r〈Ψ†(r)Ψ(r′)〉. (4.15)

2Remember from usual statistics that the correlation function between two stochastic quantities X and
Y is defined by 〈XY 〉 − 〈X〉〈Y 〉.
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It is natural to assume that the system is homogeneous, which means

〈Ψ†(r)Ψ(r′)〉 = f(r− r′) ⇒ 〈c†kck′〉 = 〈nk〉δk,k′ . (4.16)

This assumption about homogeneity is however not always true, because in some cases the
symmetry of the system is lower than that of the Hamiltonian. For example if the system
spontaneously orders into a state with a spatial density variation, like a wave formation
then the average 〈Ψ†(r)Ψ(r′)〉 is not function of the r− r′ only. Instead it has a lower and
more restricted symmetry, namely that

〈Ψ†(r)Ψ(r′)〉 = h(r, r′), h(r, r′) = h(r + R, r′ + R) (4.17)

with R being a lattice vector. The kind of crystal structure of course exists in Nature
and when it happens we talk about phenomena with broken symmetry. It is important to
realize that this solution cannot be found if we assumed Eq. (4.16) from line one. Instead
we should have started by assuming Eq. (4.17) leading to the possibility of 〈c†kck+Q〉 being
finite, where R ·Q = 2π. Thus the choice of the proper mean field parameters requires
physical motivation about which possible states one expects.

4.2 Hartree–Fock approximation

Above we discussed the mean field theory for interactions between different particles. Here
we go on to formulate the method for like particles. For the interaction term in Eq. (4.1a)
we use the approximation to replace a†νaν′ and b†µbµ′ by their average values plus small
corrections. For interactions between identical particles this, however, does not exhaust
the possibilities and only includes the so-called Hartree term and now we discuss the more
general approximation scheme, called the Hartree–Fock approximation. Suppose we have
a system of interacting particles described by the Hamiltonian

H = H0 + Vint, (4.18a)

H0 =
∑

ν

ξνc
†
νcν , (4.18b)

Vint =
1
2

∑

νν′,µµ′
Vνµ,ν′µ′c

†
νc
†
µcµ′cν′ . (4.18c)

The basic idea behind the mean field theory was that the operator

ρµµ′ = c†µcµ′ , (4.19)

is large only when the average 〈ρµµ′〉 is non-zero. For most of the combinations νν ′ the
average 〈ρνν′〉 is zero. We therefore use the same strategy as in the introduction and write
the four operators in the interaction term in terms of a deviation from the average value

c†ν
(
c†µcµ′ − 〈c†µcµ′〉

)
cν′ + c†νcν′〈c†µcµ′〉. (4.20)
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If the quantum number ν ′ is different from µ we can commute cν′ with the parenthesis.
This is true except in a set of measure zero. With this assumption we again write c†νcν′ as
its average value plus a deviation, which gives

(
c†νcν′ − 〈c†νcν′〉

)(
c†µcµ′ − 〈c†µcµ′〉

)
+ c†νcν′〈c†µcµ′〉+ c†µcµ′〈c†νcν′〉 − 〈c†µcµ′〉〈c†νcν′〉. (4.21)

If we neglect the first term, which is proportional to the deviation squared, we have arrived
at the Hartree approximation for interactions

V Hartree
int =

1
2

∑
Vνµ,ν′µ′ n̄µµ′c

†
νcν′ +

1
2

∑
Vνµ,ν′µ′ n̄νν′c

†
µcµ′ −

1
2

∑
Vνµ,ν′µ′ n̄νν′ n̄µµ′ . (4.22)

This is the same result we would get if we considered the operators with (ν, ν ′) and
(µ, µ′) to be different kinds of particles and used the formula from the previous section.
However, this is not the full result because here the operators labelled by µ and ν represent
identical, indistinguishable particles and there is therefore one combination we is missed
be the Hartree approximation, namely the so-called exchange or Fock term. This new term
appears because the product of four operators in Eq. (4.18c) also gives a large contribution
when 〈c†νcµ′〉 is finite. To derive the mean field contribution from this possibility we thus
have to first replace c†νcµ′ by its average value and following the principle in Eq. (4.7)
do the same with the combination c†µcν′ . The mean field result for the Fock term thus
becomes

V Fock
int = −1

2

∑
Vνµ,ν′µ′ n̄νµ′c

†
µcν′ −

1
2

∑
Vνµ,ν′µ′ n̄µν′c

†
νcµ′ +

1
2

∑
Vνµ,ν′µ′ n̄νµ′ n̄µν′ . (4.23)

The final mean field Hamiltonian within the Hartree–Fock approximation is

HHF = H0 + V Fock
int + V Hartree

int (4.24)

Consider now the example of a homogeneous electron gas which is translation invariant,
which means that the expectation value 〈c†kck′〉 is diagonal. We can now read off the
corresponding Hartree–Fock Hamiltonian, see Exercise 4.1 from Eq. (1.104). The result is

HHF =
∑

kσ

ξHF
k c†kσckσ, (4.25a)

ξHF
k = ξk +

∑

k′σ′

[
V (0)− δσσ′V (k− k′)

]
nk′σ′ ,

= ξk + V (0)N −
∑

k′σ′
V (k− k′)nk′σ′ . (4.25b)

The second term is the interaction with the average electron charge. As explained in
Chap. 2 in condensed matter systems it is normally cancelled out by an equally large term
due to the positively charged ionic background. The third term is the exchange correction.

Again we emphasize that the Hartree–Fock approximation depends crucially on what
averages we assume to be finite, and these assumptions must be based on physical knowl-
edge or clever guess-work. In deriving Eq. (4.25b) we assumed for example that the spin
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Figure 4.2: The energetics of a phase transition. Above the critical point the effective
potential has a well-defined minimum at the symmetry point, and the system is in a state
of large symmetry. Below the critical point a two well potential develops and the system
has to choose one of the two possibilities. Even though the total potential is still symmetric
the system will reside only in one well due to the macroscopically large energy barrier and
thus the state of the system has “lower symmetry” than the potential.

symmetry is also maintained, which implies that 〈c†k↓ck↓〉 = 〈c†k↑ck↑〉. If we allow them
to be different we have the possibility of obtaining a ferromagnetic solution, which indeed
happens in some cases. This is discussed in Sec. 4.4.2.

4.3 Broken symmetry

Mean field theory is often used to study phase transitions and thus changes of symmetry.
For a given Hamiltonian with some symmetry (e.g. translational symmetry, rotational sym-
metry in real space or in spin space) there exists an operator which reflects this symmetry
and therefore commutes with the Hamiltonian (e.g. translation operator, rotation operator
in real space or spin space). Since the operator and the Hamiltonian commute according
to the theory of Hermitian operators a common set of eigenstates exists. Consider for
example the case of a liquid of particles where the Hamiltonian of course has translational
symmetry, which means that the translational operator T (R) commutes with Hamilto-
nian, [H,T (R)] = 0. Here T (R) is an operator which displaces all particle coordinates
by the amount R. It can be written as T = exp(iR ·P), where P is the total momentum
operator. The total momentum operator is thus a conserved quantity and it is given by

P = ~
∑

kσ

k c†kσckσ, (4.26)

We can now choose an orthogonal basis of states with definite total momentum, |P〉. This
fact we can use to “prove” the unphysical result that a density wave can never exist.
A density wave, with wave vector Q, means that the Fourier transform of the density
operator

ρ(Q) =
∑

kσ

c†kσck+Qσ, (4.27)
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Phenomena Order parameter Order parameter
physical mathematical

crystal density wave
∑

k〈c†kck+Q〉
ferromagnet magnetization

∑
k〈c†k↑ck↑ − c†k↓ck↓〉

Bose-Einstein condensate population of k = 0 state 〈a†k=0〉
superconductor pair condensate 〈ck↑c−k↓〉

Table 4.1: Typical examples of spontaneous symmetry breakings and their corresponding
order parameters.

has a finite expectation value, but

〈c†kσck+Qσ〉 =
1
Z

∑

P

e−βEP

〈
P

∣∣∣c†kσck+Qσ

∣∣∣P
〉

= 0, (4.28)

because c†kck+Q|P〉 has momentum P−Q and is thus orthogonal to |P〉. We have there-
fore reached the senseless result that crystals do not exist. In the same way, we could
“prove” that magnetism, superconductivity, and other well-known physical phenomena
cannot happen. What is wrong?

The proof above breaks down if the sum of states in the thermodynamical average is
restricted. Even though crystals with different spatial reference points (or ferromagnets
with magnetization in different directions) have formally the same energy, they are effec-
tively decoupled due to the large energy barrier it takes to melt and then recrystallize
into a new state with a shifted reference (or direction of magnetization). In those cases
where many states of the system are degenerate but separated by large energy barriers,
it does not make sense to include them on equal footing in the statistical average as in
Eq. (4.28) because they correspond to macroscopically totally different configurations. We
are therefore forced to refrain from the fundamental ergodicity postulate of statistical me-
chanics, also discussed in Sec. 1.5, and built into the description that the phase space of
the system falls into physically separated sections. This is often illustrated by the double
barrier model of phase transitions shown in Fig. 4.2.

When at some critical temperature the thermodynamical state of the system develops
a non-zero expectation value of some macroscopic quantity which has a symmetry lower
than the original Hamiltonian it is called spontaneous breaking of symmetry. The quantity
which signals that a phase transition has occurred is called the order parameter. Typical
examples are listed in Table 4.1.

In order to arrive at the new phase in a calculation and to avoid the paradox in
Eq. (4.28), one has to built in the possibility of the new phase into the theory. In the
mean field approach the trick is to include the order parameter in the choice of finite
mean fields and, of course, show that the resulting mean field Hamiltonian leads to a
self-consistent finite result. Next we study in some detail examples of symmetry breaking
phenomena and their corresponding order parameters.
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Figure 4.3: The left figure shows the Heisenberg model in the disordered state where there
is no preferred direction for spins, while in the ferromagnetic state, shown in the middle,
the spins form a collective state with a finite macroscopic moment along one direction.
The model discussed here includes interactions between adjacent spins only, as shown in
the right panel.

4.4 Ferromagnetism

4.4.1 The Heisenberg model of ionic ferromagnets

In ionic magnetic crystals the interaction between the magnetic ions is due to the exchange
interactions originating from the Coulomb interactions. Here we will not go into the details
of this interaction but simply give the effective Hamiltonian3, known as the Heisenberg
model for interaction between spins in a crystal. It reads

H = −2
∑

ij

Jij Si · Sj , (4.29)

where Si is the spin operator for the ion on site i and Jij is the strength of the interaction,
between the magnetic moment of the ions on sites i and j. It depends only on the distance
between the ions. The interaction is generally short ranged and we truncate it so that it,
as in Fig. 4.3, is only non-zero for nearest neighbors

Jij =
{

J0 if i and j are neighbors,
0 otherwise.

(4.30)

We immediately see that if J < 0, the spins tend to become antiparallel whereas for
J > 0, it is energetically favorable to for the spins to be parallel. The first case corresponds
to the antiferromagnetic case, while the latter to the ferromagnetic case. Here we consider
only the ferromagnetic case, J > 0.

As the model Hamiltonian stands, although simple looking, it is immensely complicated
and cannot be solved in general, the spins of the individual ions being strongly correlated.
However, it is a good example where a mean field solution gives an easy and also physical
correct answer. The mean field decomposition then gives

H ≈ HMF = −2
∑

ij

Jij 〈Si〉 · Sj − 2
∑

ij

Jij Si · 〈Sj〉+ 2
∑

ij

Jij 〈Si〉 · 〈Sj〉. (4.31)

3The term “effective Hamiltonian” has a well-defined meaning. It means the Hamiltonian describing
the important degrees of freedom on the relevant low energy scale.
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Here 〈Si〉 is the average spin at site i. From symmetry arguments we would then expect
that the expectation value of this is zero, because all directions are equivalent. But since
this is not the right answer we have to assume that the symmetry is broken, i.e. allow for
〈Si〉 to be non-zero. Furthermore, because of the translational symmetry we expect it to
be independent of position coordinate i.4 So we assume a finite but spatial independent
average spin polarization.

If we choose the z axis along the direction of the magnetization our mean field assump-
tion is

〈Si〉 = 〈Sz〉 ez, (4.32)

and the magnetic moment m (which by assumption is equal for all sites) felt by each spin
thus becomes

m = 2
∑

j

Jij〈Sz〉 ez = 2nJ0〈Sz〉 ez, (4.33)

where n is the number of neighbors. For a square lattice it is n = 2d, where d is the
dimension. The mean field Hamiltonian

HMF = −2
∑

i

m · Si + mN〈Sz〉, (4.34)

is now diagonal in the site index and hence easily solved. Here N is the number of sites and
m = |m|. Suppose for simplicity that the ions have spin S = 1

2 . With this simplification
the mean field partition function is

ZMF =
(
eβm + e−βm

)N
eβNm〈Sz〉 =

[(
eβm + e−βm

)
eβm2/2nJ0

]N
, (4.35)

with one term for each possible spin projection, Sz = ±1
2 .

The self-consistency equation is found by minimizing the free energy

∂FMF

∂m
= − 1

β

∂

∂m
ln ZMF = −N

(
eβm − e−βm

eβm + e−βm

)
+ N

m

nJ0
= 0,

which has a solution given by the transcendental equation

α = tanh (bα) , α =
m

nJ0
, b = nJ0β. (4.36)

It is evident from an expansion for small α,

α ≈ bα− 1
3
(bα)3, (4.37)

that there is no solution for b < 1, and thus we can determine the critical temperature
Tc where the magnetism disappears, by the condition bc = 1 and hence kBTc = nJ0.

4But had we reasons to believe that an antiferromagnetic solution (where the spins point in opposite
direction on even and odd sites) was relevant (if Jij < 0), we would have to assume that also this symmetry
was broken.
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Figure 4.4: Left two panels show the graphical solution of the mean field equation for
the Heisenberg model, Eq. (4.36) . At temperatures larger than the critical temperature,
Tc = nJ0, corresponding to b = nJ0/T < 1 there is no solution and hence no ferromagnetic
moment. For b > 1 a solution exists. The resulting temperature dependence of the
magnetization is shown to the right.

Furthermore, for small α we find the solution for the magnetization, α ≈ 1
b

√
3(b− 1)/b ⇒

m ≈ nJ0

√
3TC−T

TC
, valid close to Tc. At T = 0 where t = ∞ the solution is α = 1 and hence

m = nJ0. For the functional form of the magnetization in the entire range of temperature
one must solve Eq. (4.36) numerically, which of course is a simple task. The solution is
shown in Fig. 4.4.

4.4.2 The Stoner model of metallic ferromagnets

In magnets where the electrons both generate the magnetic moments and also form con-
duction bands the Heisenberg model cannot explain the magnetism. This is simply because
the spins are not localized. Metallic magnetism happens e.g. in transition metals where the
conduction bands are formed by the narrower d or f orbitals. The interaction between two
particles in those orbitals is stronger than between electrons occupying the more spread
out s or p orbitals and hence give a larger correlation between electrons. Typical metals
where correlations between conduction band electrons are important are Fe and Ni.

Since the short range of the interaction is important it is relevant to study a model,
the so-called Hubbard model, where this physical fact is reflected in a simple but extreme
manner: the Coulomb interaction between electrons is taken to be point-like in real space
and hence constant in momentum space.

Hhub =
∑

kσ

ξkc†kσckσ +
U

2V
∑

k′kq,σσ′
c†k+qσc†k′−qσ′ck′σ′ckσ. (4.38)

We now use the Hartree–Fock approximation scheme on this model but search for a fer-
romagnetic solution by allowing for the expectation values to depend on the direction of
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the spin. The mean field parameters are

〈c†k↑ck′↑〉 = δkk′ n̄k↑, 〈c†k↓ck′↓〉 = δkk′ n̄k↓, (4.39)

and the mean field interaction Hamiltonian becomes

V MF
int =

U

V
∑

k′kqσσ′
c†k+qσ〈c†k′−qσ′ck′σ′〉ckσ −

U

V
∑

k′kqσσ′
〈c†k+qσck′σ′〉c†k′−qσ′ckσ

− U

2V
∑

k′kqσσ′

[
〈c†k+qσckσ〉〈c†k′−qσ′ck′σ′〉 − 〈c†k+qσck′σ′〉〈c†k′−qσ′ckσ〉

]
. (4.40)

The factor 1
2 disappeared because there are two terms as in Eqs. (4.22) and (4.23). Using

our mean field assumptions Eq. (4.39) we obtain

V MF
int = U

∑

kσσ′
c†kσckσ [n̄σ′ − n̄σδσσ′ ]− UV

∑

σσ′
n̄σn̄σ′ + UV

∑
σ

n̄2
σ, (4.41)

where the spin densities have been defined as

n̄σ =
1
V

∑

k

〈c†kσckσ〉. (4.42)

The full mean field Hamiltonian is now given by

HMF =
∑

kσ

ξMF
kσ c†kσckσ −

UV
2

∑

σσ′
n̄σn̄σ′ +

UV
2

∑
σ

n̄2
σ, (4.43a)

ξMF
kσ = ξk + U(n↑ + n̄↓ − n̄σ) = ξk + Un̄σ̄. (4.43b)

The mean field solution is found by minimization, which gives the self-consistency equa-
tions

n̄σ =
1
V

∑

k

〈c†kσckσ〉MF =
1
V

∑

k

nF (ξMF
kσ ). (4.44)

We obtain at zero temperature

n̄↑ =
∫

dk
(2π)3

θ

(
µ− ~

2k2

2m
− Un̄↓

)
=

1
6π2

k3
F↑, (4.45)

where ~2
2mk2

F↑+Un̄↓ = µ, and of course a similar equation for spin down. The two equations
are

~2

2m
(6π)2/3 n̄

2/3
↑ + Un̄↓ = µ,

~2

2m
(6π)2/3 n̄

2/3
↓ + Un̄↑ = µ. (4.46)

Define the variables,

ζ =
n̄↑ − n̄↓

n̄
, γ =

2mUn1/3

(3π2)2/3 ~2
, n̄ = n̄↑ + n̄↓. (4.47)
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Figure 4.5: The three possible solutions of the Stoner model. The polarization is thus a
function of the interaction strength; the stronger the interaction the larger the polarization.
The Stoner model provides a clear physical picture for how the exchange interactions
induce a ferromagnetic phase transition in a metal with strong on-site interactions.

Then by subtracting the self-consistency conditions (4.46), we get

n̄
2/3
↑ − n̄

2/3
↓ =

2mU

~2
(6π)−2/3 (

n↑ − n↓
)
,

m
γζ = (1 + ζ)2/3 − (1− ζ)2/3 . (4.48)

This expression has three types of solutions:

γ < 4
3 : Isotropic solution: ζ = 0 Normal state

4
3 < γ < 22/3 : Partial polarization: 0 < ζ < 1 Weak ferromagnet

γ > 22/3 : Full polarization ζ = 1 Strong ferromagnet

(4.49)

The different solutions are sketched in Fig. 4.5.
The possibility for a magnetic solution can be traced back to the spin-dependent en-

ergies Eq. (4.43a), where it is clear that the mean field energy of a given spin direction
depends on the occupation of the opposite spin direction, whereas the energy does not
depend on the occupation of the same spin direction. This resulted from two things: the
short rang interaction and the exchange term. One can understand this simply from the
Pauli principle which ensures that electrons with the same spin never occupy the same
spatial orbital and therefore, if the interaction is short-range, they cannot interact. This
leaves interactions between opposite spin as the only possibility. Thus the interaction
energy is lowered by having a polarized ground state, which on the other hand for a fixed
density costs kinetic energy. The competition between the potential and the kinetic energy
contributions is what gives rise to the phase transition.

The Stoner model gives a reasonable account of metallic magnets and it is also capable
of qualitatively explaining the properties of excitations in the spin polarized states. This
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is however outside the scope of this section and the interested reader should consult for
example the book by Yosida.

4.5 Superconductivity

One of the most striking examples of symmetry breaking is the superconducting phase
transition. Below the critical temperature the metal which turns superconducting has no
resistance what so ever, and it exhibits perfect diamagnetism (called Meissner effect),
which means that magnetic fields are totally expelled from the interior of the material.
These astonishing phenomena result from the superconducting state having a new form of
symmetry breaking, namely loss of global gauge invariance. Besides the superconductivity
itself and the Meissner effect superconductors show a number of other characteristics,
e.g. distinct single particle properties, which result from the appearance of a gap in the
excitation spectrum.

Both the new type of phase and the appearance of an excitation gap are explained by
the Bardeen-Cooper-Schrieffer (BCS) theory from 1957. It is probably the most successful
theory in condensed matter physics and it has found application in other branches of
physics as well, e.g. to explain the stability of nuclei with an even number of nucleons and
also in the standard model of high-energy physics.

In this section, we give a short introduction to the BCS theory, which in its spirit is
very much like the Hartree–Fock theory presented above. It is a mean field theory but
with a quite unusual mean field and therefore we begin by discussing the nature of the
superconducting phase.

4.5.1 Breaking of global gauge symmetry and its consequences

Let us start by understanding what kind of broken symmetry could give rise to a super-
conducting state. As was said above, the relevant symmetry is the global gauge symmetry,
which means that we can give all electrons the same extra constant phase and still leave
the Hamiltonian invariant. The analog to this in the case of a ferromagnet, is that all spins
can be rotated by some angle without changing the Hamiltonian, which therefore has a
global SO(3) symmetry. In that case a broken SO(3) symmetry means that the expecta-
tion value 〈S〉 is not invariant under the rotation, because it will change the direction of
the magnetization. In the same way the phase rotation also changes the superconducting
order parameter, which is of the form 〈cνcν′〉. The order parameter for the supercon-
ductor thus involves an expectation value of two annihilation operators. Of course, the
number of particles is conserved, but this is not a problem here where we discuss only
superconductors connected to electron reservoirs. Schematically the analogies between
superconductors and ferromagnets are as shown in Table 4.2.

While it is clear why the finite expectation 〈S〉 gives a magnetization in the case
of a ferromagnet, it is not so clear why broken symmetry in the superconducting case
leads to a system without resistance. We have argued that the superconducting state is
sensitive to a change of global phase, but it is also clear that a constant phase cannot
have any measurable effect because all expectation values are given by the absolute square
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Global U(1) gauge symmetry, superconductor Global SO(3), ferromagnet

cν → cνe
iϕ ⇒ H → H S → US ⇒ H → H

Broken symmetry: 0 6= 〈cνcν′〉 → 〈cνcν′〉e2iϕ Broken symmetry: 0 6= 〈S〉 → U〈S〉

Table 4.2: The analogy between the broken symmetries of a superconductor and a ferro-
magnet.

of the wave function. However, phase gradients can have an effect. Let us therefore
assume that we ascribe a phase to the superconducting state which depends on position,
ϕ (r), but varies extremely slowly, such that it takes a macroscopic distance to see any
significant changes in ϕ (r). For any other non-superconducting system it would not make
sense to talk about a quantum mechanical phase difference over macroscopic distances,
simply because quantum coherence is destroyed by all sorts of scattering events on rather
short length scales, maybe of the order of 10 nm or less in metals. To argue that the
superconducting state depends on phase differences over macroscopic distances is therefore
very unusual and tells us that superconductivity is a macroscopic quantum phenomenon.

In order to study the consequences of the phase change let us introduce a unitary
transformation which changes the phase

U = exp
(

i

∫
dr ρ(r)ϕ (r)

)
, (4.50)

(recall that ρ, is the density operator ρ (r) = Ψ† (r)Ψ (r)) because it has the following
properties when applied to quantum field operators

Ψ̃(r) = UΨ(r)U−1 = exp
(

i

∫
dr ρ(r)ϕ (r)

)
Ψ(r) exp

(
−i

∫
dr ρ(r)ϕ (r)

)

= Ψ(r) exp (−iϕ (r)) , (4.51a)

Ψ̃†(r) = UΨ†(r)U−1 = Ψ†(r) exp (iϕ (r)) . (4.51b)

These equations follow from the differential equation (together with the boundary condi-
tion Ψ̃ϕ=0 = Ψ)

δ

δϕ (r′)
Ψ̃(r) = iU [ρ(r′), Ψ(r)]U−1 = iΨ̃(r)δ

(
r− r′

)
. (4.52)

(See also Eq. (5.24) in Chap. 5 which is derived in the same way.) If we transform the
density operator and calculate the transformed partition function, we get

Z̃ = Tr′
[
Ue−βHU−1

]
= Tr′

[
e−βH̃

]
. (4.53)

Note here that if we had used the cyclic properties of the trace, U would have disappeared
all together. However, we learned above that when dealing with systems with broken
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symmetry, the sum-over-states has to be restricted so that the cyclic properties does
not necessarily hold. This we have anticipated by the symbol Tr′ which means that
the trace is restricted due to the spontaneous symmetry breaking. The transformation
only changes in the kinetic energy term of the Hamiltonian, because both the Coulomb
interaction term, the impurity scattering term, and the phonon coupling term, only involve
the electron density operator ρ(r) which according to (4.51) is unchanged under the phase
shift transformation. The kinetic part reads

H̃ =
1

2me

∫
drΨ†(r)eiϕ(r)

(
~
i
∇+ eA

)2

e−iϕ(r)Ψ(r)

=
1

2me

∫
drΨ†(r)

(
~
i
∇+ eA− ~∇ϕ(r)

)2

Ψ(r),

= H − ~
∫

dr∇ϕ(r) · J(r)+
~2

2me

∫
dr ρ(r)(∇ϕ(r))2, (4.54)

where the last step closely follows the derivation of the current operator in Sec. 1.4.3.
The claim above was that contrary to the non-superconducting state in the supercon-

ductor the phase is a macroscopic quantity. Let us therefore minimize the free energy with
respect to the phase in order to find the condition for the lowest free energy. It is clear
from (4.54) that the energy doesn’t depend on ϕ itself, but only on the gradient of ϕ. We
obtain

δF

δ∇ϕ
= −〈J(r)〉+ ~

me
〈ρ(r)〉∇ϕ(r) = 0, (4.55)

and hence the energy is minimized if it carries a current, even in equilibrium, given by

〈J〉=~ρ0

me
∇ϕ. (4.56)

The meaning of this result is that by forcing a phase gradient onto the system it
minimizes its energy by carrying a current even in thermodynamical equilibrium, meaning
a dissipationless current5. In the normal state of metals a current is always associated with
a non-equilibrium state, where energy is constantly dissipated from the driving source and
absorbed in the conductor. Of course there is an energy cost for the system to carry the
current, but as long as this cost is smaller than the alternative which is to go out of the
superconducting state, the current carrying state is chosen. The critical current is reached
when the energies are equal, and then the superconductor goes into the normal state.

What we have done so far is to show that if a phase gradient is imposed on a system,
where the energy is assumed to depend on phase differences on a macroscopic scale, it
unavoidably leads to the conclusion that the system will carry a dissipationless current in
order to minimize the energy cost of the phase gradient.

Finally, it should be noted that the appearance of the excitation gap is not the reason
for the superconductivity itself. The superconductivity is, as we have argued, due to the
lack of gauge invariance, and in fact gapless superconductors do exist.

5In reality the electron density appearing in Eq. (4.56) should only be the electrons participating in the
superconducting condensate, the so-called superfluid. However, the simple minded derivation presented
here assumes that all electrons participates.
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4.5.2 Microscopic theory

The understanding that superconductivity was closely related to the electron-phonon cou-
pling was clear from the early 1950’ies when for example the isotope effect was discovered.
Also the idea that the superconductivity was somehow similar to Bose-Einstein condensa-
tion, with the bosons being electron pairs, had been tried and in fact was the underlying
idea of London’s theory in 1935. However, only in 1956 Cooper showed that the Fermi
surface of the normal metal state was unstable towards formation of bound pairs of elec-
trons (see Chap. 16). Subsequently in 1957 when the superconducting state was derived
using a variational wavefunction by BCS, were the principles fully understood. Here we
give an outline of the main principles in the BCS theory.

In Chap. 16 we will see that the phonon mediated electron-electron interaction (derived
from the electron-phonon interaction found in Sec. 3.6) in fact has a range in frequency and
momentum space where it is negative, i.e. attractive. This happens for energy exchanges
of order the Debye energy, ωD, which as we saw in Chap. 3 for metals is much smaller than
the Fermi energy, ωD ¿ EF . Furthermore, from the Cooper instability we know that the
phonon-mediated interaction tends to pair electrons with opposite spin and momentum.
We define a Cooper pair operator

bk = ck↓c−k↑.

These two physical inputs led BCS to suggest the following remarkably successful model
Hamiltonian to explain the superconducting state. The BCS effective Hamiltonian model
is

HBCS =
∑

kσ

ξkc†kσckσ +
∑

kk′
Vkk′c

†
k↑c

†
−k↓c−k′↓ck′↑, (4.57)

where Vkk′ is the coupling strength which is only non-zero for states with energy ξk within
ξ

F
±ωD and furthermore constant and negative, Vkk′ = −V0, in this range. The interaction

includes only pair interactions and the remaining interaction is supposed to be included
in ξk via a Hartree–Fock term. The origin of the attractive interaction can intuitively
be thought of in the following way: when an electron propagates through the crystal it
attracts the positive ions and thus effectively creates a positive trace behind it. This trace
is felt by the other electrons as an attractive interaction. It turns out that this effective
interaction is most important for electrons occupying time reversed states and in fact they
can form a bound state which is the Cooper pair. The Cooper pair is thus a bound state
of an electron in state ψν (r) and an electron in state ψ∗ν (r) or in the homogeneous case
electrons in state k and −k.

Because the typical energy exchange due to the attractive interaction is the Debye
energy, ωD, one would naively expect that the energy scale for the superconducting tran-
sition temperature would be of the order ωD/k. This is however far from the truth because
while ωD/k is typically of the order of several hundred kelvin, the critical temperatures
found in “conventional” low superconductors are in most cases less than 10 K and never
more than 30 K. It therefore seems that a new energy scale is generated and we shall
indeed see that this is the case.
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The mean field assumption made by BCS, is that the pair operator has a finite ex-
pectation value and that it varies only little from its average value. The BCS mean field
Hamiltonian is derived in full analogy with Hartree–Fock mean field theory described
above

HMF
BCS =

∑

kσ

ξkc†kσckσ −
∑

k

∆kc†k↑c
†
−k↓

−
∑

k

∆∗
kck↓c−k↑ +

∑

kk′
Vkk′〈c†k↑c†−k↓〉〈ck′↓c−k′↑〉, (4.58a)

∆k = −
∑

kk′
Vkk′〈c−k′↓ck′↑〉 (4.58b)

The mean field Hamiltonian is quadratic in electron operators and should be readily solv-
able. It is however somewhat unusual in that terms like c†c† and cc appear. The way to
solve it is by a so-called Bogoliubov transformation. For this purpose it is convenient to
write the Hamiltonian in matrix notation

HMF
BCS =

∑

k

(
c†k↑ c−k↓

)(
ξk ∆k

∆∗
k −ξk

) (
ck↑
c†−k↓

)

+
∑

k

ξk +
∑

kk′
Vkk′〈c†k↑c†−k↓〉〈ck′↓c−k′↑〉,

=
∑

k

A†
kHkAk + constant, (4.59)

where

Ak =

(
ck↑
c†−k↓

)
, Hk =

(
ξk ∆k

∆∗
k −ξk

)
. (4.60)

To bring the Hamiltonian into a diagonal form, we introduce the unitary transformation

Bk =

(
γk↑
γ†−k↓

)
= U−1

k Ak, Uk =
(

uk −vk

v∗k u∗k

)
, (4.61)

which diagonalizes the problem if

U†
kHkUk =

(
Ek 0
0 Ẽk

)
. (4.62)

After some algebra, we find the following solution for u, v and the energies, E and Ẽ

|uk|2 =
1
2

(
1 +

ξk
Ek

)
, |vk|2 =

1
2

(
1− ξk

Ek

)
, (4.63)

Ek =
√

ξ2
k + |∆k|2 = −Ẽk. (4.64)
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The new fermion operators that diagonalize the Hamiltonian are called bogoliubons and
they are superpositions of electrons and holes. This rather unusual particle appears be-
cause of the lack of particle conservation in the mean field Hamiltonian. There are two
different bogoliubons inherited from the two fold spin degeneracy. From (4.61) we have
the transformations from old to new operators
(

γk↑
γ†−k↓

)
=

(
u∗k vk

−v∗k uk

)(
ck↑
c†−k↓

)
⇔

(
ck↑
c†−k↓

)
=

(
uk −vk

v∗k u∗k

)(
γk↑
γ†−k↓

)
, (4.65)

and the Hamiltonian is in terms of the new bogoliubons

HMF
BCS =

∑

k

Ek

(
γ†k↑γk↑ + γ†k↓γk↓

)
+ constant. (4.66)

As is evident from the new Hamiltonian and the solution in Eq. (4.64) there are no
fermion excitations possible with energy less than |∆|. The mean field parameter provides
an energy gap, which is why it is called the superconducting gap. The excitation gap has
a number of important consequences.

The self-consistent solution is found from Eq. (4.58b), the so-called gap equation, by
calculating the expectation value of the right hand side using the diagonalized Hamiltonian.
Above in the general section on mean field theory we saw that this procedure is equivalent
to minimizing the free energy with respect to the mean field parameter, which is here 〈bk〉.
Using Eqs. (4.61), (4.63), and (4.64) we find

∆k = −
∑

k′
Vkk′〈c−k′↓ck′↑〉,

= −
∑

k′
Vkk′

〈(
u∗k′γ−k′↓ − vk′γ

†
k′↑

)(
u∗k′γk′↑ + vk′γ

†
−k′↓

)〉
,

= −
∑

k′
Vkk′

(
u∗k′vk′〈γ−k′↓γ

†
−k′↓〉 − vk′u

∗
k′〈γ†k′↑γk′↑〉

)

= −
∑

k′
Vkk′u

∗
k′vk′ [1− 2nF (Ek′)] , (4.67)

where we used in the last step that according to the Hamiltonian Eq. (4.66) the bogoli-
ubons are free fermions and therefore their distribution function is the usual Fermi-Dirac
distribution. Now using the approximation that Vkk′ is finite only for ξk, ξk′ ∈ [−ωD, ωD],
and that ωD ¿ EF , such that the density of states is constant in the energy interval in
question, we get

|∆| = V0
d(EF )

2

∫ ωD

−ωD

dξ
|∆|
2E

[1− 2nF (E)] , (4.68)

and the gap |∆| is determined by the integral equation,

2
V0d(EF )

=
∫ ωD

0
dξ

tanh
(
β
√

ξ2 + |∆|2/2
)

√
ξ2 + |∆|2 , (4.69)
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Figure 4.6: Measured values of the gap parameter for three different metals compared
to the BCS predictions. To the left the temperature dependence is shown as it follows
from the BCS gap equation in Eq. (4.69) together with experimental values. The right
table shows the measured value of the ratio between twice the gap at zero temperature
and critical temperature, determined from tunneling measurements. The theoretical BCS
value is given in Eq. (4.72).

which can be solved numerically. In Fig. 4.6, we show the temperature dependence of the
gap together with measured values. The critical temperature is found by setting ∆ = 0 in
the integral and one finds approximately

kTC = 1.13ωDe−2/V0d(EF ). (4.70)

At zero temperature the gap, ∆0, is found from

2
V0d(EF )

=
∫ ωD

0
dξ

1√
ξ2 + ∆2

0

= sinh−1 2ωD

∆2
0

,

⇓
∆0 =

ωD

sinh (2/V0d(EF ))
≈ 2ωDe−2/V0d(EF ), (4.71)

because in metals V0d(EF ) is typical a very small number. Combining (4.70) and (4.71),
we get the BCS prediction that the ratio of gap to critical temperature is

2∆0

kTC

= 3.53. (4.72)

This is in very good agreement with experimental findings, see Fig. 4.6(b), where the ratio
typically range between 3 and 4.5. This is just one of the successes of the BCS theory,
but there are many others but the reader is referred to the many very good books on
superconductivity.

Both the gap and the critical temperature are thus reduced by the exponential factor
exp (−1/V0d(EF )) as compared to the bare energy scale of the interaction, ωD. This strong
renormalization is what generates the new scale, ωD exp (−2/V0d(EF )), as we foresaw in
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the discussion above. Note that the interaction strength appears in a non-perturbative
fashion in this expression, because the function exp (−1/x) has no Taylor expansion at
x = 0. This tells us that the result could never have been derived using perturbation theory
in the interaction, no matter how many orders where included. This is in fact a general
feature of phase transitions. It is not possible by perturbation expansions to cross a phase
transition line, because the two states have no analytic connection. Once again we see that
there is no automatic way to predict the phase diagram of a given physical system, and
one must rely on a combination of technical skill and most importantly physical intuition.

The BCS theory has provided an excellent model for the behavior of low tempera-
ture superconductors. It is however not clear to what extend the theory can be used
to explain the superconductivity of high temperature superconductors and other exotic
superconducting materials. This is still a very active and interesting area of research.

4.6 Summary and outlook

Mean field theories are widely used to study phase transitions in matter and also in
e.g. atomic physics to compute the energetics of a finite size systems. The mean field
approximation is in many cases sufficient to understand the important physical features,
at least those that has to do with static properties. We have seen examples of this in the
case of magnets and superconductors, where the important concept of symmetry breaking
was introduced. It means that the state of the system choose to have a lower symmetry
that the original Hamiltonian, e.g. all spins point in the same direction. Of course we
have not covered the vast fields of both magnetism and superconductivity in detail and
the interested reader should consult the book by Yosida to learn more about magnetism,
and the books by Schrieffer, Tinkham and de Gennes to learn about superconductivity.

In the remaining part of this course we shall deal with the dynamical properties of
many-particle systems. Also for the time-dependent case Hartree–Fock type approxima-
tions will be invoked, e.g. for the so-called Random Phase Approximation treatment of
the dielectric function in Sec. 8.5. The RPA result will later be derived later based on a
more rigorous quantum field theoretical approach in Chap. 12.
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Chapter 5

Time evolution pictures

Using the second quantization procedure, we have so far only treated energy eigenstates
with a trivial time dependence eiω t, instant processes at a single time t = 0, and systems
where interactions are approximated by time-independent mean field theory. But how
does one then treat the general case of time dependence in second quantization? That
question will be addressed in this chapter, where time evolution is discussed using three
representations, or “pictures”: the Schrödinger picture, the Heisenberg picture, and the
interaction picture. These representations are used in the following chapters to develop
general methods for treating many-particle systems.

5.1 The Schrödinger picture

The Schrödinger picture is useful when dealing with a time-independent Hamiltonian H,
i.e. ∂tH = 0. Any other operator A may or may not depend on time. The state vectors
|ψ(t)〉 does depend on time, and their time evolution is governed by Schrödinger’s equation.
The time-independence of H leads to a simple formal solution:

i~∂t |ψ(t)〉 = H |ψ(t)〉 ⇒ |ψ(t)〉 = e−
i
~Ht |ψ0〉. (5.1)

In the following we will measure the energy in units of frequency, such that ~ drops out
of the time-evolution equations: ε/~ → ε and H/~ → H. At the end of the calculations
one can easily convert frequencies back to energies. With this notation we can summarize
the Schrödinger picture with its states |ψ(t)〉 and operators A as:

The Schrödinger picture





states : |ψ(t)〉 = e−iHt |ψ0〉,
operators : A, may or may not depend on time.

H, does not depend on time.
(5.2)

To interpret the operator e−iHt we recall that a function f(B) of any operator B is defined
by the Taylor expansion of f ,

f(B) =
∞∑

n=0

f (n)(0)
n!

Bn. (5.3)

87
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While the Schrödinger picture is quite useful for time-independent operators A, it may
sometimes be preferable to collect all time dependencies in the operators and work with
time-independent state vectors. We can do that using the Heisenberg picture.

5.2 The Heisenberg picture

The central idea behind the Heisenberg picture is to obtain a representation where all the
time dependence is transferred to the operators, A(t), leaving the state vectors |ψ0〉 time
independent. The Hamiltonian H remains time-independent in the Heisenberg picture.
If the matrix elements of any operator between any two states are identical in the two
representations, then the two representations are fully equivalent. By using Eq. (5.2) we
obtain the identity

〈ψ′(t)|A|ψ(t)〉 = 〈ψ′0|eiHtAe−iHt|ψ0〉 ≡ 〈ψ′0|A(t)|ψ0〉. (5.4)

Thus we see that the correspondence between the Heisenberg picture with time-independent
state vectors |ψ0〉, but time-dependent operators A(t), and the Schrödinger picture is given
by the unitary transformation operator exp(iHt),

The Heisenberg picture





states : |ψ0〉 ≡ eiHt |ψ(t)〉,
operators : A(t) ≡ eiHtA e−iHt.

H does not depend on time.
(5.5)

As before the original operator A may be time dependent. The important equation of
motion governing the time evolution of A(t) is easily established. Since H is time inde-
pendent, the total time derivative of A in the Heisenberg picture is denoted with a dot,
Ȧ, while the explicit time derivative of the original Schrödinger operator is denoted ∂tA:

Ȧ(t) = eiHt
(
iHA− iAH + ∂tA

)
e−iHt ⇒ Ȧ(t) = i

[
H, A(t)

]
+ (∂tA)(t), (5.6)

where X(t) always means eiHtXe−iHt for any symbol X, in particular for X = ∂tA. In
this way an explicit time-dependence of A is taken into account. Note how carefully the
order of the operators is kept during the calculation.

Both the Schrödinger and the Heisenberg picture require a time-independent Hamil-
tonian. In the general case of time-dependent Hamiltonians, we have to switch to the
interaction picture.

5.3 The interaction picture

The third and last representation, the interaction picture, is introduced to deal with the
situation where a system described by a time-independent Hamiltonian H0, with known
energy eigenstates |n0〉, is perturbed by some, possibly time-dependent, interaction V (t),

H = H0 + V (t), with H0|n0〉 = εn0
|n0〉. (5.7)
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The key idea behind the interaction picture is to separate the trivial time evolution due
to H0 from the intricate one due to V (t). This is obtained by using only H0, not the full
H, in the unitary transformation Eq. (5.5). As a result, in the interaction picture both
the state vectors |ψ̂ (t)〉 and the operators Â(t) depend on time. The defining equations
for the interaction picture are

The interaction picture





states : |ψ̂ (t)〉 ≡ eiH0t |ψ(t)〉,
operators : Â(t) ≡ eiH0tA e−iH0t.

H0 does not depend on time.

(5.8)

The interaction picture and the Heisenberg picture coincide when V = 0; i.e., in the non-
perturbed case. If V (t) is a weak perturbation, then one can think of Eq. (5.8) as a way
to pull out the fast, but trivial, time dependence due to H0, leaving states that vary only
slowly in time due to V (t).

The first hint of the usefulness of the interaction picture comes from calculating the
time derivative of |ψ̂ (t)〉 using the definition Eq. (5.8):

i∂t|ψ̂ (t)〉 =
(
i∂te

iH0t
)
|ψ(t)〉+ eiH0t

(
i∂t|ψ(t)〉

)
= eiH0t(−H0 + H)|ψ(t)〉, (5.9)

which by Eq. (5.8) is reduced to

i∂t|ψ̂ (t)〉 = V̂ (t) |ψ̂ (t)〉. (5.10)

The resulting Schrödinger equation for |ψ̂ (t)〉 thus contains explicit reference only to the
interaction part V̂ (t) of the full Hamiltonian H. This means that in the interaction picture
the time evolution of a state |ψ̂ (t0)〉 from time t0 to t must be given in terms of a unitary
operator Û(t, t0) which also only depends on V̂ (t). Û(t, t0) is completely determined by

|ψ̂ (t)〉 = Û(t, t0) |ψ̂ (t0)〉. (5.11)

When V and thus H are time-independent, an explicit form for Û(t, t0) is obtained by
inserting |ψ̂ (t)〉 = eiH0t |ψ(t)〉 = eiH0t e−iHt |ψ0〉 and |ψ̂ (t0)〉 = eiH0t0 e−iHt0 |ψ0〉 into
Eq. (5.11),

eiH0t e−iHt |ψ0〉 = Û(t, t0) eiH0t0 e−iHt0 |ψ0〉 ⇒ Û(t, t0) = eiH0t e−iH(t−t0) e−iH0t0 .
(5.12)

From this we observe that Û−1 = Û †, i.e. Û is indeed a unitary operator.
In the general case with a time-dependent V̂ (t) we must rely on the differential equation

appearing when Eq. (5.11) is inserted in Eq. (5.10). We remark that Eq. (5.11) naturally
implies the boundary condition Û(t0, t0) = 1, and we obtain:

i∂t Û(t, t0) = V̂ (t) Û(t, t0), Û(t0, t0) = 1. (5.13)

By integration of this differential equation we get the integral equation

Û(t, t0) = 1 +
1
i

∫ t

t0

dt′ V̂ (t′) Û(t′, t0), (5.14)
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which we can solve iteratively for Û(t, t0) starting from Û(t′, t0) = 1. The solution is

Û(t, t0) = 1 +
1
i

∫ t

t0

dt1 V̂ (t1) +
1
i2

∫ t

t0

dt1 V̂ (t1)
∫ t1

t0

dt2 V̂ (t2) + . . . (5.15)

Note that in the iteration the ordering of all operators is carefully kept. A more compact
form is obtained by the following rewriting. Consider for example the second order term,
paying special attention to the dummy variables t1 and t2:

∫ t

t0

dt1 V̂ (t1)
∫ t1

t0

dt2 V̂ (t2)

=
1
2

∫ t

t0

dt1 V̂ (t1)
∫ t1

t0

dt2 V̂ (t2) +
1
2

∫ t

t0

dt2 V̂ (t2)
∫ t2

t0

dt1 V̂ (t1)

=
1
2

∫ t

t0

dt1

∫ t

t0

dt2 V̂ (t1)V̂ (t2)θ(t1 − t2) +
1
2

∫ t

t0

dt2

∫ t

t0

dt1 V̂ (t2)V̂ (t1)θ(t2 − t1)

=
1
2

∫ t

t0

dt1

∫ t

t0

dt2

[
V̂ (t1)V̂ (t2)θ(t1 − t2) + V̂ (t2)V̂ (t1)θ(t2 − t1)

]

≡ 1
2

∫ t

t0

dt1

∫ t

t0

dt2 Tt[V̂ (t1)V̂ (t2)], (5.16)

where we have introduced the time ordering operator Tt. Time ordering is easily general-
ized to higher order terms. In n-th order, where n factors V̂ (tj) appear, all n! permutations
p ∈ Sn of the n times tj are involved, and we define1

Tt[V̂ (t1)V̂ (t2) . . . V̂ (tn)] ≡
∑

p∈Sn

V̂ (tp(1))V̂ (tp(2)) . . . V̂ (tp(n)) × (5.17)

θ(tp(1) − tp(2)) θ(tp(2) − tp(3)) . . . θ(tp(n−1) − tp(n)).

Using the time ordering operator, we obtain the final compact form (see also Exercise 5.2):

Û(t, t0) =
∞∑

n=0

1
n!

(1
i

)n
∫ t

t0

dt1 . . .

∫ t

t0

dtn Tt

(
V̂ (t1) . . . V̂ (tn)

)
= Tt

(
e
−i
R t

t0
dt′ V̂ (t′)

)
. (5.18)

Note the similarity with a usual time evolution factor e−iε t. This expression for Û(t, t0) is
the starting point for infinite order perturbation theory and for introducing the concept
of Feynman diagrams; it is therefore one of the central equations in quantum field theory.
A graphical sketch of the contents of the formula is given in Fig. 5.1.

1For n = 3 we have Tt[V̂ (t1)V̂ (t2)V̂ (t3)] =
V̂ (t1)V̂ (t2)V̂ (t3)θ(t1−t2)θ(t2−t3)+V̂ (t1)V̂ (t3)V̂ (t2)θ(t1−t3)θ(t3−t2)+V̂ (t2)V̂ (t3)V̂ (t1)θ(t2−t3)θ(t3−t1)+
V̂ (t2)V̂ (t1)V̂ (t3)θ(t2−t1)θ(t1−t3)+V̂ (t3)V̂ (t1)V̂ (t2)θ(t3−t1)θ(t1−t2)+V̂ (t3)V̂ (t2)V̂ (t1)θ(t3−t2)θ(t2−t1).
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Figure 5.1: The time evolution operator Û(t, t0) can be viewed as the sum of additional
phase factors due to V̂ on top of the trivial phase factors arising from H0. The sum
contains contributions from processes with 0, 1, 2, 3, . . . scattering events V̂ , which happen
during the evolution from time t0 to time t.

5.4 Time-evolution in linear response

In many applications the perturbation V̂ (t) is weak compared to H0. It can therefore be
justified to approximate Û(t, t0) by the first order approximation

Û(t, t0) ≈ 1 +
1
i

∫ t

t0

dt′ V̂ (t′). (5.19)

This simple time evolution operator forms the basis for the Kubo formula in linear response
theory, which, as we shall see in the following chapters, is applicable to a wide range of
physical problems.

5.5 Time dependent creation and annihilation operators

It is of fundamental interest to study how the basic creation and annihilation operators
a†ν and aν evolve in time given some set of basis states {|ν〉} for a time-independent
Hamiltonian H. As in Sec. 1.3.4 these operators can be taken to be either bosonic or
fermionic. Let us first apply the definition of the Heisenberg picture, Eq. (5.5):

a†ν(t) ≡ eiHt a†ν e−iHt, (5.20a)
aν(t) ≡ eiHt aν e−iHt. (5.20b)

In the case of a general time-independent Hamiltonian with complicated interaction terms,
the commutators [H, a†ν ] and [H, aν ] are not simple, and consequently the fundamental
(anti-)commutator [aν(t1), a

†
ν(t2)]F,B involving two different times t1 and t2 cannot be

given in a simple closed form:

[aν1
(t1), a

†
ν2(t2)]F,B =

eiHt1aν1
e−iH(t1−t2)a†ν2e

−iHt2 ± eiHt2a†ν2e
−iH(t2−t1)aν1

e−iHt1 = ??
(5.21)
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No further reduction is possible in the general case. In fact, as we shall see in the following
chapters, calculating (anti-)commutators like Eq. (5.21) is the problem in many-particle
physics.

But let us investigate some simple cases to get a grasp of the time evolution pictures.
Consider first a time-independent Hamiltonian H which is diagonal in the |ν〉-basis,

H =
∑

ν

ενa
†
νaν . (5.22)

The equation of motion, Eq. (5.6), is straightforward:2

ȧν(t) = i[H, aν(t)] = ieiHt[H, aν ]e
−iHt

= ieiHt
∑

ν′
εν′

[
a†ν′aν′ , aν

]
e−iHt = ieiHt

∑

ν′
εν′

(
−δν,ν′

)
aν′e

−iHt

= −iενe
iHtaνe

−iHt = −iενaν(t). (5.23)

By integration we obtain
aν(t) = e−iενtaν , (5.24)

which by Hermitian conjugation leads to

a†ν(t) = e+iενta†ν . (5.25)

In this very simple case the basic (anti-)commutator Eq. (5.21) can be evaluated directly:

[aν1
(t1), a†ν2

(t2)]F,B = e−iεν1
(t1−t2) δν1,ν2

. (5.26)

For the diagonal Hamiltonian the time evolution is thus seen to be given by trivial phase
factors e±iε t.

We can also gain some insight into the interaction picture by a trivial extension of the
simple model. Assume that

H = H0 + γH0, γ ¿ 1, (5.27)

where H0 is diagonalized in the basis {|ν〉} with the eigenenergies εν . Obviously, the full
Hamiltonian H is also diagonalized in the same basis, but with the eigenenergies (1+γ)ε .
Let us however try to treat γH0 as a perturbation V to H0, and then use the interaction
picture of Sec. 5.3. From Eq. (5.8) we then obtain

|ν̂(t)〉 = eiενt |ν(t)〉. (5.28)

But we actually know the time evolution of the Schrödinger state on the right-hand side
of the equation, so

|ν̂(t)〉 = eiενt e−i(1+γ)ενt|ν〉 = e−iγενt|ν〉. (5.29)
2We are using the identities [AB, C] = A[B, C] + [A, C]B and [AB, C] = A{B, C} − {A, C}B, which

are valid for any set of operators. Note that the first identity is particularly useful for bosonic operators
and the second for fermionic operators (see Exercise 5.4).
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Here we clearly see that the fast Schrödinger time dependence given by the phase factor
eiενt, is replaced in the interaction picture by the slow phase factor eiγενt. The reader can
try to obtain Eq. (5.29) directly from Eq. (5.18).

Finally, we briefly point to the complications that arise when the interaction is given
by a time-independent operator V not diagonal in the same basis as H0. Consider for
example the Coulomb-like interaction written symbolically as

H = H0 + V =
∑

ν′
εν′a

†
ν′aν′ +

∑
ν1ν2

∑
q

Vq a†ν1+qa
†
ν2−qaν2

aν1
. (5.30)

The equation of motion for aν(t) is:

ȧν(t) = i[H, aν(t)] = −iεν aν(t) + i
∑
ν1ν2q

Vq

[
a†ν1+q(t) a†ν2−q(t), aν(t)

]
aν2

(t) aν1
(t)

= −iεν aν(t) + i
∑
ν1ν2

(Vν2−ν − Vν−ν1)a
†
ν1+ν2−ν(t) aν2

(t) aν1
(t). (5.31)

The problem in this more general case is evident. The equation of motion for the single
operator aν(t) contains terms with both one and three operators, and we do not know
the time evolution of the three-operator product a†ν1+ν2−ν(t) aν2

(t) aν1
(t). If we write

down the equation of motion for this three-operator product we discover that terms are
generated involving five operator products. This feature is then repeated over and over
again generating a never-ending sequence of products containing seven, nine, eleven, etc.
operators. In the following chapters we will learn various approximate methods to deal
with this problem.

5.6 Summary and outlook

In this chapter we have introduced the fundamental representations used in the descrip-
tion of time evolution in many-particle systems: the Schrödinger picture, Eq. (5.2), the
Heisenberg picture, Eq. (5.5), and the interaction picture, Eq. (5.8). The first two pictures
rely on a time-independent Hamiltonian H, while the interaction picture involves a time-
dependent Hamiltonian H of the form H = H0 + V (t), where H0 is a time-independent
Hamiltonian with known eigenstates. Which picture to use depends on the problem at
hand.

We have derived an explicit expression, Eq. (5.18), for the time evolution operator
Û(t, t0) describing the evolution of an interaction picture state |ψ̂ (t0)〉 at time t0 to |ψ̂ (t)〉
at time t. We shall see in the following chapters how the operator Û(t, t0) plays an
important role in the formulation of infinite order perturbation theory and the introduction
of Feynman diagrams, and how its linearized form Eq. (5.19) forms the basis of the widely
used linear response theory and the associated Kubo formalism.

Finally, by studying the basic creation and annihilation operators we have gotten a
first glimpse of the problems we are facing, when we are trying to study the full time
dependence, or equivalently the full dynamics, of interacting many-particle systems.
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Chapter 6

Linear response theory

Linear response theory is an extremely widely used concept in all branches of physics.
It simply states that the response to a weak external perturbation is proportional to the
perturbation, and therefore all one needs to understand is the proportionality constant.
Below we derive the general formula for the linear response of a quantum system exerted
by a perturbation. The physical question we ask is thus: supposing some perturbation H ′,
what is the measured consequence for an observable quantity, A. In other words, what is
〈A〉 to linear order in H ′?

Among the numerous applications of the linear response formula, one can mention
charge and spin susceptibilities of e.g. electron systems due to external electric or magnetic
fields. Responses to external mechanical forces or vibrations can also be calculated using
the very same formula. Here we utilize the formalism to derive a general expression for
the electrical conductivity and briefly mention other applications.

6.1 The general Kubo formula

Consider a quantum system described by the (time independent) Hamiltonian H0 in ther-
modynamic equilibrium. According to Sec. 1.5 this means that an expectation value of a
physical quantity, described by the operator A, can be evaluated as

〈A〉 =
1
Z0

Tr [ρ0A] =
1
Z0

∑
n

〈n|A|n〉e−βEn , (6.1a)

ρ0 = e−βH0 =
∑

n

|n〉〈n|e−βEn , (6.1b)

where ρ0 is the density operator and Z0 =Tr[ρ0] is the partition function. Here as in
Sec. 1.5, we write the density operator in terms of a complete set of eigenstates, {|n〉}, of
the Hamiltonian, H0, with eigenenergies {En}.

Suppose now that at some time, t = t0, an external perturbation is applied to the
system, driving it out of equilibrium. The perturbation is described by an additional time
dependent term in the Hamiltonian

H(t) = H0 + H ′(t)θ(t− t0). (6.2)

95
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Figure 6.1: Illustration of the linear response theory. At times before t0 the system is in
equilibrium, after which the perturbation is turned on. The system is now evolving accord-
ing to the new Hamiltonian and is in a non-equilibrium state. The Kubo formula relates
the expectation value δ〈A〉non−eq in the non-equilibrium state to a equilibrium expectation
value 〈· · · 〉eq of the more complicated time-dependent commutator [Â(t), Ĥ ′(t′)].

We emphasize that H0 is the Hamiltonian describing the system before the perturbation
was applied, see Fig. 6.1 for an illustration. Now we wish to find the expectation value
of the operator A at times t greater than t0. In order to do so we must find the time
evolution of the density matrix or equivalently the time evolution of the eigenstates of the
unperturbed Hamiltonian. Once we know the |n(t)〉, we can obtain 〈A(t)〉 as

〈A(t)〉 =
1
Z0

∑
n

〈n(t)|A|n(t)〉e−βEn =
1
Z0

Tr [ρ(t)A] , (6.3a)

ρ(t) =
∑

n

|n(t)〉〈n(t)|e−βEn . (6.3b)

The philosophy behind this expression is as follows. The initial states of the system
are distributed according to the usual Boltzmann distribution e−βE0n/Z0. At later times
the system is described by the same distribution of states but the states are now time-
dependent and they have evolved according to the new Hamiltonian. The time dependence
of the states |n(t)〉 is of course governed by the Schrödinger equation

i∂t|n(t)〉 = H(t)|n(t)〉. (6.4)

Since H ′ is to be regarded as a small perturbation, it is convenient to utilize the inter-
action picture representation |n̂(t)〉 introduced in Sec. 5.3. The time dependence in this
representation is given by

|n(t)〉 = e−iH0t|n̂(t)〉 = e−iH0tÛ(t, t0)|n̂(t0)〉, (6.5)

where by definition |n̂(t0)〉 = eiH0t0 |n(t0)〉 = |n〉.
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To linear order in H ′, Eq. (5.19) states that Û(t, t0) = 1− i
∫ t
t0

dt′ Ĥ ′(t′). Inserting this
into (6.3a), one obtains the expectation value of A up to linear order in the perturbation

〈A(t)〉 = 〈A〉0 − i

∫ t

t0

dt′
1
Z0

∑
n

e−βEn〈n(t0)|Â(t)Ĥ ′(t′)− Ĥ ′(t′)Â(t)|n(t0)〉

= 〈A〉0 − i

∫ t

t0

dt′〈[Â(t), Ĥ ′(t′)]〉0. (6.6)

The brackets 〈〉0 mean an equilibrium average with respect to the Hamiltonian H0. This
is in fact a remarkable and very useful result, because the inherently non-equilibrium
quantity 〈A(t)〉 has been expressed as a correlation function of the system in equilibrium.
The physical reason for this is that the interaction between excitations created in the
non-equilibrium state is an effect to second order in the weak perturbation, and hence not
included in linear response.

The correlation function that appears in Eq. (6.6), is called a retarded correlation
function, and for later reference we rewrite the linear response result as

δ〈A(t)〉 ≡ 〈A(t)〉 − 〈A〉0 =
∫ ∞

t0

dt′CR
AH′(t, t′)e−η(t−t′), (6.7)

where
CR

AH′(t, t′) = −iθ(t− t′)
〈[

Â(t), Ĥ ′(t′)
]〉

0
. (6.8)

This is the famous Kubo formula which expresses the linear response to a perturbation,
H ′. We have added a very important detail here: the factor e−η(t−t′), with an infinitesimal
positive parameter η, has been included to force the response at time t due to the influence
of H ′ at time t′ to decay when t À t′. In the end of a calculation we must therefore take
the limit η → 0+. For physical reasons the (retarded) effect of a perturbation must of
course decrease in time. You can think of the situation that one often has for differential
equations with two solutions: one which increases exponentially with time (physically
not acceptable) and one which decreases exponentially with time; the factor e−η(t−t′) is
there to pick out the physically relevant solution by introducing an artificial relaxation
mechanism.

Kubo formula in the frequency domain

It is often convenient to express the response to an external disturbance in the frequency
domain. Let us therefore write the perturbation in terms of its Fourier components

H ′(t) =
∫

dω

2π
e−iωtH ′

ω, (6.9)

such that CR
AH′ becomes

CR
AH′(t, t′) =

∫ ∞

−∞

dω

2π
e−iωt′CR

AH′
ω
(t− t′), (6.10)
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because 〈[Â(t), Ĥ ′
ω(t′)]〉0 only depends on the difference between t and t′, which can easily

be proven using the definition of the expectation value. When inserted into the Kubo
formula, one gets (after setting t0 = −∞, because we are not interested in the transient
behavior)

δ〈A(t)〉 =
∫ ∞

−∞
dt′

∫ ∞

−∞

dω

2π
e−iωte−i(ω+iη)(t′−t)CR

AH′
ω
(t− t′)

=
∫ ∞

−∞

dω

2π
e−iωtCR

AH′
ω
(ω), (6.11)

and therefore the final result reads in frequency domain

δ〈Aω〉 = CR
AH′

ω
(ω), (6.12a)

CR
AH′

ω
(ω) =

∫ ∞

−∞
dteiωte−ηtCR

AH′
ω
(t). (6.12b)

Note again that the infinitesimal η is incorporated in order to ensure the correct physical
result, namely that the retarded response function decays at large times.

6.2 Kubo formula for conductivity

Consider a system of charged particles, electrons say, which is subjected to an external
electromagnetic field. The electromagnetic field induces a current, and the conductivity
is the linear response coefficient. In the general case the conductivity may be non-local in
both time and space, such that the electric current Je at some point r at time t depends
on the electric field at points r′ at times t′

Jα
e (r, t) =

∫
dt′

∫
dr′

∑

β

σαβ(rt, r′t′) Eβ(r′, t′) (6.13)

where σαβ(r, r′; t, t′) is the conductivity tensor which describes the current response in
direction êα to an applied electric field in direction êβ.

The electric field E is given by the electric potential φext and the vector potential Aext

E(r, t) = −∇rφext(r, t)− ∂tAext(r, t). (6.14)

The current density operator of charged particles in the presence of an electromagnetic
field was given in Chap. 1. For simplicity we assume only one kind of particles, electrons
say, but generalization to more kinds of charge carrying particles is straightforward by
simple addition of more current components.1 For electrons Je = −e〈J〉. The perturbing
term in the Hamiltonian due to the external electromagnetic field is given by the coupling

1With more carriers the operator for the electrical current becomes Je(r) =
P

i qiJi(r), where qi are
the charges of the different carriers. Note that in this case the currents of the individual species are not
necessarily independent.
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of the electrons to the scalar potential and the vector potential. To linear order in the
external potential

Hext = −e

∫
dr ρ(r)φext(r, t) + e

∫
dr J(r) ·Aext(r, t), (6.15)

where the latter term was explained in Sec. 1.4.3. Let A0 denote the vector potential
in the equilibrium, i.e. prior to the onset of the perturbation Aext, and let A denote the
total vector potential. Then we have

A = A0+Aext, (6.16)

Again according to Sec. 1.4.3, the current operator has two components, the diamagnetic
term and the paramagnetic term

J(r) = J∇(r) +
e

m
A(r)ρ(r), (6.17)

In order to simplify the expressions, we can choose a gauge where the external electrical
potential is zero, φext = 0. This is always possible by a suitable choice of A(r, t) as you
can see in Eq. (6.14). The final result should of course not depend on the choice of
gauge. The conductivity is most easily expressed in the frequency domain, and therefore
we Fourier transform the perturbation. Since ∂t becomes −iω in the frequency domain we
have Aext(r, ω) = (1/iω)Eext(r, ω), and therefore the external perturbation in Eq. (6.15)
becomes in the Fourier domain

Hext,ω =
e

iω

∫
dr J(r) ·Eext(r, ω). (6.18)

In order to exploit the frequency domain formulation of linear response we want to write
the definition of the conductivity tensor in Eq. (6.13) in frequency domain. Because we are
only considering linear response the conductivity tensor is a property of the equilibrium
system and can thus only depend on time differences σαβ(rt, r′t′) = σαβ(r, r′, t− t′). The
frequency transform of Eq. (6.13) is therefore simply that of a convolution and hence

Jα
e (r, ω) =

∫
dr′

∑

β

σαβ(r, r′, ω) Eβ(r′, ω). (6.19)

Now since Eq. (6.18) is already linear in the external potential Eext and since we are
only interested in the linear response, we can replace J in Eq. (6.18) by J0 = J∇+ e

mA0ρ,
thus neglecting the term proportional to Eext ·Aext. Eq. (6.18) is therefore replaced by

Hext,ω =
e

iω

∫
dr J0(r) ·Eext(r, ω). (6.20)

To find the expectation value of the current we write

〈J(r, ω)〉 = 〈J0(r, ω)〉+ 〈 e

m
Aext(r, ω)ρ(r)〉. (6.21)
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For the last term in Eq. (6.21) we use that to linear order in Aext the expectation value
can be evaluated in the equilibrium state

〈 e

m
Aext(r, ω)ρ(r)〉 =

e

m
Aext(r, ω)〈ρ(r)〉0 =

e

iω
Eext(r, ω)〈ρ(r)〉0. (6.22)

For the first term in Eq. (6.21) we use the general Kubo formula in Eq. (6.7). Since the
equilibrium state does not carry any current, i.e. 〈J0〉0 = 0, we conclude that 〈J0〉 = δ〈J0〉.
In frequency domain we should use the results Eq. (6.12a) and substitute J0(r) for the
operator “A”, and Hext,ω for “H ′

ω”, which leads to 〈J0(r, ω)〉 = CR
J0(r)Hext,ω

(ω). Collecting
things we now have

〈J(r, ω)〉 = CR
J0(r)Hext,ω

(ω) +
e

m
〈ρ(r)〉0Aext(r,ω). (6.23)

Writing out the first term

CR
J0(r)Hext,ω

(ω) =
∫

dr′
∑

β

CR
J0(r)Jβ

0 (r′)
(ω)

e

iω
Eβ(r′, ω). (6.24)

Comparing with the definition of the non-local conductivity in Eq. (6.19), we can now col-
lect the two contributions to the conductivity tensor. The first term comes from Eq. (6.24)
and it is seen to of the same form as (6.12a), in particular the response is non-local in
space. In contrast, the second term in Eq. (6.22) stemming from the diamagnetic part
of the current operator is local in space. Now collecting the two terms and using that
Je = −e〈J〉, we finally arrive at the linear response formula for the conductivity tensor

σαβ(r, r′, ω) =
ie2

ω
ΠR

αβ(r, r′, ω) +
ie2n(r)
iωm

δ(r− r′)δαβ, (6.25)

where we have used the symbol ΠR = CR
J0J0

for the retarded current-current correlation
function. In the time domain it is given by

ΠR
αβ(r, r′, t− t′) = CR

Jα
0 (r)Jβ

0 (r′)
(t− t′) = −iθ(t− t′)

〈[
Ĵα

0 (r, t), Ĵβ
0 (r′, t′)

]〉
0
. (6.26)

Finding the conductivity of a given system has thus been reduced to finding the
retarded current-current correlation function. This formula will be used extensively in
Chap. 14.

6.3 Kubo formula for conductance

The conductivity σ is the proportionality coefficient between the electric field E and the
current density J, and it is an intrinsic property of a material. The conductance on the
other hand is the proportionality coefficient between the current I through a sample and
the voltage V applied to it, i.e. a sample specific quantity. The conductance G is defined
by the usual Ohm’s law

I = GV. (6.27)
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Figure 6.2: The principle of a conductance measurement, which, in contrast to the conduc-
tivity, is a sample-specific quantity. In the Kubo formula derivation we use a coordinate
system given by the equipotential lines, which together with use of current conservation
allows a simple derivation.

For a material where the conductivity can be assumed to be local in space one can find
the conductance of a specific sample by the relation

G =
W

L
σ, (6.28)

where L is the length of the sample, and W the area of the cross-section. For samples
which are inhomogeneous such that this simple relation is not applicable, one must use
the Kubo formula for conductance rather than that for conductivity. One example is the
so-called mesoscopic conductors, which are systems smaller than a typical thermalization
or equilibration length, whereby a local description is inadequate.

The current passing through the sample is equal to the integrated current density
through a cross-section. Here we are interested in the DC-response only (or in frequencies
where the corresponding wave length is much longer than the sample size). Because
of current conservation we can of course choose any cross section, and it is convenient
to choose an equipotential surface and to define a coordinate system (ξ,aξ), where ξ is a
coordinate parallel to the field line and where aξ are coordinates on the plane perpendicular
to the ξ-direction; see Figure 6.2. In this coordinate system the electric field is directed
along the ξ̂-direction, E(r) = ξ̂E(ξ). The current I is

Ie =
∫

daξ ξ̂ · Je(ξ,aξ) =
∫

daξ

∫
dr′ ξ̂ · σ(r, r

′
;ω = 0)E(r′),

=
∫

daξ

∫
daξ′

∫
dξ′ ξ̂ · σ(ξ,aξ, ξ

′,aξ′ ; ω = 0) · ξ̂′E(ξ′), (6.29)

where ξ̂ is a unit vector normal to the surface element daξ and σ is the conductivity
tensor. In order to get the dc-response we should the limit ω → 0 of this expression. If
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we furthermore take the real part of (6.29) we see that what determines the dc-current is
the real part of the first term in Eq. (6.25) and hence the retarded correlation function
of the current densities. Since the total particle current at the coordinate ξ is given by
I(ξ) =

∫
daξ ξ̂ · J , the conductance can instead be written as

Ie(ξ) = lim
ω→0

∫
dξ′Re

[
ie2

ω
CR

I(ξ)I(ξ′)(ω)
]

E(ξ′) ≡
∫

dξ′G(ξ, ξ′)E(ξ′), (6.30)

where CR
I(ξ)I(ξ′) is the correlation function between total currents. Because of current

conservation the dc-current may be calculated at any point ξ and thus the result cannot
depend on ξ. Consequently the function in side the square brackets in Eq. (6.30) cannot
depend on ξ. Furthermore, since the conductance function G(ξ, ξ′) can be shown to be
a symmetric function is cannot depend on ξ′ either. This simplification is the reason for
choosing the skew coordinate system defined by the field lines. We can therefore perform
the integration over ξ′ which is just the voltage difference V =

∫
dξ′E(ξ′) = φ(−∞)−φ(∞),

and we finally arrive at the for linear response formula for the conductance

G = lim
ω→0

ie2

ω
CR

II(ω). (6.31)

Here CR
II is the retarded current-current function. In the time domain it is

CR
II(t− t′) = −iθ(t− t′)〈[Î(t), Î(t′)]〉, (6.32)

where the current operator I denote the current through an arbitrary cross section along
the sample.

6.4 Kubo formula for the dielectric function

When dealing with systems containing charged particles, as for example the electron gas,
one is often interested in the dielectric properties of the system, and in particular the
linear response properties. When such a system is subjected to an external electromagnetic
perturbation the charge is redistributed and the system gets polarized. This in turn affects
the measurements. The typical experiment is to exert an external potential, φext, and
measure the resulting total potential, φtot. The total potential is the sum of the external
one and the potential created by the induced polarization, φind,

φtot = φext + φind. (6.33)

Alternatively to working with the potentials we can work with electric fields or charges.
The charges are related to the potentials through a set of Poisson equations

ρtot = ρext + ρind,





∇2φtot = − 1
ε0

ρe,tot

∇2φext = − 1
ε0

ρe,ext

∇2φind = − 1
ε0

ρe,ind





, (6.34)
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and likewise for electric fields, Etot, Eext, and Eind, which are related to the corresponding
charges by a set of Gauss laws, ∇ · E = ρe/ε0. Here we have used the symbols ρe for the
charge density, where ρ as defined in Chap. 1 defines particle densities.

The ratio between the external and the total potential is the dielectric response func-
tion, also called the relative permittivity ε

φtot = ε−1φext, (6.35)

which is well-known from classical electrodynamics.2 However, in reality the permittivity
is non-local both in time and space and the general relations between the total and the
external potentials are

φtot(r, t) =
∫

dr′
∫

dt′ ε−1(rt, r′t′) φext(r′, t′), (6.36a)

φext(r, t) =
∫

dr′
∫

dt′ ε(rt, r′t′) φtot(r′, t′). (6.36b)

Our present task is to find the dielectric function ε(rt, r′t′), or rather its inverse ε−1(rt, r′t′)
assuming linear response theory and for this purpose the induced potential is needed.

The external perturbation is represented as the following term to the Hamiltonian

H ′ =
∫

dr ρe (r) φext(r, t). (6.37)

The induced charge density follows from linear response theory (if we assume that the
system is charge neutral in equilibrium, i.e. 〈ρe(r, t)〉0 = 0) as

ρe,ind(r, t) = 〈ρe(r, t)〉 =
∫

dr′
∫ ∞

t0

dt′CR
ρeρe

(rt, r′t′)e−η(t−t′) φext(r′, t′), (6.38)

CR
ρeρe

(rt, r′t′) ≡ χR
e (rt, r′t′) = −iθ(t− t′)〈[ρ̂e(r, t), ρ̂e(r′, t′)]〉0. (6.39)

The charge-charge correlation function, χR
e , is called the polarizability function and it is

an important function which we will encounter many times. Once the induced charge is
known the potential follows from the Coulomb interaction Vc(r− r′) = 1/(ε0|r− r′|) as

φind(r) =
∫

dr ′ Vc(r− r′) ρe,eind(r′), (6.40)

and hence

φtot(r, t) = φext(r, t) +
∫

dr ′
∫

dr ′′
∫ ∞

t0

dt′Vc(r− r′)χR(r′t, r′′t′) φext(r′′, t′). (6.41)

From this expression we read off the inverse of the dielectric function as

ε−1(rt, r′t′) = δ(r− r′)δ(t− t′) +
∫

dr ′′Vc(r− r′′)χR(r′′t, r′t′), (6.42)

2In electrodynamics the permittivity is defined as the proportionality constant between the electric
displacement field, D, and the electric field, D = εE. In the present formulation, Eext plays the role of the
D-field, i.e. D = ε0Eext, while Etot is the E-field
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which ends our derivation. In later chapters we will make extensive use of the dielectric
function ε and the polarizability χ. The dielectric function expressed in Eq. (6.42) in-
cludes all correlation effects, but often we must use some approximation to compute the
polarizability.

6.4.1 Dielectric function for translation-invariant system

In the translation-invariant case the polarizability can only depend on the differences of the
arguments, i.e. χR(rt, r′t′) = χR(r− r′; t− t′), and therefore the problem is considerably
simplified by going to frequency and momentum space, where both Eqs. (6.36) have the
form of convolutions. After Fourier transformation they become products

φtot(q,ω) = ε−1(q, ω)φext(q, ω), or φext(q,ω) = ε(q, ω)φtot(q, ω), (6.43)

with the dielectric function being

ε−1(q, ω) = 1 + Vc(q)χR
e (q, ω) . (6.44)

6.4.2 Relation between dielectric function and conductivity

Both ε and σ give the response of a system to an applied electromagnetic field, and one
should therefore expect that they were related, and of course they are. Here we consider
again the translational-invariant case, and using the definition of conductivity

J(q, ω) = σ(q, ω)Eext(q, ω) = −iσ(q, ω)qφext(q, ω), (6.45)

and the continuity equation,

−iωρ(q, ω) + iq · J(q, ω) = 0, (continuity equation), (6.46)

we obtain
−iq · σ(q, ω)qφext(q, ω) = ωρe(q, ω) = ωχR

e (q, ω) φext(q, ω). (6.47)

Finally, using Eq. (6.44) and knowing that for a homogeneous system, the conductivity
tensor is diagonal, we arrive at the relation

ε−1(q, ω) = 1− i
q2

ω
Vc(q)σ(q, ω). (6.48)

So if we know the conductivity we can find the dielectric response and vice versa. This
formula also tells us what information about the interactions within a given system can
be extracted from measurements of the dielectric properties.

6.5 Summary and outlook

We have developed a general method for calculating the response to weak perturbations.
This method, called linear response theory, is widely used because many experimental
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investigations are done in the linear response regime. In this regime the lack of equilibrium
is not important, and one can think of this as probing the individual excitations of the
systems. Because the perturbation is weak it is not necessary to include interactions
between these excitations.

The general formula is a correlation function of the quantity that we measure and the
quantity to which the weak external perturbation couples. In the case of conductivity
we saw that it was the current-current correlation function, and the dielectric response
reduces to a charge-charge correlation. These two will be used later in Chaps. 12 and 14.
Also in the next chapter we will make use of the linear response result, when discussing
tunneling current between two conductors.
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Chapter 7

Transport in mesoscopic systems

In this chapter we give an introduction to electronic transport in mesoscopic structures
and it is our first in-depth use of the Kubo formalism. The physics of mesoscopic systems
is a vast field, and we shall concentrate on the Landauer-Büttiker single-particle approach
to conductance of small nanometer-sized coherent systems. By coherent we mean that the
quantum mechanical coherence length is longer than the sample size, and the phenomena
that we discuss in the following all rely on quantum effects. They are all clear manifesta-
tions of the wave propagation of electrons through the structures. The field of mesoscopic
transport is interesting in that it combines physics on many length scales.

The important length scales are the coherence length `φ, the energy relaxation length,
`in, the elastic mean free path, `0, the Fermi wave length of the electron, λF , the atomic
Bohr radius, a0, and of course the sample size, L. Typical mesoscopic structures that we
have mind are those which are fabricated on semiconductor chips, e.g. by electrostatic
confinement of two dimensional electron gases (see e.g. Sec. 2.3.2). At low temperatures,
typically the range from 50 mK to 4 K, the length scales for these system are related as

a0 ¿ λF . `0 < L < `φ . `in. (7.1)

Metallic systems are more difficult to bring into the mesoscopic regime because of their
small Fermi wave length, λF ≈ a0. However, there is one relatively simple experiment
involving a narrow metallic wire where the conductance as a clear signature of quantum
transport decreases in pronounced steps of size 2e2/h as the wire is stretched and pulled
apart. This even happens at room temperature, whereas the more high-tech devices based
on semiconductor nanostructures only show quantum effects at low temperatures (see e.g.
Fig. 7.2).

This chapter deals with the physics of quantum transport which can be understood by
invoking the Fermi liquid picture of non-interacting electrons to be discussed in Chap. 14.
When interactions are important another rich field of physics appears, but this we will
have to study at some other time.

107
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7.1 The S-matrix and scattering states

We consider a mesoscopic sample connected to electron reservoirs in the form of macro-
scopic metal contacts. By mesoscopic we mean that the size L of the sample region between
the two reservoirs is much smaller than the energy relaxation length `in, and the phase
breaking length, `φ. This implies that we can consider the electron motion to be quantum
mechanically coherent in this region. Furthermore, since the reservoir is a macroscopic
conductor, much larger than the entrance to the mesoscopic region, we can safely assume
that electrons entering the reservoir will be thermalized at the temperature and chemical
potential of the contact before returning to the mesoscopic sample. The contact is thus
required to be reflectionless. Fig. 7.1 illustrates how a contact formed as a “horn” can
give a reflectionless contact.

In the following we solve for the eigenstates in a geometry similar to Fig. 7.1. The
system is divided into five regions: left reservoir, left lead, (L), mesoscopic region (M),
right lead (R), and right reservoir. For simplicity, it is assumed that the left and right
leads are perfect straight segments with hard walls, that they are identical as in the figure,
and furthermore that the system is two-dimensional. In this case, the Hamiltonian and
the eigenstates with energy E in the leads are given by

HL = HR =
{

1
2mp2

x + 1
2mp2

y, y ∈ [0,W ]
∞, otherwise,

(7.2a)

φ±LnE(x, y) =
1√

kn(E)
e±ikn(E)xχn(y), (x, y) ∈ L, (7.2b)

φ±RnE(x, y) =
1√

kn(E)
e±ikn(E)xχn(y), (x, y) ∈ R, (7.2c)

χn(y) =

√
2
W

sin
(πny

W

)
, n = 1, 2, . . . , N (7.2d)

E =
~2

2m
k2

n + εn, εn =
~2

2m

(πn

W

)2
. (7.2e)

Here χn denote the transverse wavefunction and W is the width of the leads. In principle
n can be any positive integer, but in practice we can introduce a cut-off at some large value
N without affecting the lowest occupied states. The quantum number ±1 represents right
and left moving states with wavenumber kn(E) =

√
2m(E − εn)/~2. The wavefunctions

φ± have been normalized in a particular manner so that they all carry the same absolute
probability current in a given cross section:

∫ W

0
dy

(
φη

αn,E(x, y)
)∗ px

m
φη

αn,E(x, y) = η
~
m

, η = ±1, (7.3)

Because of this normalization, it is more natural to label the states in terms of their energy
E rather than as usual their k values. The transformation from a discrete to a continuous
set of energy levels looks a bit different in the two cases. In the following φ̃k means a state
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b+

b-a-
a+

Perfect lead with
N  channels

Right reservoirLeft reservoir mesoscopic sample

L M R

Perfect lead with
N  channels

Figure 7.1: The geometry considered in the derivation of the Landauer formula. Two
reflectionless contacts each with N channels connect to a mesoscopic region. The wave
function is written as a superposition of incoming and outgoing wave at the two entrances.
When solving the Schrödinger equation, the system is separated in three regions: L, R
and M .

with the usual normalization, φ̃k = eikx/
√

L, while φk = eikx/
√

k.
∑

k>0

〈φ̃k|A|φ̃k〉 → L

∫ ∞

0

dk

2π
〈φ̃k|A|φ̃k〉

=
∫ ∞

0

dk

2π
k 〈φk|A|φk〉

=
∫ ∞

0

dE

2π

k

dE/dk
〈φk|A|φk〉,

=
m

2π~2

∫ ∞

0
dE 〈φk|A|φk〉. (7.4)

As we shall see in detail later, that the quantization of the conductance in units of the
universal conductance quantum e2/h is due to the cancellation of the velocity, ∝ k, by the
density of states, ∝ dk/dE, a feature particular of one dimension.

The eigenfunctions in the middle region, M , are in general not easy to find, but
fortunately we need not specify the wavefunction in the complicated region. All we will
need is the transmission coefficients, relating incoming and outgoing electron waves. Let
us therefore introduce the so-called scattering matrix or S-matrix formalism.

A given eigenstate with energy E is some linear combination of φ±LnE and φ±RnE in the
leads L and R, and some unknown complicated function φM,E , in the middle region M .
We can therefore write an eigenstate as

ψE(x, y) =





∑
n a+

n φ+
Ln,E(x, y) +

∑
n a−n φ−Ln,E(x, y), (x, y) ∈ L,

∑
n b+

n φ+
Rn,E(x, y) +

∑
n b−n φ−Rn,E(x, y), (x, y) ∈ R,

ψM,E(x, y), (x, y) ∈ M,

(7.5)

where a±n and b±n are some unknown sets of coefficients, which in vector form are written
as a+ = (a+

1 , a+
2 , . . .) and similarly for a− and b±. As usual the wavefunction and its
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derivative must be continuous. For a given ψM,E in the middle region this condition gives
4×N linearly independent equations to determine a±n and b±n . These equations are

(
a+

n + a−n
)

=
√

kn(E)
∫

dy χn(y)ψM,E(0, y),
(
b+
n eikn(E)L + b−n e−ikn(E)L

)
=

√
kn(E)

∫
dy χn(y)ψM,E(L, y),

(
a+

n − a−n
)

=
1

i
√

kn(E)

∫
dy χn(y)

(
∂xψM (x, y)

)
x=0

,

(
b+
n eikn(E)L − b−n e−ikn(E)L

)
=

1
i
√

kn(E)

∫
dy χn(y)

(
∂xψM,E(x, y)

)
x=L

.

Fortunately, we will not have to solve such a system of equations unless we want an exact
expression for the wavefunction. It is merely written down in order to illustrate the linear
dependence of the coefficients, {a±n } and {b±n }. A particular useful way of representing the
linear dependence is through the so-called scattering matrix, or S-matrix, which relates
the amplitudes of outgoing waves, φ−L and φ+

R, to incoming waves, φ+
L and φ−R,

cout ≡
(

a−

b+

)
=

(
r t′

t r′

)(
a+

b−

)
≡ S

(
a+

b−

)
≡ S cin. (7.7)

Here we have defined the important S-matrix to be a matrix of size 2N × 2N with the
N ×N reflection and transmission matrices as block elements

S =
(

r t′

t r′

)
. (7.8)

Here the matrix element tnn′ represents the transmission amplitude for an incoming wave
from the left in state n′ to be transmitted into state n on the right hand side. The ampli-
tude for transmission in the opposite direction is given by t′nn′ . Similarly the element rnn′

gives the amplitude for being reflected back into the left lead in state n. The coefficients
of the scattering matrix are of course energy dependent. Most of the time, we suppress
this dependence in the notation.

We now define the so-called scattering states, which are states with an incoming wave
in one particular lead state, i.e. cin = (0, . . . 0, 1, 0, . . .). The scattering states are denoted
ψ±, where the superscript ± refers to the direction from which the incoming wave comes.
In the plus direction (an incoming wave from the left) the scattering states are

ψ+
nE(x, y) =





φ+
Ln,E(x, y) +

∑
n′ rn′nφ−Ln′,E(x, y), (x, y) ∈ L,∑

n′ tn′nφ+
Rn′,E(x, y), (x, y) ∈ R,

? (x, y) ∈ M.

(7.9)

and in the minus direction (an electron incoming from the right hand side)

ψ−nE(x, y) =





φ−Rn,E(x, y) +
∑

n′ r
′
n′nφ+

Rn′,E(x, y), (x, y) ∈ R,∑
n′ t

′
n′nφ−Ln′,E(x, y), (x, y) ∈ L,

? (x, y) ∈ M.

(7.10)
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The wavefunction in the scattering region is not specified, because to find the conductance
all we need is the transmission probabilities of electrons, and that we can get from the
S-matrix.

7.1.1 Unitarity of the S-matrix

Before we calculate the transport properties of a mesoscopic system, let us look at some
properties of the S-matrix. First of all, it must be unitary, i.e. S−1 = S†. This is a
consequence of probability current conservation. The incoming electron flux

∑
n |cin|2 =

|cin|2 must equal the outgoing flux
∑

n |cout|2 = |cout|2 and therefore

c†outcout = c†incin ⇒ c†in (1− S†S) cin = 0, (7.11)

and hence S† = S−1. From the unitarity follows some properties of r and t, which we will
make use of below:

S†S = 1 ⇔
{

1 = r†r + t†t = r′†r′ + t′†t′,
0 = r†t′ + t†r′ = t′†r + r′†t, , (7.12)

and furthermore

SS† = 1 ⇔
{

1 = r′r′†+tt† = rr† + t′t′†,
0 = rt† + t′r′† = tr†+r′t′†.

(7.13)

We also show the unitarity in a bit more explicit way by calculating the currents on
the left and right hand sides of the system. This we do because we will need the currents
later on anyway. The current through a cross section for a given state is, cf. Eq. (1.99b),

I(x) =
∫ W

0
dy Ψ∗(x, y)

↔
JxΨ(x, y),

↔
Jx =

~
2mi

(→
∂ x −

←
∂ x

)
, (7.14)

where the arrows indicate to which side the differential operators are acting. For a station-
ary state, i.e. an eigenstate with energy E, the continuity equation gives ∂xJ = −ρ̇ = 0,
i.e. I(x) cannot depend on x. Let us compute I(x) for a state with incoming coefficients
cin = (a+,b−). First calculate the current in region L

IL(x) =
∫ W

0
dy

(
a+ · φ+

L,E + a− · φ−L,E

)∗ ↔
Jx

(
a+ · φ+

L,E + a− · φ−L,E

)

=
~
m

(
|a+|2 −

∣∣ra+ + t′b−
∣∣2

)
, (7.15)

where φ+
L,E = (φ+

L,1E , φ+
L,2E , . . .) and φ−L,E = (φ−L,1E , φ−L,2E , . . .). In the same way for R we

obtain

IR(x) =
~
m

(
−|b−|2 +

∣∣ta+ + r′b−
∣∣2

)
, (7.16)
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or more detailed

IL =
~
m

[
(
a+

)† (1− r†r) · a+ − (
b−

)† (
t′†t′

)
b− − 2Re[

(
a+

)† r†t′b−]

]
(7.17a)

IR =
~
m

[
(
b+

)† (−1 + r′†r′)b+ +
(
a+

)† (
t†t

)
a+ − 2Re[

(
a+

)† t†r′b−]

]
. (7.17b)

From the continuity equation we know that the current on the two sides must be equal,
IL = IR, and we obtain Eq. (7.12) and hence S is unitary.

7.1.2 Time-reversal symmetry

Time-reversal symmetry means that H = H∗, because if Ψ(r, t) is a solution to the
Shrödinger equation so is Ψ∗(r,−t). In that case the scattering matrix is not only unitary
it is also symmetric, S = ST . This has some important consequences for the statistics of
S-matrices in disordered systems, which can be seen experimentally by studying transport
with and without an applied magnetic field.

A non-zero magnetic field B = ∇×A breaks time-reversal symmetry, and in this case
the Schrödinger equation is

HB ΨB(r) =
[
− ~

2

2m

(
∇r + i

e

~
A

)2
+ V (r)

]
ΨB(r) = E ΨB(r). (7.18)

Now, since HB = H∗
−B we see that

HB ΨB(r) = E ΨB(r) ⇔ H∗
−B Ψ∗

−B(r) = E Ψ∗
−B(r), (7.19)

or in short: if ΨB(r) is a solution so is Ψ∗
−B(r). We can therefore construct new eigen-

states by complex conjugation followed by reversal of the magnetic field. Suppose we have
an eigenstate which is a linear combination of incoming and outgoing waves ΨB(r) =
(cinφin, coutφout), then we can make a new eigenstate by Ψnew

−B (r) = Ψ∗
B(r), which is a

solution for −B. However, because complex conjugation reverses the direction of propa-
gation, the new in- and outgoing wave functions are cnew

in = c∗out, and cnew
out = c∗in. Since

Ψnew is a solution for −B, we have

cnew
out = S−Bcnew

in ⇒ c*
in = S−Bc∗out = S−BS∗Bc*

in, (7.20)

which shows that

S−BS∗B = 1 ⇒ S∗−B = S†B ⇒ SB = ST
−B. (7.21)

In case of time-reversal symmetry, the scattering matrix therefore has an additional sym-
metry besides being unitary: it is also a symmetric matrix. This will be of importance
when we look at disordered systems below.
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7.2 Conductance and transmission coefficients

Next we calculate the conductance. This will be done in two different ways: first we
will argue on physical grounds that the population of the scattering state is given by
the equilibrium distribution function of the reservoir, which allows us to calculate the
current directly. Secondly, we calculate the conductance using linear response theory,
and, fortunately, we find the same result. While the first method is more physically
appealing, one could get in doubt if the Pauli principle is treated correctly. The linear
response result shows that indeed the first method gave the right answer, at least in the
linear response limit.

The answer we find, the celebrated Landauer-Büttiker formula, is very simple and
physically sensible: the conductance of a mesoscopic sample is given by the sum of all the
transmission possibilities a given electron has, i.e. by the sum of transmission probabilities

G =
2e2

h

∑
n

Tn =
2e2

h
Tr[t†t], (7.22)

where Tn are the eigenvalues of the matrix t†t. This should not be confused with the
transmission probabilities, i.e. the probability that an electron in a given incoming state,
n, ends up on the other side. This probability is Tn =

(
t†t

)
nn

, but when summing over
all incoming states n we in fact get,

∑
n Tn =

∑
n Tn. So we can write Eq. (7.22) in terms

of Tn or Tn as we please.
The Landauer-Büttiker formula tells us that the conductance of a mesoscopic sample

is quantized in units of 2e2/h. The number of quanta will be the number of channels
connecting the two sides. However, since Tn is a number between 0 and 1 one expect this
quantization to show up only for some special geometries where Tn is either 0 or 1. This is
in fact what happens for the quantum point contact, which is discussed below in Sec. 7.3.1.
There a particular smooth interface between the two reservoirs ensures that Tn changes in
a well-controlled manner between 0 and 1. However, there are other examples where the
conductance quantum e2/h shows up, namely in the fluctuations of conductance. These
fluctuations are universal in the sense that they have an amplitude of the order e2/h
independent of the average conductance. This is discussed in Sec. 7.4.3.

7.2.1 The Landauer-Büttiker formula, heuristic derivation

We argued above that if the reservoirs are much wider than the mesoscopic region and
its leads, then we can assume reflectionless transmission from the leads to the reservoirs,
i.e. the electrons entering the reservoir from the sample are thermalized before returning.
Thus all electrons entering from the contacts are distributed according to the Fermi-
Dirac distribution nF of the given reservoirs. Furthermore, since the mesoscopic region
is defined to be phase coherent, no energy relaxation takes place there, and consequently
electrons originating from, say, the left reservoir maintain their distribution function equal
to that of that reservoir. Therefore it is natural to express the occupation of the scattering
eigenstates ψ±nε by two different distribution functions f± and the chemical potentials µL/R
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of the relevant reservoirs,

f+(ε) = nF(ε− µL), f−(ε) = nF(ε− µR). (7.23)

Now it is a simple matter to calculate the current through the mesoscopic system. Because
of current conservation, we can calculate it in either of the regions L, R, or M . Naturally,
we choose to do so in the perfect leads L or R where the wavefunctions are known. Let
us look at the current in the left lead:

I = IL = e
∑

nk

[
Ĩ+
nkf

+(Enk) + Ĩ−nkf
−(Enk)

]
. (7.24)

The currents carried by a scattering state ψ±nε can be read off from Eqs. (7.17a) and (7.17b)
by substituting (a+)n′ = δnn′ for a state moving in the positive direction and (b−)n′ = δnn′

for a state moving in the negative direction. We get

I+
nk =

~
m

[
1−

(
r†r

)
nn

]
=
~
m

(
t†t

)
nn

, (7.25)

I−nk = − ~
m

(
t′†t′

)
nn

=
~
m

[
−1 +

(
r′†r′

)
nn

]
. (7.26)

Transforming to an energy integral as in Eq. (7.4), the current is therefore simply

I =
e

2π~
∑

n

∫ ∞

0
dE

[(
t†t

)
nn

nF(E − µL)−
(
t′†t′

)
nn

nF(E − µR)
]
. (7.27)

The sum over diagonal elements of
(
t†t

)
is nothing but the trace. The unitarity condition

Eq. (7.13), then leads to Tr[t′†t′] =Tr[t†t], and the current can be written as

I =
e

2π~

∫ ∞

0
dE Tr

[
t†EtE

] [
nF(E − µL)− nF(E − µR)

]
. (7.28)

In Eq. (7.28), we have stressed the energy dependence of the transmission matrix, but at
low voltages V and temperatures T we can assume Tn to be energy independent and the
integral can be done. For |eV | = |µR−µL| ¿ µ, where µ is the equilibrium electrochemical
potential, we Taylor expand around µ and find after integration

I =

From spin︷︸︸︷
2

e2

h
V Tr

[
t†EtE

]
⇒ G =

2e2

h
Tr

[
t†t

]
=

2e2

h

∑
n

Tn. (7.29)

This is the famous Landauer-Büttiker formula. Here we have assumed that the spin
degrees of freedom are degenerate which gives rise to a simple factor of two. If they are
not degenerate the trace must also include a trace over the spin degrees of freedom.

The expression Eq. (7.27) for current relies on the fact that the scattering states are
eigenstates of the system, which means that we should not include any kind of blocking
factors (1 − nF) to ensure that the final state is empty, as one would normally do in a
Boltzmann equation. Once a state is occupied in one lead, it is automatically also occupied
in the other. Thus we are not talking about a scattering event from one reservoir to the
other, but rather about the thermal population of eigenmodes. In order to dismiss any
concern about this point, the next section is devoted to a derivation of Eq. (7.22) from
first principles using the linear response formalism of Chap. 6.
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7.2.2 The Landauer-Büttiker formula, linear response derivation

Our starting point is Eq. (6.31) expressing the conductance G in terms of the current-
current correlation function,

G(ω) = −2e2

~ω
Im

∫ ∞

−∞
dt ei(ω+iη)t(−i)Θ(t) 〈[I(x, t), I(x, 0)]〉0 , (7.30)

where the current operator I(x) due to current conservation can be evaluated at any cross
section x in the perfect leads, rendering G independent of x. (Again we consider the spin
degenerate case which is the reason for the factor of two.) In second quantization the
current operator is given by

I(x) =
∑

λλ′
jλλ′(x) c†λcλ′ , (7.31)

jλλ′(x) =
~

2mi

∫
dy ψ∗λ(x, y)

(→
∂ x −

←
∂ x

)
ψλ′(x, y), (7.32)

where we choose {ψλ} as a set of eigenstates, and where jλλ′ is a matrix element of the
current operator. We will of course use the scattering states that we found above as our
basis, which means that the quantum number λ is specified by λ = {E, n, η = ±}. We
start by calculating the commutator in Eq. (7.30)

〈[
I(x′, t), I(x′, 0)

]〉
0

=
∑

νν′
jνν′(x′)

∑

λλ′
jλλ′(x′)ei(Eλ−Eλ′ )t/~

〈[
c†λcλ′ , c

†
νcν′

]〉
0

=
∑

λλ′
|jλλ′(x

′)|2 ei(Eλ−Eλ′ )t/~
[
nF(Eλ)− nF(Eλ′)

]
, (7.33)

where we used that 〈c†λcλ′〉0 = δλλ′nF(Eλ), and that jλλ′(x′) = (jλ′λ(x′))∗ . Inserting this
into Eq. (7.30) yields

G(ω) = −2e2

ω
Im

∑

λλ′

|jλλ′(x
′)|2

(~ω + iη + Eλ − Eλ′)

[
nF(Eλ)− nF(Eλ′)

]
, (7.34)

and in the dc-limit, ω → 0, one has

G(0) = −2~e2π
∑

λλ′
|jλλ′(x

′)|2
(
−∂nF(Eλ)

∂Eλ

)
δ (Eλ −Eλ′) . (7.35)

Changing the sum over eigenstates to integrals over energy, i.e.
∑

λ →
∑

nη
m

2π~2
∫

dE,
and setting T = 0 such that

(−∂nF(E)/∂E
)

= δ(E − EF ), the conductance becomes

G(0) = −2~e2π
( m

2π~2

)2 ∑

nn′,ηη′
|jnηEF ,n′η′EF

(x′)|2, (7.36)
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Due to current conservation the current matrix elements jnηEF ,n′η′EF
(x′) are independent

of x′, and we evaluate them in the L or R region at our convenience. We obtain

jnηEF ,n′η′EF
(x′) =

~
m

( (
t†t

)
nn′

(
t†r′

)
nn′

− (
t′†r

)
nn′

(−t′†t′
)
nn′

)
≡ ~

m
j, (7.37)

where the rows and columns correspond to η = +1 and −1, respectively. Hence we get

∑

nn′,ηη′
|jnηEF ,n′η′EF

(x′)|2 =
(
~
m

)2

Tr
[
j†j

]

=
(
~
m

)2

Tr
[(

t†t
)2

+
(
t′†t′

)2
+ r′†tt†r′ + r†t′t′†r

]

= 2
(
~
m

)2

Tr
[
t†t

]
, (7.38)

after using the result Eq. (7.13). The final result is therefore

I = −2e2

h
Tr

[
t†t

] ∫
dx′ E(x′) =

2e2

h
Tr

[
t†t

]
V, (7.39)

which again is the Landauer-Büttiker formula. We have thus seen that it can be derived
microscopically, and any doubt about the validity of the treatment of the occupation factor
in the heuristic derivation, has been removed.

7.3 Electron wave guides

7.3.1 Quantum point contact and conductance quantization

One of the most striking consequences of the Landauer-Büttiker formula for conductance is
that the conductance of a perfect channel is 2e2/h, and if there are N “perfect” channels
it is N2e2/h. This has been experimentally tested in numerous experiments and it is
now a well-established fact. The first experiments showing this was done by groups in
Delft (Holland) and Cambridge (England) in 1988. The technique they used was a so-
called splitgate geometry where a set of metallic gate electrodes was put on top of a two-
dimensional electron gas such that a narrow contact between the two sides of the 2DEG
was formed, see Fig. 2.10b. By applying voltage to the gates the width of the constriction
could be controlled very accurately. As the width decreases quantum channels are squeezed
out one by one, until only one remains, leading to a staircase of conductance, each step
being of height 2e2/h, see Fig. 7.2. We will now see how this nice effect can happen.

Suppose there is a smooth constriction between two electron reservoirs. Smooth here
means a horn-like shape were the curvature at all points is large compared to the wave-
length of the wave which is going to be transmitted through the horn. The relevant wave
equation for an electron horn is of course the Schrödinger equation, but there is in prin-
ciple no difference between the electron wave guide and horn wave guides used in loud
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Figure 7.2: An experiment on quantized conductance. The upper left panel is a picture of
the surface of an GaAs chip with an etched point contact structure. The lower left panel is
an zoom-in of this structure recorded in an electron microscope. The right panel shows the
conductance versus sidegate voltage. At the lowest temperature (1.3 K) the conductance
shows clear steps at integer values of 2e2/h. By clever design this point contact yields a
particularly large subband splitting, which is why the conductance quantization persists
up to “high” temperatures of the order 20 K. The device was fabricated and measured at
the Ørsted Laboratory, Niels Bohr Institute.

speakers, water waves or other wave phenomena. So the quantized conductance is nothing
but a manifestation of the wave nature of a quantum particle, but you might say a very
striking one.

The Schrödinger equation for the quantum point contact geometry is
[
− ~

2

2m

(
∂2

x + ∂2
y

)
+ Vconf(x, y)

]
Ψ(x, y) = E Ψ(x, y), (7.40)

where Vconf(x, y) is the confinement potential. Because the change along the x-direction
is assumed to be smooth, we try to separate the motion in longitudinal and transverse
motion. Had the confinement potential been rectangular we would have eigenstates as φ±

in Eq. (7.2b). Inspired by that we expand the wave function in terms of the transverse
eigenstates χnx(y) which however are x-dependent now, as are the expansion coefficients
φn(x),

Ψ(x, y) =
∑
n

φn(x)χnx(y). (7.41)

This is always possible at any given fixed x since, being solutions of the transverse
Schrödinger equation, {χn(x)} forms a complete set,

[
− ~

2

2m
∂2

y + Vconf(x, y)
]

χnx(y) = εn(x)χnx(y). (7.42)
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Figure 7.3: Illustration of the adiabatic contact giving rise to an effective one-dimensional
barrier. When the energy of the incident electron is larger than the maximum transverse
kinetic energy, i.e. the maximum of εn(x), it is transmitted through without reflection,
otherwise not. The width of constriction and thereby the height of εn(x) is controlled by
a voltage applied to the gate electrodes.

Inserting Eq. (7.41) into Eq. (7.40) and multiplying from the left with χ∗nx(y) followed by
integration over the transverse direction, y, yields

[
− ~

2

2m
∂2

x + εn(x)
]

φn(x) = Eφn(x) + δn, (7.43)

where

δn =
~2

m

∑

n′

∫
dyχ∗nx(y)

[
(∂xφn′(x)) (∂xχn′x(y)) +

1
2
φn′(x)∂2

xχn′x(y)
]

. (7.44)

As mentioned, the fundamental approximation we wanted to impose was the smooth
geometry approximation, often referred to as the adiabatic approximation. It means that
the derivative of the transverse mode with respect to longitudinal direction is neglected,
i.e. ∂xχn′x(y) ≈ 0. In the case of hard walls,

Vconf(x, y) =
{

0 for y ∈ [−d(x)/2, d(x)/2],
∞ otherwise,

(7.45)

the transverse wavefunctions are the well-known wavefunction for a particle in a box

χnx(y) =

√
2

d(x)
sin

(
πn(y − d(x)/2)

d(x)

)
, (7.46)

with the corresponding eigenenergies

εn(x) =
~2π2

2m [d(x)]2
n2. (7.47)
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Taking the derivative ∂xχn′x(y), will give something proportional to d′(x). The essence
of the adiabatic approximation is that d′(x) ¿ 1, such we end up with an effective one-
dimensional problem of decoupled modes, φn, which obey the 1D Schrödinger equation
with an energy barrier εn(x)

[
− ~

2

2m
∂2

x + εn(x)
]

φn(x) = Eφn(x). (7.48)

The transverse direction has thus been translated into an effective 1D barrier. The barrier
is there because some of the kinetic energy is bound into the transverse motion. Let
x = 0 be the position in the constriction where this is most narrow, i.e. dmin = d(0).
If the transverse kinetic energy, εmax

n ≡ εn(0), at this place is larger than E, the mode
cannot transmit (neglecting tunneling through the barrier, of course). If, however, it is
smaller than E the mode has sufficient energy to pass over the barrier and get through
the constriction, this is illustrated in Fig. 7.3.

For smooth barriers, we can use the WKB approximation result for the wavefunction

φn(x) ≈ φWKB
n (x) =

1√
p(x)

exp
(

i

∫ x

−∞
dx′p(x′)/~

)
, p(x) =

√
2m(E − εn(x)), (7.49)

which is a solution to Eq. (7.48) if |p′(x)/~p2(x)| ¿ 1. In this case we can directly read
off the transmission amplitude because in the notation used for the scattering states, we
have r = 0 and hence |t| = 1. The conductance is therefore

G =
2e2

h

∑
n

Θ(EF − εmax
n ). (7.50)

All subbands with energy smaller than EF contribute with one conductance quantum,
which results in a step structure of the conductance as a function of εmax

n . This is roughly
what is seen experimentally, where εmax

n is changed by changing the width of the constric-
tion through the voltage of the gate electrodes.

Obviously the WKB approximation breaks down if p(x) is too small. Right at the
point where a new channel opens, which happens when EF = εn(0), we would expect
some smearing of the step. The shape of the smearing will in general depend on the
geometry of the constriction and is, in contrast to the step heights, not universal. A useful
model is the so-called saddle point model for the constriction, where the confinement
potential is modelled by

Vconf(x, y) =
1
2
mω2

yy
2 − 1

2
mω2

xx2 + V0, (7.51)

where V0 is a constant. The saddle point model can be thought of as a quadratic expansion
of the confinement potential near its maximum. Using this potential it can be shown that
the transmission probability has a particular simple form, namely

Tn(E) =
1

exp
(
π

(
E − V0 − (n + 1

2)~ωx

)
/~ωy

)
+ 1

. (7.52)

For this model the smearing of the conductance steps thus has the form of a Fermi func-
tion. Experiments using the splitgate geometry indeed show that the conductance traces
(meaning conductance versus gate voltage) are well described by Eq. (7.52).
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Figure 7.4: A device which shows Aharonov-Bohm effect, because of interference between
path 1 and path 2. The interference is modulated by magnetic flux enclosed by the
paths. This is shown in the bottom part, where the left panel shows the experimental
realization, while the right panel depicts the conductance versus B-field trace. Both the
device fabrication and the measurements have been performed at the Ørsted Laboratory.

7.3.2 Aharonov-Bohm effect

A particular nice example of interference effects in mesoscopic systems is the Aharonov-
Bohm effect, where an applied magnetic field B is used to control the phase of two inter-
fering paths. The geometry is illustrated in Fig. 7.4. Each of the arms in the ring could
be an adiabatic wave guide, where the wave function can be assumed to be of the form
in Eq. (7.49). Because of the applied B-field we must add a vector potential A to the
Schrödinger equation Eq. (7.40) as in Eq. (7.18). At small magnetic fields we can neglect
the orbital changes induced by B in the arms of the ring and absorb the vector potential
due to the B-field through the hole of the ring as a phase factor

ΨB 6=0(r) = ΨB=0(r) exp
(
−i

e

~

∫ r

dl ·A
)

. (7.53)

We now approximate the line integral by an integral following the center of the waveguides
and furthermore assume ideal adiabatic arms, i.e. no backscattering. In that case the
transmission coefficient is given by a sum corresponding to the two paths

t ∝ exp
(
−i

e

~

∫ r

path 1
dl ·A

)
+ eiφ0 exp

(
−i

e

~

∫ r

path 2
dl ·A

)
, (7.54)
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where φ0 is some phase shift due to different length of the two arms. The transmission
probability now becomes

|t|2 ∝ 1 + cos
(

φ0 − e

~

∫ r

path 1+2
dl ·A

)
= 1 + cos

(
φ0 − π

Φpath 1+2

Φ0

)
, (7.55)

where Φ is the flux enclosed and Φ0 = h/2e is the flux quantum. The conductance will
oscillate as with the applied magnetic, a signature of quantum interference. Note that the
effect persists even if there is no magnetic field along the electron trajectories, which is a
manifestation of the non-locality of quantum mechanics. Experiments have verified this
picture. See Fig. 7.4.

7.4 Disordered mesoscopic systems

In this section we shall study disordered mesoscopic systems. The experiments we have
in mind are e.g. experiments on disordered “quantum dots”, which is a mesoscopic re-
gion connected to reservoirs just as we have discussed above where the Landauer-Büttiker
formula was derived, see Fig. 7.5. Again we use the Landauer-Büttiker to calculate the
conductance, but because the system is disordered it makes little sense to talk about the
conductance for specific sample geometries. One cannot precisely neither locate nor con-
trol the positions of the impurities. Instead one studies the statistical properties of the
conductance for an ensemble of systems. The average and the variance of the conduc-
tance will turn out to exhibit interesting quantum phenomena, namely weak localization
and universal conductance fluctuations, respectively. In order to understand these two
phenomena, we must first learn about how to average over S-matrices.

Fig. 7.5 shows an example of a disorder mesoscopic system. It cannot be a surprise
that the classical motion in such a geometry is expected to be chaotic and the system to be
ergodic, which means that all parts of the phase-space are visited with equal probability.
Quantum mechanically this means that there are no symmetries and hence no systematic
degeneracies of energy levels. In fact, as a function of any external parameter (e.g. shape,
magnetic field, or density) the energy levels avoid to cross one another. This important
phenomenon is known as level repulsion.

7.4.1 Statistics of quantum conductance, random matrix theory

Let us consider the statistical properties of some ensemble of disordered or chaotic systems
influenced by some external parameter. Such ensembles have been studied for a long time,
initially atomic nuclei containing a large number of nucleons. The basic assumption being
made is that the Hamiltonians describing each of the systems of the ensemble are drawn
randomly according to some probability distribution only constrained by the symmetry of
the system. This statistical method is known as random matrix theory (RMT). The matrix
elements of the Hamiltonians are assumed to follow a Gaussian distribution, and from this
one can argue that the S-matrix follows the so-called circular ensemble distribution. This
means that all unitary matrixes are equally likely, or in other words the distribution P (S)
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Disordered quantum dot

Impurity

Figure 7.5: Disordered quantum dot geometry. The averaged over different geometries
could be an average over positions of impurities, dot boundaries or Fermi energy.

of scattering matrices S is uniform in the group of unitary matrices of size 2N × 2N,
denoted U(2N). This claim can also be justified by “entropy” considerations, in sense
that it is the distribution which maximizes the entropy and hence is the ensemble with
“maximal randomness”.

Here we will not be concerned with the microscopic justification for the ensemble
averaging, but simply say that since we have no information about the scattering matrix
the most sensible thing to assume is that all scattering matrices in U(2N) will appear with
equal probability only subject to normalization conditions and symmetry constraints. For
the time-reversal symmetry case, we are therefore restricted to symmetric members of
U(2N). The TR case can be realized by writing S = UUT , where U ∈ U(2N). We
skip the derivation and simply list the first few moments of a random unitary matrix of
dimension M = 2N :

〈Uαβ〉 = 0, (7.56)

〈U∗
αaUβb〉 =

1
M

δαβδab, (7.57)

〈
U∗

αaU
∗
α′a′UβbUβ′b′

〉
=

1
M2 − 1

(
δαβδabδα′β′δa′b′ + δαβ′δab′δα′βδa′b

)

− 1
M(M2 − 1)

(
δαβδab′δα′β′δa′b + δαβ′δabδα′βδa′b′

)
. (7.58)

The method to derive these result is to utilize 〈f(U)〉 = 〈f(U0U)〉 = 〈f(UU0)〉, which for
any fixed unitary matrix U0 is a consequence of the constant probability assumption. By
suitable choice of U0 the various averages can be derived. The first term in Eq. (7.58) is
equivalent to assuming the real and imaginary parts of Uαa to be independent, while the
last term corrects for that because the unitarity condition gives some constraints on the
elements of U. These correlations however become less important in limit of large M .
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7.4.2 Weak localization in mesoscopic systems

In Sec. 14.4 studied the weak localization in self-averaging macroscopic samples. The
origin of this effect was found to be the constructive interference between time-reversed
pairs of paths beginning and ending in the same point in space. Also mesoscopic systems
exhibit weak localization. In this case the coherence length is larger than the sample,
hence the conductance is given by the S-matrix through the Landauer-Büttiker formula,
and we can find the weak localization correction not for an individual sample but for an
ensemble of samples using random matrix theory of the S-matrix.

It is important to realize that the weak localization correction survives ensemble aver-
aging. The average conductance is therefore

〈G〉 =
2e2

h

〈
Tr

[
t†t

]〉
=

2e2

h

N∑

n=1

2N∑

m=N+1

〈S∗mnSmn〉 . (7.59)

The result now depends on whether time-reversal symmetry is present or not, i.e. if a
B-field is applied or not. First take the case of broken time-reversal symmetry, B 6= 0. In
this case there is no other constraints on S than that it is unitary and there we can use
Eq. (7.57) directly

〈G〉B 6=0 =
2e2

h
N2 1

2N
=

2e2

h

N

2
. (7.60)

The case B = 0 means that in addition to unitarity S is also symmetric. Writing S = UUT

we get

〈G〉B=0 =
2e2

h

N∑

n=1

2N∑

m=N+1

2N∑

i=1

2N∑

j=1

〈U∗
miU

∗
niUmjUnj〉 , (7.61)

and now applying Eq. (7.58), we have

〈G〉B=0 =
2e2

h

N∑

n=1

2N∑

m=N+1

2N∑

i=1

2N∑

j=1

(δij + δmnδij)
(

1− 1
2N

)
1

4N2 − 1
(7.62)

=
2e2

h

1
4N2 − 1

(
2N3

)(
1− 1

2N

)
=

2e2

h

N2

2N + 1
, (7.63)

which is smaller than the B 6= 0 result. It is natural to compare the conductance with the
classical conductance i.e. the series connection between two leads with N channels

〈δG〉
2e2/h

=
〈G〉

2e2/h
− N

2
=

{
− N

2(2N+1) , for B = 0,

0 , for B 6= 0.
(7.64)

This result clearly shows that quantum corrections, which comes from the last term in
Eq. (7.58), give a reduced conductance and that the quantum coherence is destroyed by
a magnetic field. Of course in reality the transition from the B = 0 to the finite B-field
case is a smooth transition. The transition happens when the flux enclosed by a typical
trajectory is of order the flux quantum, which we saw from the arguments leading to
Eq. (7.55).
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7.4.3 Universal conductance fluctuations

The fluctuations of the conductance contains some interesting information about the na-
ture of the eigenstates of a chaotic system. Historically the study of these fluctuations
were the first in the field of mesoscopic transport. They were observed experimentally
around 1980 and explained theoretically about five years later.

It is an experimental fact that the fluctuations turn out to be independent of the size of
the conductance itself, which has given rise to the name universal conductance fluctuations
(UCF). Naively, one would expect that if the average conductance is 〈G〉 = N0(2e2/h),
corresponding to N0 open channels, then the fluctuations in the number of open channels
would be

√
N0, so that 〈δG〉 = (2e2/h)

√
N0. This is not seen experimentally, the reason

being that the transmission probabilities are not independent. The number of conducting
channels in a given energy window does therefore not follow a Poisson distribution.

For a completely random system without any symmetries, we do not expect degen-
eracies to occur. In fact one can show from RMT that the statistical measure vanishes
when two eigenvalues coincide. Given an eigenvalue x = 0, the probability for the next
eigenvalue to be at x can be shown to be

P (x) =
π

2
x exp

(
−π

4
x2

)
, (7.65)

for the case with time-reversal symmetry. This is called the Wigner surmise, and a sug-
gestive derivation is as follows. Suppose that the probability of finding an eigenvalue in
dx is f(x) dx, then P (x) dx is the probability of finding an eigenvalue at x, f(x) dx, times
the probability that there was no eigenvalues in the interval [0, x]:

P (x)dx = exp
(
−

∫ x

0
dx′f(x′)

)
f(x)dx, (7.66)

and hence

P (x) = f(x) exp
(
−

∫ x

0
dx′f(x′)

)
. (7.67)

For f constant, we recover the Poisson distribution result. Assuming “linear repulsion”
f(x) ∝ x, we get Eq. (7.65) after suitable normalization. The fluctuations of the number
of eigenvalues in a given interval is therefore far from 1/

√
N , which is the physical reason

for the “universal” behavior.
In the following we calculate the fluctuations of G using the statistical RMT for the

S-matrix as outlined above. The fluctuation of the conductance in the non-TRS case are

〈
G2

〉
B6=0

=
(

2e2

h

)2 N∑

n=1

2N∑

m=N+1

N∑

n′=1

2N∑

m′=N+1

〈S∗mnSmnS∗m′n′Sm′n′〉 ,

=
(

2e2

h

)2 N∑

n=1

2N∑

m=N+1

N∑

n′=1

2N∑

m′=N+1

1
4N2 − 1

(
1 + δmm′δnn′ − 1

2N
(δnn′ + δmm′)

)
,

=
(

2e2

h

)2
N4

4N2 − 1
≈

(
2e2

h

)2 (
N

2

)2 (
1 +

1
4N2

)
, for N À 1 (7.68)
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Figure 7.6: Variance of the conductance of a quantum dot as a function of magnetic field.
The trace is taken at 30 mK. The decrease of the variance when the time-reversal symmetry
is broken by the magnetic field is clearly seen and the decreases by approximately a factor
of 2 is in agreement with the theory. The inset shows the geometry of the quantum dot,
which has additional gates by which the shape can be changed. After Chan et al., Phys.
Rev. Lett. 74, 3876 (1995).

and the variance is 〈
δG2

〉
B 6=0

(2e2/h)2
≈ 1

16
, for N À 1. (7.69)

A similar calculation for the B = 0 case gives
〈
δG2

〉
B=0

(2e2/h)2
≈ 1

8
, for N À 1. (7.70)

The variance is thus independent of the average value of G and furthermore it is expected
to decrease by a factor of 2 when a magnetic field is applying. Indeed this is what is seen
experimentally for example as shown in Fig. 7.6.

7.5 Summary and outlook

Below we list a few text books and review papers about mesoscopic physics.

Text books:

1. Electronic transport in mesoscopic systems,
S. Datta, (Cambridge University Press), 1995.
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2. Transport in nanostructures,
D.K. Ferry and S.M. Goodnick, (Cambridge University Press), 1995.

Review papers:

1. Quantum transport in semiconductor nanostructures,
C.W.J. Beenakker and H. van Houten,
Solid State Physics 44, eds. H. Ehrenreich and D. Turnbull, (Academic Press), 1991.

2. Random-matrix theory of quantum transport,
C.W.J. Beenakker, Review of Modern Physics 69, 731 (1997).

3. Conductance quantisation in metallic point contacts,
J.M. van Ruitenbeek, cond-mat/9910394.

4. The statistical theory of quantum dots,
Y. Alhassid, Review of Modern Physics 72, 895 (2000)



Chapter 8

Green’s functions

8.1 “Classical” Green’s functions

The Green’s function method is a very useful method in the theory of ordinary and partial
differential equations. It has a long history with numerous applications.

To illustrate the idea of the method let us consider the familiar problem of finding the
electrical potential φ given a fixed charge distribution, ρe, i.e. we want to solve Poisson’s
equation

∇2φ(r) = − 1
ε0

ρe(r). (8.1)

It turns out to be a good idea instead to look for the solution G of a related but simpler
differential equation

∇2
rG(r) = δ(r), (8.2)

where δ(r) is the Dirac delta function. G(r) is called the Green’s function for the Laplace
operator, ∇2

r. This is a good idea because once we have found G(r), the electrical potential
follows as

φ(r) = − 1
ε0

∫
dr′G(r− r′)ρe(r′). (8.3)

That this is a solution to Eq. (8.1) is easily verified by letting ∇2
r act directly on the

integrand and then use Eq. (8.2).
The easiest way to find G(r) is by Fourier transformation, which immediately gives

−k2G(k) = 1 ⇒ G(k) = − 1
k2

, (8.4)

and hence

G(r) =
∫

dk
(2π)3

eik·rG(k) = −
∫

dk
(2π)3

eik·r

k2
= − 1

4πr
. (8.5)

When inserting this into (8.3) we obtain the well-known potential created by a charge
distribution

φ(r) =
1

4πε0

∫
dr′

ρe(r′)
|r− r′| . (8.6)
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8.2 Green’s function for the one-particle Schrödinger equa-
tion

Green’s functions are particular useful for problems where one looks for perturbation
theory solutions. Consider for example the Schrödinger equation

[H0(r) + V (r)]ΨE = EΨE , (8.7)

where we know the eigenstates of H0, and where we want to treat V as a perturbation.
Here we consider the case of an open system, i.e. there is a continuum of states and hence
we are free to choose any E. This situation is relevant for scattering problems where a
flux of incoming particles (described by H0) interacts with a system (described by V ).
The interaction induces transitions from the incoming state to different outgoing states.
The procedure outlined below is then a systematic way of calculating the effect of the
interaction between the “beam” and the “target” on the outgoing states.

In order to solve the Schrödinger equation, we define the corresponding Green’s func-
tion by the differential equation

[E −H0(r)]G0(r, r′, E) = δ(r− r′), (8.8)

with the boundary condition, G0(r, r′) = G0(r′, r). It is natural to identify the operator
[E −H0(r)] as the inverse of G0(r, r′) and therefore we write1

G−1
0 (r, E) = E −H0(r) or G−1

0 (r, E) G0(r, r′, E) = δ(r− r′). (8.9)

Now the Schrödinger equation can be rewritten as
[
G−1

0 (r, E)− V (r)
]
ΨE = 0, (8.10)

and by inspection we see that the solution may be written as an integral equation

ΨE(r) = Ψ0
E(r) +

∫
dr′G0(r, r′, E)V (r′)ΨE(r′). (8.11)

This is verified by inserting ψE from Eq. (8.11) into the G−1
0 ψE term of Eq. (8.10) and

then using Eq. (8.9). One can now solve the integral equation Eq. (8.11) by iteration, and
up to first order in V the solution is

ΨE(r) = Ψ0
E(r) +

∫
dr′G0(r, r′, E)V (r′)Ψ0

E(r′) +O (
V 2

)
, (8.12)

where Ψ0
E is an eigenstate to H0 with eigenenergy E. What we have generated by the

iteration procedure is nothing but the ordinary (non-degenerate) perturbation theory. The
next leading terms are also easily found by continuing the iteration procedure. The Green’s

1In order to emphasize the matrix structure we could have written this as
R

dr′′G−1
0 (r, r′′) G0 (r′′, r′) =

δ(r− r′), where the inverse Green’s function is a function of two arguments. But in the r-representation
it is in fact diagonal G−1

0 (r, r′) = (E −H0(r))δ(r− r′).
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function method is thus useful for this kind of iterative calculations and one can regard
the Green’s function of the unperturbed system, G0, as simple building blocks from which
the solutions of more complicated problems can be build.

Before we introduce the many-body Green’s function in the next section, we continue
to study the case of non-interaction particles some more and include time dependence.
Again we consider the case where the Hamiltonian has a free particle part H0 of some
perturbation V , H = H0 + V . The time dependent Schrödinger equation is

[i∂t −H0(r)− V (r)]Ψ(r, t) = 0. (8.13)

Similar to Eq. (8.8) we define the Green’s functions by

[i∂t −H0(r)]G0(r, r′; t, t′) = δ(r− r′)δ(t− t′). (8.14a)
[i∂t −H0(r)− V (r)]G(r, r′; t, t′) = δ(r− r′)δ(t− t′). (8.14b)

The inverse of the Green’s functions are thus

G−1
0 (r, t) = i∂t −H0(r) (8.15a)

G−1(r, t) = i∂t −H0(r)− V (r). (8.15b)

From these building blocks we easily build the solution of the time dependent Schrödinger
equation. First we observe that the following self-consistent expression is a solution to
Eq. (8.13)

Ψ(r, t) = Ψ0(r, t) +
∫

dr′
∫

dt′ G0(r, r′; t, t′)V (r′)Ψ(r′, t′), (8.16)

or in terms of the full Green’s function

Ψ(r, t) = Ψ0(r, t) +
∫

dr′
∫

dt′ G(r, r′; t, t′)V (r′)Ψ0(r′, t′), (8.17)

which both can be shown by inspection, see Exercise 7.1. As for the static case in Eq. (8.11)
we can iterate the solution and get

Ψ = Ψ0 + G0V Ψ0 + G0V G0V Ψ0 + G0V G0V G0V Ψ0 + · · ·
= Ψ0 +

(
G0 + G0V G0 + G0V G0V G0 + · · · )V Ψ0, (8.18)

where the integration variables have been suppressed. By comparison with Eq. (8.17), we
see that the full Green’s function G is given by

G = G0 + G0V G0 + G0V G0V G0 + · · ·
= G0 + G0V

(
G0 + G0V G0 + · · · ). (8.19)

Noting that the last parenthesis is nothing but G itself we have derived the so-called Dyson
equation

G = G0 + G0V G. (8.20)
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This equation will play and important role when we introduce the Feynman diagrams
later in the course. The Dyson equation can also be derived directly from Eqs. (8.14) by
multiplying Eq. (8.14b) with G0 from the left.

The Green’s function G(r, t) we have defined here is the non-interaction version of the
retarded single particle Green’s function that will be introduced in the following section.
It is also often called a propagator because it propagates the wavefunction, i.e. if the
wavefunction is know at some time then the wavefunction at later times is given by

Ψ(r, t) =
∫

dr′
∫

dt′G(rt, r′t′)Ψ(r′, t′), (8.21)

which can be checked by inserting Eq. (8.21) into the Schrödinger equation and using the
definition Eq. (8.14b).

That the Green’s function is nothing but a propagator is immediately clear when we
write is it as

G(rt, r′t′) = −iθ(t− t′)〈r|e−iH(t−t′)|r′〉, (8.22)

which indeed is a solution of the partial differential equation defining the Green’s function,
Eq. (8.14b), the proof being left as an exercise; see Exercise 7.2. Looking at Eq. (8.22)
the Green’s function expresses the amplitude for the particle to be in state |r〉 at time t,
given that it was in the state |r′〉 at time t′. We could of course calculate the propagator
in a different basis, e.g. suppose it was in a state |φn′〉 and time t′ then the propagator for
ending in state |φn〉 is

G(nt, n′t′) = −iθ(t− t′)〈φn|e−iH(t−t′)|φn′〉. (8.23)

The Green’s function are related by a simple change of basis

G(rt, r′t′) =
∑

nn′
〈r|φn〉G(nt, n′t′)〈φn′ |r′〉. (8.24)

If we choose the basis state |φn〉 as the eigenstates of the Hamiltonian, then the Green’s
function becomes

G(rt, r′t′) = −iθ(t− t′)
∑

n

〈r|φn〉〈φn|r′〉e−iEn(t−t′). (8.25)

Propagation from one point to another in quantum mechanics is generally expressed
in terms of transmission amplitudes. As a simple example we end this section by a typical
scattering problem in one dimension. Consider an electron incident on a barrier, located
between x > 0 and x < L, the incoming wave is for x < 0 given by exp(ikx) while the
outgoing wave on the other side x > L is given t exp(ikx). Here t is the transmission
amplitude. The eigenstates are for this example thus given by

ψ(k) =
{

exp(ikx), for x < 0,
t exp(ikx), for x > L.

(8.26)
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When this is inserted into Eq. (8.25) we see that the Green’s function for the x > L and
x′ < 0 precisely describes propagator across the scattering region becomes

G(xt, x′t′) = t G0(x, x′; t, t′), x > L and x′ < 0. (8.27)

where G0 is the Green’s function in the absence of the scattering potential. From this
example it is evident that the Green’s function contains information about the transmission
amplitudes for the particle. See also Exercise 10.2.

8.3 Single-particle Green’s functions of many-body systems

In many-particle physics we adopt the Green’s function philosophy and define some simple
building blocks, also called Green’s functions, from which we obtain solutions to our
problems. The Green’s functions contain only part of the full information carried by the
wave functions of the systems but they include the relevant information for the given
problem. When we define the many-body Green’s functions it is not immediately clear
that they are solutions to differential equations as for the Schrödinger equation Green’s
functions defined above. But as you will see later they are in fact solutions of equations
of motions with similar structure justifying calling them Green’s functions. Let us simply
carry on and define the different types of Green’s functions that we will be working with.

There are various types of single-particle Green’s functions. The retarded Green’s
function is defined as

GR(rσt, r′σ′t′) = −iθ
(
t− t′

) 〈[Ψσ(rt), Ψ†
σ′(r

′t′)]B,F 〉,
{

B : bosons
F : fermions

}
(8.28)

where the (anti-) commutator [· · · , · · · ]B,F is defined as

[A,B]B = [A, B] = AB −BA,
[A,B]F = {A, B} = AB + BA.

(8.29)

Notice the similarity between the many-body Green’s function Eq. (8.28) and the one
for the propagator for the one particle wavefunction, in Eq. (8.22). For non-interacting
particles they are indeed identical.

The second type of single-particle Green’s functions is the so-called greater and lesser
Green’s functions

G>(rσt, r′σ′t′) = −i〈Ψσ(rt)Ψ†
σ′(r

′t′)〉, (8.30a)

G<(rσt, r′σ′t′) = −i (±1) 〈Ψ†
σ′(r

′t′)Ψσ(rt)〉. (8.30b)

We see that the retarded Green’s function can be written in terms of these two functions
as

GR(rσt, r′σ′t′) = θ
(
t− t′

) [
G>(rσt, r′σ′t′)−G<(rσt, r′σ′t′)

]
.

Even though we call these Green’s functions for “single-particle Green’s functions”,
they are truly many-body objects because they describe the propagation of single particles
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governed by the full many-body Hamiltonian. Therefore the single-particle functions can
include all sorts of correlation effects.

The Green’s functions in Eqs. (8.28), (8.30a), and (8.30b) are often referred to as
propagators. The reason is that they give the amplitude of a particle inserted in point r′

at time t′ to propagate to position r at time t. In this sense GR has its name “retarded”
because it is required that t > t′.

The relation between the real space retarded Green’s function and the corresponding
one in a general |ν〉-basis as defined in Eq. (1.71) is

GR(σrt, σr′t′) =
∑

νν′
ψν(σr)GR(νσt, ν′σ′t′)ψ∗ν′(σ

′r′), (8.31)

where
GR(νσt, ν′σ′t′) = −iθ

(
t− t′

) 〈[aνσ(t), a†ν′σ′(t
′)]B,F 〉, (8.32)

and similarly for G> and G<.

8.3.1 Green’s function of translation-invariant systems

For a system with translation-invariance the usual k-representation is a natural basis set.
Since the system is translation-invariant G(r, r′) can only depend on the difference r− r′

and in this case

GR(r− r′, σt, σ′t′) =
1
V

∑

kk′
eik·rGR(kσt,k′σ′t′)e−ik′·r′ ,

=
1
V

∑

kk′
eik·(r−r′)GR(kσt,k′σ′t′)ei(k−k′)·r′ . (8.33)

However, because the right hand side cannot explicitly dependent on the origin and on r′,
it follows that G(k,k′) = δk,k′G(k), allowing us to write

GR(r− r′, σt, σ′t′) =
1
V

∑

k

eik·(r−r′)GR(k, σt, σ′t′), (8.34a)

GR(k, σt, σ′t′) = −iθ
(
t− t′

) 〈[akσ(t), a†kσ′(t
′)]B,F 〉. (8.34b)

The other types of Green’s functions have similar forms.

8.3.2 Green’s function of free electrons

A particular case often encountered in the theory of quantum liquids is the simple case of
free particles. Consider therefore the Hamiltonian for free electrons (or other fermions)

H =
∑

kσ

ξkσc†kσckσ, (8.35)



8.3. SINGLE-PARTICLE GREEN’S FUNCTIONS OF MANY-BODY SYSTEMS 133

and the corresponding greater function in k-space, which we denote G>
0 to indicate that

it is the propagator of free electrons. Because the Hamiltonian is diagonal in the quantum
numbers k and σ so is the Green’s function and therefore

G>
0 (kσ, t− t′) = −i

〈
ckσ(t)c†kσ(t′)

〉
. (8.36)

Because of the simple form of the Hamiltonian we are able to find the time dependence of
the c-operators (see Eq. (5.24))

ckσ(t) = eiHtckσe−iHt = ckσe−iξkt, (8.37)

and similarly c†k(t) = c†keiξkt. An easy way to remember this is to realize that the factor
e−iHt to the right of ck must have one more electron in state k than eiHt to the left of ck.

Now G> becomes

G>
0 (kσ; t− t′) = −i〈ckσc†kσ〉e−iξk(t−t′), (8.38)

and because the Hamiltonian is diagonal in k and the occupation of free electrons is given
by the Fermi-Dirac distribution, we of course have 〈ckσc†kσ〉 = 1− nF (ξk). In exactly the
same way, we can evaluate G<

0 and finally GR
0

G>
0 (kσ, t− t′) = −i(1− nF (ξk))e−iξk(t−t′), (8.39a)

G<
0 (kσ, t− t′) = inF (ξk)e−iξk(t−t′), (8.39b)

GR
0 (kσ, t− t′) = −iθ(t− t′)e−iξk(t−t′). (8.39c)

We see that G> gives the propagation of electrons, because it requires an empty state while
G< gives the propagation of holes, because it is proportional to the number of electrons.
This is perhaps more clearly seen if we write the T = 0 definition of for example G>

0

G>
0 (k,k′, t− t′) = −i〈G|ck(t)c†k′(t

′)|0〉 = −i〈G|cke−iH(t−t′)c†k′ |G〉eiE0(t−t′), (8.40)

which precisely is the overlap between a state with an added electron in state k′ and with
a state with an added electron in k and allowing time to evolve from t′ to t. Here |G〉
denotes the groundstate of the free electrons, i.e. the filled Fermi sea, |G〉 = |FS〉.

By Fourier transforming from the time domain to the frequency domain, we get infor-
mation about the possible energies of the propagating particle. This is intuitively clear
from Eqs. (8.39) because the propagators evolve periodically in time with the period given
by the energy of the electron. For example, the electron propagator is in the frequency
domain

G>
0 (kσ, ω) = −2πi [1− nF (ξk)] δ (ξk − ω) . (8.41)

The corresponding r-dependent propagator, which expresses propagation of a particle in
real space is given by

G>
0 (r− r ′, ω)
−2πi

=
∫

dk
(2π)3

(1− nF (ξk))eik·(r−r′)δ (ξk − ω)

= d(ω) (1− nF (ω))
sin(kωρ)

kωρ
,

k2
ω

2m
= ω, ρ = |r− r′|, (8.42)
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where d(ε) = m3/2
√

ε/2/π2 is the density of states per spin in three dimensions, see
also Eq. (2.31). The propagation from point r′ to r of a particle with energy ω is thus
determined by the density of states, d, the availability of an empty state (1 − nF ), the
interference function sin (x) /x that gives the amplitude of a spherical wave spreading out
from the point r′. See also Exercise 7.3.

8.3.3 The Lehmann representation

A method we will often be using when proving formal results is the so-called Lehmann
representation, which is just another name for using the set of eigenstates, {|n〉}, of the
full Hamiltonian, H, as basis set. Let us for example study the diagonal Green’s function,
G>(νtνt′). If we insert 1 =

∑
n |n〉〈n| we get

G>(ν; t, t′) = −i〈cν(t)c†ν(t
′)〉 = −i

1
Z

∑
n

〈n|e−βHaν(t)a†ν(t
′)|n〉

= −i
1
Z

∑

nn′
e−βEn〈n|cν |n′〉〈n′|a†ν |n〉ei(En−En′ )(t−t′). (8.43)

In the frequency domain, we obtain

G>(ν; ω) =
−2πi

Z

∑

nn′
e−βEn〈n|aν |n′〉〈n′|c†ν |n〉δ(En − En′ + ω). (8.44)

In the same way we have (for fermions, c)

G<(ν; ω) =
2πi

Z

∑

nn′
e−βEn〈n|c†ν |n′〉〈n′|cν |n〉δ(En − En′ − ω),

=
2πi

Z

∑

nn′
e−βEn′ 〈n′|c†ν |n〉〈n|cν |n′〉δ(En′′ − En − ω),

=
2πi

Z

∑

nn′
e−β(En+ω)〈n′|c†ν |n〉〈n|cν |n′〉δ(En′ − En − ω),

= −G>(ν;ω)e−βω. (8.45)

The retarded Green’s function becomes (again for fermions)

GR(ν, ω) = −i

∫ ∞

0
dt ei(ω+iη)t 1

Z

∑

nn′
e−βEn

(
〈n|cν |n′〉〈n′|c†ν |n〉ei(En−En′ )t

+ 〈n|c†ν |n′〉〈n′|cν |n〉e−i(En−En′ )t
)

=
1
Z

∑

nn′
e−βEn

(
〈n|cν |n′〉〈n′|c†ν |n〉
ω + En −En′ + iη

+
〈n|c†ν |n′〉〈n′|cν |n〉
ω − En + En′ + iη

)

=
1
Z

∑

nn′

〈n|cν |n′〉〈n′|c†ν |n〉
ω + En − En′ + iη

(
e−βEn + e−βEn′

)
. (8.46)
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Taking the imaginary part of this and using (ω + iη)−1 = P 1
ω − iπδ(ω), we get

2 ImGR(ν, ω) = −2π

Z

∑

nn′
〈n|cν |n′〉〈n′|c†ν |n〉

(
e−βEn + e−βEn′

)
δ (ω + En −En′) (8.47)

= −2π

Z

∑

nn′
〈n|cν |n′〉〈n′|c†ν |n〉e−βEn(1 + e−βω)δ (ω + En − En′) ,

= −i(1 + e−βω)G>(ν, ω), (8.48)

Defining the spectral function A as

A(ν, ω) = −2 Im GR(ν, ω), (8.49)

we have derived the important general relations

iG>(ν, ω) = A(ν, ω) [1− nF (ω)] , (8.50a)
−iG<(ν, ω) = A(ν, ω)nF (ω). (8.50b)

Similar relations hold for bosons, see Exercise 7.4

8.3.4 The spectral function

The spectral function A(ν, ω) can be thought of as either the quantum state resolution of
a particle with given energy ω or as the energy resolution for a particle in a given quantum
number ν. It gives an indication of how well the excitation created by adding a particle
in state ν can be described by a free non-interacting particle. For example if we look at
the retarded propagator for free electrons in Eq. (8.39c)

GR
0 (kσ, ω) = −i

∫ ∞

−∞
dtθ(t− t′)eiω(t−t′)e−iξk(t−t′)η(t−t′)

=
1

ω − ξk + iη
, (8.51)

the corresponding spectral function is

A0(kσ, ω) = −2 ImGR
0 (kσ, ω) = 2πδ(ω − ξk). (8.52)

Thus for the idealized case of non-interaction free electrons, the spectral function is a delta
function, which tells us that an excitation with energy ω can only happen by adding an
electron to the state k given by ξk = ω, as expected.

This result is true for any quadratic Hamiltonian, i.e. non-interacting system. If we
for example have

H0 =
∑

ν

ξνc
†
νcν , (8.53)

where ν labels the eigenstates of the system. Again the spectral function is given by a
simple delta function

A0(ν, ω) = 2πδ(ω − ξν). (8.54)
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Generally, due to interactions the spectral function differs from a delta function, but
it may still be a peaked function, which then indicates that the non-interacting approxi-
mation is not too far from the truth. In Chap. 13 this is discussed in much more detail.

We will now show that the spectral function is a like a probability distribution. Firstly,
it is always positive as one must require. This follows from Eq. (8.46), the definition of the
spectral function, Eq. (8.49) and the fact that 〈n′|cν |n′〉〈n′|c†ν |n〉 = |〈n′|cν |n′〉|2. Secondly,
it obeys the sum rule ∫ ∞

−∞

dω

2π
A(ν, ω) = 1. (8.55)

This formula is easily derived by considering the Lehmann representation of −2 Im GR in
Eq. (8.47)

∫ ∞

−∞

dω

2π
A(ν, ω) = −

∫ ∞

−∞

dω

2π
2 ImGR(ν, ω)

=
∫ ∞

−∞
dω

1
Z

∑

nn′
〈n|cν |n′〉〈n′|c†ν |n〉

(
e−βEn + e−βEn′

)

× δ (ω + En −En′)

=
1
Z

∑

nn′
〈n|cν |n′〉〈n′|c†ν |n〉

(
e−βEn + e−βEn′

)

= 〈cνc
†
ν〉+ 〈c†νcν〉 = 〈cνc

†
ν + c†νcν〉 = 1, (8.56)

where the last equality follows from the Fermi operator commutation relations.
Furthermore, the spectral function is similar to the density of states at a given energy.

This is evident since the occupation nν of a given state ν is for fermions given by (8.50b)

n̄ν = 〈c†νcν〉 = −iG<(ν, t = 0)

= −i

∫ ∞

−∞

dω

2π
G<(ν, ω)

=
∫ ∞

−∞

dω

2π
A(ν, ω)nF (ω). (8.57)

The physical interpretation is that the occupation of a quantum state |ν〉 is an energy
integral of the spectral density of single particle states projected onto the state |ν〉 and
weighted by the occupation at the given energy. We of course expect that if the state |ν〉
is far below the Fermi surface, e.g. εν ¿ EF , then 〈c†νcν〉 ≈ 1. This in fact follows from
the sum rule, because if εν ¿ EF and the width of A(ν, ω) is also small compared to EF

then the Fermi function in (8.57) is approximately unity and since A(ν, ω) integrates to
2π, see above, the expected result follows.

8.3.5 Broadening of the spectral function

When interactions are present the spectral function changes from the ideal delta function to
a broadened profile. One possible mechanism of broadening in a metal is by e.g. electron-
phonon interaction, which redistributes the spectral weight because of energy exchange
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between the electron and the phonon system. Another mechanism for broadening is the
electron-electron interaction. See Chap. 13.

As a simple example we consider a Green’s function which decays in time due to
processes that scatters the particle out of the state ν. In this situation the retarded
Green’s function becomes

GR(ν, t) ≈ −iθ(t)e−iξνte−t/τ , (8.58)

where τ is the characteristic decay time. Such a decaying Green’s function corresponds to
a finite width of the spectral function

A(ν, ω) = −2 Im
∫ ∞

−∞
dteiωtGR(ν, t) ≈ 2 Im i

∫ ∞

0
dteiωte−iξνte−t/τ =

2/τ

(ω − ξν)2 + (1/τ)2
.

(8.59)
Thus the width in energy space is given by τ−1.

The simple notion of single electron propagators becomes less well defined for inter-
acting systems, which is reflected in a broadening of the spectral function. Amazingly, the
free electron picture is still a good distribution in many cases and in particular for metals,
which is quite surprising since the Coulomb interaction between the electrons is a rather
strong interaction. The reason for this will be discussed later in the Chap. 13 on Fermi
liquid theory.

8.4 Measuring the single-particle spectral function

In order to probe the single-particle properties of a many-body system, a solid state sample
say, one must have a way of measuring how the electrons propagate as a function of energy.
In practice this means taking out or inserting a particle with definite energy. There are
not too many ways for doing this because most experiments measure density or other
two-particle properties. For example the response to an electromagnetic field couples to
the charge or current, which, as we saw in the previous chapter, measures charge-charge
or current-current correlation functions, both being two particle propagators.

In principle there is only one way to measure the single particle properties, which is
to insert/remove a single electron into/out of a many-body system. This can be achieved
by a so-called tunnel junction device or by subjecting the sample to a beam of electrons.
However, in some cases also optical experiments approximately measures the single particle
density of states. For example when a photon is absorbed and an electron is kicked out
from an occupied state to e.g. a freely propagating state outside the material.

In the following we study in detail the tunneling case where an electron tunnels from
one material to the other and show how the tunneling current is expressed in terms of the
spectral functions and thus provides a direct measurement of these.

8.4.1 Tunneling spectroscopy

The tunnel experiment set-up consists of two conducting materials brought into close
contact such that electrons can tunnel from one to the other. This is illustrated in Fig. 8.1.
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Figure 8.1: Measurement setup for the tunnel experiment. Two systems are brought
into close contact, separated by an insulating material, e.g. an oxide or for the so-called
scanning tunneling microscope (STM) simply vacuum. The right panel illustrates the
electron wavefunctions in the two subsystems which have a small overlap in the insulator
region. In the tunneling Hamiltonian this is modelled by the matrix element Tνν′ .

Systems 1 and 2 are described by their respective Hamiltonians, H1 and H2, involving
electron operators, c1,ν and c2,µ.

The coupling between the two sides of the junction is due to the finite overlap of the
wavefunctions, which gives rise to a term in the Hamiltonian of the form

H12 =
∑
νµ

(
Tνµc†1,νc2,µ + T ∗νµc†2,µc1,ν

)
. (8.60)

This is the most general one-particle operator which couples the two systems. The tunnel
matrix element is defined as

Tνµ =
∫

drψ∗ν(r)H(r)ψµ(r), (8.61)

with H(r) being the (first quantization) one-particle Hamiltonian.
The current through the device is defined by the rate of change of particles, Ie = −e〈I〉,

where I = Ṅ1, and hence

I = i[H, N1] = i[H12, N1] = i
∑
νµ

∑

ν′

[(
Tνµc†1,νc2,µ + T ∗νµc†2,µc1,ν

)
, c†1,ν′c1,ν′

]

= −i
∑
νµ

(
Tνµc†1,νc2,µ − T ∗νµc†2,µc1,ν

)
≡ −i(L− L†). (8.62)

The current passing from 1 to 2 is driven by a shift of chemical potential difference, which
means that µ1 6= µ2. The coupling between the system is assumed to be very weak, since
the tunnel matrix element is exponentially suppressed with distance between the two
systems. Therefore we calculate the current to lowest order in the coupling. The current
operator itself is already linear in Tνµ and therefore we need only one more order. This
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means that linear response theory is applicable. According to the general Kubo formula
derived in chap. 6 the particle current is to first order in H12 given by

〈I〉(t) =
∫ ∞

−∞
dt′CR

IpH12
(t, t′), (8.63a)

CR
IpH12

(t− t′) = −iθ(t− t′)〈[Îp(t), Ĥ12(t′)]〉eq (8.63b)

where the time development is governed by H = H1 + H2. The correlation function CIH12

can be simplified a bit as

CR
IpH12

(t− t′) = −θ(t− t′)
〈[

L̂(t)− L̂†(t), L̂(t′) + L̂†(t′)
]〉

eq

= −θ(t− t′)
[〈[

L̂(t), L̂(t′)
]〉

eq
−

〈[
L̂†(t), L̂(t′)

]〉
eq

+ c.c.
]

. (8.64)

Now the combination
〈[

L̂(t), L̂(t′)
]〉

involves terms of the form

〈(
c†1,νc2,µ

)
(t)

(
c†1,νc2,µ

) (
t′
)〉

eq
,

with two electrons created in system 1 and two electrons annihilated in system 2 and
therefore is does not conserve the number of particles in each system. Naturally the
number of particles is a conserved quantity and matrix elements of this type must vanish.2

We are therefore left with

Ip(t) = 2Re
∫ ∞

−∞
dt′θ(t− t′)

〈[
L̂†(t), L̂(t′)

]〉
eq

= 2 Re
∫ ∞

−∞
dt′θ(t− t′)

∑
νµ

∑

ν′µ′
T ∗νµTν′µ′

〈[
ĉ†2,µ(t)ĉ1,ν(t), ĉ

†
1,ν′(t

′)ĉ2,µ′(t
′)
]〉

eq

= 2 Re
∫ ∞

−∞
dt′θ(t− t′)

∑
νµ

∑

ν′µ′
T ∗νµTν′µ′

(〈
ĉ1,ν(t)ĉ

†
1,ν′(t

′)
〉

eq

〈
ĉ†2,µ(t)ĉ2,µ′(t

′)
〉

eq

−
〈
ĉ†1,ν′(t

′)ĉ1,ν(t)
〉

eq

〈
ĉ2,µ′(t

′)ĉ†2,µ(t)
〉

eq

)
. (8.65)

Now the time dependence due to the shift in energy by the applied voltages is explicitly
pulled out such that

ĉ1(t) = c̃1(t)e
−i(−e)V1t, (8.66a)

ĉ2(t) = c̃2(t)e
−i(−e)V2t, (8.66b)

with the time dependence of c̃ being given by the Hamiltonian with a common chemical
potential µ. Furthermore, we are of course allowed to choose a basis set where the Green’s

2This is in fact not true for superconductors which are characterized by having a spontaneous breaking
of the symmetry corresponding to the conservation of particles and therefore such two-particle tunnel
processes are allowed and give rise to the so-called Josephson current.
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function of the decoupled system (i.e. without H12) is diagonal, G>
νν′ = δνν′G

>
ν . The

particle current then becomes (after change of variable t′ → t′ + t)

Ip = 2Re
∫ 0

−∞
dt′

∑
νµ

|Tνµ|2ei(−e)(V1−V2)t′ [G>
1 (ν;−t′)G<

2 (µ; t′)−G<
1 (ν;−t′)G>

2 (µ; t′)
]
.

(8.67)
After Fourier transformation (and reinsertion of the convergence factor eηt′) this expression
becomes

Ip =
∫ ∞

−∞

dω

2π

∑
νµ

|Tνµ|2
[
G>

1 (ν; ω)G<
2 (µ; ω + eV )−G<

1 (ν; ω)G>
2 (µ; ω + eV )

]
, (8.68)

with the voltage given by V = V2 − V1. The lesser and greater Green’s functions are now
written in terms of the spectral function, see Eq. (8.50), and we finally arrive at

Ip =
∫ ∞

−∞

dω

2π

∑
νµ

|Tνµ|2A1 (ν, ω) A2(µ, ω + eV )[nF (ω + eV )− nF (ω)]. (8.69)

In Eq. (8.69) we see that the current is determined by two factors: the availability of
states, given by the difference of occupation functions, and by the density of states at a
given energy. Therefore by sweeping the voltage across the junction one gets information
about A(ν, ω). This is a widely used spectroscopic principle in for example the study
of superconductors where it was used to verify the famous prediction of the BCS theory
of superconductivity that there is an excitation gap in the superconductor, and that the
density of states peaks near the gap, see Exercise 4.3 and Exercise 7.5. Also it is used to
study small structures such as quantum dots where the individual quantum levels become
visible due to size quantization.

The tunnel spectroscopy technique amounts to a sweep of an external voltage which
controls the chemical potential while measuring the differential conductance dI/dV . If
the other material is a simple material where one can assume the density of states to be
more or less constant, i.e.

∑
µ

|Tνµ|2A2 (ν, ω + eV ) ≈ const. (8.70)

then
dI

dV
∝

∫ ∞

−∞
dω

(
−∂nF (ω + eV )

∂ω

)∑
ν

A1(ν, ω). (8.71)

At low temperatures where the derivative of the Fermi function tends to a delta function
and (8.71) becomes

dI

dV
∝

∑
ν

A1(ν,−eV ). (8.72)

So the spectral function can in fact be measured in a rather direct way, which is illustrated
in Fig. 8.2.
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Figure 8.2: The principle used in tunneling spectroscopy. The left panel shows the two
density of states in the two materials. The right one is metal, where there is little variations
with energy and the experiment can therefore be used to get information about the density
of states of the left material. The two right most panels show the resulting current and
the differential conductance trace. It is seen how the differential conductance is a direct
measure of

∑
ν A1(ν, ω).

8.4.2 Optical spectroscopy

While the response to an electromagnetic field in principle is always given by the dielectric
function, which was shown in Chap. 6, there are cases where it is well approximated by
the one-particle spectral function. Such an example is photo emission spectroscopy.

8.5 Two-particle correlation functions of many-body sys-
tems

While the single-particle Green’s functions defined above measure the properties of indi-
vidual particles the higher order Green’s functions give the response of the quantum system
to processes involving several particles. One important type of higher order Green’s func-
tions are the correlation functions, which was encountered in the linear response chapter.
For example, we saw that the response to electromagnetic radiation was determined by the
auto correlation function of the charge and current densities. Typical correlation functions
that we will meet are of the type

CAA(t, t′) = −iθ(t− t′)
〈[

A(t), A(t′)
]〉

, (8.73)

where A is some two particle operator.
In order to treat a specific case, we evaluate the polarization function χ = Cρρ for a

non-interacting electron gas (see Eq. (6.39)). This function gives for example information
about the dissipation due to an applied field, because the dissipation, which is the real
part of the conductivity3, is according to Eq. (6.48) given by (take for simplicity the

3Because the power dissipated at any given point in space and time is P (r,t) = Je(r, t) · E(r, t), the
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translation-invariant case)

Re σ (q, ω) = −ωe2

q2
ImχR(q, ω). (8.74)

In momentum space the polarization is given by

χR(q, t− t′) =
∫

drχ(r− r′, t− t′)e−iq·(r−r′),

= −iθ(t− t′)
∫

dr
〈[

ρ(r, t), ρ(r′, t′)
]〉

e−iq·(r−r′),

= −iθ(t− t′)
∫

dr
1
V2

∑
q1q2

〈[
ρ(q1, t), ρ(q2, t

′)
]〉

eiq1·r+iq2·r′e−iq·(r−r′),

= −iθ(t− t′)
1
V

∑
q2

〈[
ρ(q, t), ρ(q2, t

′)
]〉

ei(q2+q)·r′ . (8.75)

Due to the translation-invariance the result cannot depend on r′ and one sees that q2 = −q
(or formally one can integrate over r′ and divide by volume to get a delta function, δq2+q,0)
and thus

χR(q, t− t′) = −iθ(t− t′)e2 1
V

〈[
ρ(q, t), ρ(−q, t′)

]〉
. (8.76)

The Fourier transform of the charge operator was derived in Eq. (1.96)

ρ(q) =
∑

kσ

c†kσck+qσ. (8.77)

For free electrons, the time dependence is given by (see Eq. (8.37))

ρ(q, t) =
∑

kσ

c†kσck+qσei(ξk−ξk+q)t, (8.78)

which, when inserted into (8.76), yields

χR
0 (q, t− t′) = −iθ(t− t′)e2 1

V
∑

kk′σσ′
〈[c†kσck+qσ, c†k′σ′ck′−q′σ′ ]〉ei(ξk−ξk+q)te

i(ξ
k′−ξ

k′−q
)t′

,

(8.79)
where the subindex “0” indicates that we are using the free electron approximation. The
commutator is easily evaluated using the formula, [c†νcµ, c†ν′cµ′ ] = c†νcµ′δµ,ν′ − c†ν′cµδν′,µ,
and we find

χR
0 (q, t− t′) = −iθ(t− t′)e2 1

V
∑

kσ

[
nF (ξk)− nF (ξk+q)

]
ei(ξk−ξk+q)(t−t′), (8.80)

total energy being dissipated is

W =

Z
drdtE(r, t) · Je(r, t)=

Z
dω

2π

1

V

X
q

E∗(q, ω) · Je(q, ω) =

Z
dω

2π

1

V

X
q

|E(q, ω)|2σ(q, ω)
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Figure 8.3: Absorption of a photon creates an electron-hole pair excitation in the free
electron gas. The possible range of q and ω is given by the dashed area in the right plot.
The strength of the interaction depends on the imaginary part of the polarization function,
see Eq. (8.82)

because 〈c†kck〉 = nF (ξk). In the frequency space, we find

χR
0 (q, ω) = −i

∫ ∞

t′
dt eiωt 1

V
∑

kσ

[
nF (ξk)− nF (ξk+q)

]
ei(ξk−ξk+q)(t−t′)e−η(t−t′),

=
1
V

∑

kσ

nF (ξk)− nF (ξk+q)
ξk − ξk+q + ω + iη

. (8.81)

This function is known as the Lindhard function, and later on, when discussing the
elementary excitations of the electron gas, we will study it in much more detail.

Within the non-interacting approximation and according to Eq. (8.74) we then have
that the dissipation of the electron gas is proportional to

− ImχR(q,ω) =
π

V
∑

kσ

[
nF (ξk)− nF (ξk+q)

]
δ(ξk − ξk+q + ω). (8.82)

We can now analyze for what q and ω excitations are possible, i.e. for which (q, ω)
Eq. (8.82) is non-zero. Let us take T = 0 where nF is either zero or one, which means
that nF (ξk) − nF (ξk+q) is only non-zero if (k > kF and |k + q| < kF ) or (k < kF and
|k + q| > kF ). The first case corresponds to ω < 0, while the latter corresponds to ω > 0.
However, because of the symmetry χR

0 (q, ω) = −χR
0 (−q,−ω), which is easily seen from

Eq. (8.81), we need only study one case, for example ω > 0. The delta function together
with the second condition thus imply

0 < ω = q2 1
2m

+ k · q 1
m

⇒
{

ωmax = 1
2mq2 + vF q

ωmin = 1
2mq2 − vF q , q > 2kF .

(8.83)



144 CHAPTER 8. GREEN’S FUNCTIONS

The possible range of excitations in (q,ω)-space is shown in Fig.8.3. The excitations which
give rise to the dissipation are electron-hole pair excitations, where an electron within the
Fermi sea is excited to a state outside the Fermi sea. There is a continuum of such
excitations given by conditions in (8.83).

While the electron-hole pair excitations are the only possible source of dissipation in the
non-interacting electron gas, this is certainly not true for the interacting case which is more
complicated. There is one particular type of excitation which is immensely important,
namely the plasmon excitation. This we study in great detail later in this course.

The excitation of the electrons gas can be measured by for example inelastic light
scattering (Raman scattering), where the change of momentum and energy of an incoming
photon is measured. The process discussed here where an electron within the Fermi sea
is scattering to an empty state outside the Fermi sea, is illustrated in the hand side of
Fig. 8.3.

8.6 Summary and outlook

The concept of Green’s functions in many-body physics has been introduced in this chap-
ters, and we will use Green’s functions in practically all discussions in the remaining part
of the course. The Green’s functions describe the dynamical properties of excitations.
We have so far seen two examples of this: the density of states is related to the spectral
function and it can be measured for example in a tunneling experiment, and secondly the
absorption of electromagnetic radiation is given by the charge-charge correlation function.

The physical picture to remember is that the Green’s function G (rσt, r′σ′t′) gives the
amplitude for propagation from the space-time point r′t′ to rt, with initial spin σ′ and
final spin σ.

In this chapter we have defined the following many-body Green’s functions

GR(rσt, r′σ′t′) = −iθ (t− t′) 〈[Ψσ(rt),Ψ†
σ′(r

′t′)]B,F 〉 retarded Green’s function
G>(rσt, σ′r′t′) = −i〈Ψσ(rt)Ψ†

σ′(r
′t′)〉 greater Green’s function

G<(rσt, σ′r′t′) = −i (±1) 〈Ψ†
σ′(r

′t′)Ψσ(rt)〉 lesser Green’s function

and their corresponding Fourier transforms. The important spectral function is in the
frequency domain and in a diagonal basis given by

A(ν, ω) = −2 ImGR(ν, ω) spectral function

The spectral function is related to the density of states. For non-interacting electrons the
spectral function is given by a Dirac delta function

A0(ν, ω) = 2πδ(ξν − ω) non-interacting case



Chapter 9

Equation of motion theory

In the previous chapters we saw how various physical observables can be expressed in
terms of retarded Green’s functions and correlation functions. In many cases we need to
calculate the time-dependence of these functions. There are several ways of attacking this
problem, one of which is the equation of motion technique. The basic idea of this method
is to generate a series of coupled differential equations by differentiating the correlation
function at hand a number of times. If these equations close the problem is in principle
solvable, and if not, one needs to invoke physical arguments to truncate the set of equations
in a reasonable fashion. For example one can neglect certain correlations. We shall study
examples of both situations in this chapter.

9.1 The single-particle Green’s function

Let us consider the retarded Green’s function GR for either fermions or bosons, Eq. (8.28)

GR(rt, r′t′) = −iθ
(
t− t′

) 〈[Ψ(rt),Ψ†(r′t′)]B,F 〉. (9.1)

We find the equation of motion for GR as the derivative with respect to the first time
argument

i∂tG
R(rt, r′t′) = (−i)

(
i∂tθ(t− t′)

) 〈[Ψ(rt), Ψ†(r′t′)]B,F 〉
+ (−i) θ(t− t′)〈[i∂tΨ(rt), Ψ†(r′t′)]B,F 〉,

= δ(t− t′)δ(r− r′)+

+ (−i) θ(t− t′)〈[i∂tΨ(rt), Ψ†(r′t′)]B,F 〉. (9.2)

Here we used that the derivative of a step function is a delta function and the commutation
relations for field operators at equal times

[
Ψ(r), Ψ†(r′)

]
B,F

= δ(r− r′). Next, let us study
the time-derivative of the annihilation operator (throughout this chapter we assume that
H is time independent)

i∂tΨ(rt) = − [H, Ψ(r)] (t) = −[H0, Ψ(r)](t)− [Vint, Ψ(r)](t), (9.3)

145
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where the interaction part of the Hamiltonian includes all the interactions in the given
problem, while H0 describes the quadratic part of the Hamiltonian, for example the kinetic
energy. If H0 is the usual kinetic energy Hamiltonian of free particles, we have

−[H0,Ψ(r)] =
1

2m

∫
dr

[
Ψ†(r′)∇2

r′Ψ(r′), Ψ(r)
]

= − 1
2m

∇2
rΨ(r). (9.4)

In this case the equation of motion becomes
(

i∂t +
1

2m
∇2

r

)
GR(rt, r′t′) = δ(t− t′)δ(r− r′) + DR(rt, r′t′), (9.5a)

DR(rt, r′t′) = −iθ(t− t′)
〈[
−[Vint, Ψ(r)](t),Ψ†(r′t′)

]
B,F

〉
. (9.5b)

The function DR thus equals the corrections to the free particle Green’s function. Af-
ter evaluating [Vint,Ψ(r)] we can, as in Sec. 5.5, continue the generation of differential
equations. It is now evident why the many-body functions, GR, are called Green’s func-
tions. The equation in (9.5a) has the structure of the classical Green’s function we saw
in Sec. 8.1, where the Green’s function of a differential operator, L, was defined as LG =
delta function.

Often it is convenient to work in some other basis, say {ν}. The Hamiltonian is again
written as H = H0 + Vint, where the quadratic part of the Hamiltonian is

H0 =
∑

νν′
tν′νa

†
ν′aν . (9.6)

The differential equation for the Green’s function in this basis

GR(νt, ν ′t′) = −iθ(t− t′)〈[aν(t), a
†
ν′(t

′)]B,F 〉 (9.7)

is found in exactly the same way as above. By differentiation the commutator with H0 is
generated

−[H0, aν ] =
∑

ν′′
tνν′′aν′′ , (9.8)

and hence
∑

ν′′
(iδνν′′∂t − tνν′′) GR(ν ′′t, ν ′t′) = δ(t− t′)δνν′ + DR(νt, ν ′t′), (9.9a)

DR(νt, ν ′t′) = −iθ(t− t′)
〈[
−[Vint, aν ](t), a

†
ν′(t

′)
]
B,F

〉
. (9.9b)

In this course we will mainly deal with problems where the Hamiltonian does not depend
explicitly on time (linear response was an exception, but even there the time dependent
problem was transformed into a correlation function of a time independent problem).
Therefore the Green’s function can only depend on the time difference t−t′ and in this case
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it is always useful to work with the Fourier transforms. Recalling that when performing
the Fourier transformation of the derivative it becomes ∂t → −iω, and that the Fourier
transform of a delta function is unity, δ(t) → 1. We can write the equation of motion in
frequency domain

∑

ν′′
[δνν′′(ω + iη)− tνν′′ ] GR(ν ′′ν ′;ω) = δνν′ + DR(ν, ν ′;ω), (9.10a)

DR(ν, ν ′; ω) = −i

∫ ∞

−∞
dtei(ω+iη)(t−t′)θ(t− t′)

〈[
−[Vint, aν ](t), a

†
ν′(t

′)
]
B,F

〉
. (9.10b)

Here it is important to remember that the frequency of the retarded functions must carry
a small positive imaginary part, η, to ensure proper convergence.

9.1.1 Non-interacting particles

For non-interacting particles, which means that the Hamiltonian is bilinear in annihilation
or creation operators, we can in fact solve for the Green’s function1. In this case we have

∑

ν′′
(δνν′′(ω + iη)− tνν′′)GR

0 (ν ′′ν ′; ω) = δνν′ (9.11)

where the subindex 0 on GR
0 indicates that it is the Green’s function corresponding to a

non-interacting Hamiltonian. As in Sec. 8.1 we define the inverse Green’s function as

(
GR

0

)−1
(νν ′; ω) = δνν′(ω + iη)− tνν′ ≡

(
GR

0

)−1

νν′ (9.12)

and in matrix notation Eq. (9.11) becomes

(
GR

0

)−1
GR

0 = 1. (9.13)

Therefore, in order to find the Green’s function all we need to do is to invert the matrix(
GR

0

)−1

νν′ . For a diagonal basis, i.e. tνν′ = δνν′εν , the solution is

(
GR

0

)
νν′ = GR

0 (ν, ω) δνν′ =
1

ω − εν + iη
δνν′ , (9.14)

which of course agrees with the result found in Eq. (8.51).

9.2 Anderson’s model for magnetic impurities

In order to exemplify the usefulness of the equation of motion technique, we proceed by
solving a famous model for the appearance of a magnetic moment of impurities of certain

1Here we only consider terms of the form c†c but also anomalous terms like cc could be included.
In Chap. 4 we saw that such a term is indeed relevant for superconductors. For the Green’s function
in a superconductor we should therefore solve the linear problem in a way similar to the Bogoliubov
transformation introduced in Chap. 4. We return to this in Chap. 15.
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Figure 9.1: The Anderson model describing magnetic impurities embedded in a homoge-
neous host metal. The electrons in the conduction band of the non-magnetic host metal,
indicated by the dashed areas, couple to the level of the magnetic impurity ion. The bare
onsite energy of the state on the magnetic ion is εd. But the energy of electrons residing
on the impurity ion also depends on whether it is doubly occupied or not, therefore the
state with two electrons residing on the ion has energy 2εd + U , as seen in (b).

magnetic ions embedded in a non-magnetic host metal. The host metal, e.g. Nb or Mo,
has a conduction band, which can be described by an effective non-interacting model

Hc =
∑

kσ

(εk − µ) c†kσckσ. (9.15)

For the impurity ion we assume that it has only one spin-degenerate state in the active
shell, which is typically the d shell. In addition to the bare energy cost for an electron to
reside in the d-state, there is an interaction energy that depends on the state being doubly
occupied or not. The impurity ion Hamiltonian is thus modelled as

Hd + HU =
∑

σ

(εd − µ) c†dσcdσ + Und↑n↓. (9.16)

where ndσ = c†dσcdσ is the number operator for d-electrons. The crucial input is here
the correlation between electrons on the impurity ion, because the interaction in the
narrower d-shell of a magnetic ion is particular strong and this is in fact the reason for the
magnetism. The states forming the conduction band are primarily s-states that are more
extended in space, and hence interactions are less important for those.

The electrons occupying the conduction band couple to the outer-most electrons of
the magnetic impurity ions, e.g. the d-shell of a Fe ion. The coupling occurs because the
d-orbital and the conduction band states overlap spatially and also lie close in energy,
giving rise to a “hybridization” between the two. The overlapping orbitals leads to a
non-diagonal matrix element of the Hamiltonian

Hhyb =
∑

kσ

tkc†dσckσ +
∑

kσ

t∗kc†kσcdσ. (9.17)
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The bare d-electron energy, εd, is below the chemical potential and from the kinetic
energy point of view, it is favorable to fill the orbital by two electrons. However, this costs
potential energy, U , and it is not possible if 2εd + U > 2µ. Furthermore, the system gains
further kinetic energy by the hybridization, which on the other hand is complicated by
the fact that the hopping in and out of the impurity orbital with, say, spin up electrons
depends on the occupation of spin down electrons. The hybridization therefore seems to
randomize the spin on the magnetic ion. The sum of these three energy contributions

H = Hc + Hd + HU + Hhyb (9.18)

is known as the Anderson model. See Fig. 9.1 for an illustration. Although the Anderson
model looks simple, its full solution is very complicated and in fact the model has a very
rich phase diagram. The Anderson model has been used to describe numerous effects in
the physics of strongly correlated electron systems.2

It turns out that for certain values of the parameters it is energetically favorable for the
system to have a magnetic moment (and thus minimizing the on-site interaction energy)
while for other values there is no magnetic moment (thus gaining maximum hybridization
energy). The physical question we try to answer here is: Under which circumstances is
the material magnetic?

9.2.1 The equation of motion for the Anderson model

The magnetization in the z-direction is given by the expectation value of the difference
n↑ − n↓ between spin up and down occupancy. The occupation of a quantum state was
found in Eq. (8.57) in terms of the spectral function. For the d-electron occupation we
therefore have

ndσ =
∫

dω

2π
nF (ω) A(dσ, ω), (9.19)

where A(dσ, ω) is the spectral function, which follows from the retarded Green’s function,
GR, see Eq. (8.49). All we need to find is then

GR(dσ; t− t′) = −iθ
(
t− t′

) 〈
{cdσ (t) , c†dσ

(
t′
)}

〉
. (9.20)

Let us write the equation of motion of this function using Eq. (9.10 ). Due to the
hybridization term the Hamiltonian is not diagonal in the d-operators and the equations
of motion will involve another Green’s function, namely

GR(kσ, dσ, t− t′) = −iθ
(
t− t′

) 〈{ckσ (t) , c†dσ

(
t′
)}〉. (9.21)

The equation of motion are thus found by letting ν ′′ in Eq. (9.10) run over both d and k
and we obtain the coupled equations

(ω + iη − εd + µ) GR(dσ, ω)−
∑

k

tkGR(kσ, dσ, ω) = 1 + UDR(dσ, ω), (9.22)

(ω + iη − εk + µ) GR(kσ, dσ, ω)− t∗kGR(dσ, ω) = 0, (9.23)

2The model in fact has a known exact solution, but the solution fills an entire book, and it is hard to
extract useful physical information from this solution.
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where

DR (dσ, ω) = −i

∫ ∞

−∞
dtei(ω+iη)(t−t′)θ

(
t− t′

) 〈{
−[nd↑nd↓, cdσ](t), c†dσ(t′)

}〉
. (9.24)

The commutator in this expression is for σ =↑
[nd↑nd↓, cd↑] = nd↓[nd↑, cd↑] = −Und↓cd↑, (9.25)

and likewise we find the commutator for spin down by interchanging up and down. We
thus face the following more complicated Green’s function

DR(d ↑, t− t′) = −iθ
(
t− t′

) 〈{nd↓ (t) cd↑(t), c
†
d↑(t

′)}〉. (9.26)

9.2.2 Mean-field approximation for the Anderson model

Differentiating the function in Eq. (9.26) with respect to time would generate yet another
function 〈{[H, nd↓ (t) d↑(t)], d

†
σ(t′)}〉 to be determined, and the set of equations does not

close. However a mean-field approximation still grasps the important physics that the
spin-up electron population depends on the spin-down population, therefore we replace
the interaction part HU by its mean-field version

HMF
U = U 〈nd↑〉nd↓ + U 〈nd↓〉nd↑ − U 〈nd↑〉 〈nd↓〉 . (9.27)

With this truncation, the function DR becomes

DR(d ↑, t− t′) = −iθ(t− t′) 〈nd↓〉 〈{cd↑(t), c
†
d↑(t

′)}〉 = 〈nd↓〉GR
(
d ↑, t− t′

)
. (9.28)

In other words, since the mean-field approximation makes the Hamiltonian quadratic we
can include U 〈nd↓ (t)〉 to the energy of the spin-up d-electrons in our equation of motion.
Inserting (9.28) in Eq. (9.22), and solving Eq. (9.23) for GR(d↑, ω) gives

(
ω + iη − εd + µ− U 〈nd↓〉

)
GR(d ↑, ω)−

∑

k

|tk|2
ω − εk + µ + iη

GR(d ↑, ω) = 1, (9.29)

and likewise for the spin-down Green’s function. The final answer is

GR(d ↑, ω) =
1

ω − εd + µ− U 〈nd↓〉 − ΣR (ω)
, (9.30a)

ΣR(ω) =
∑

k

|tk|2
ω − εk + µ + iη

. (9.30b)

The function ΣR (ω) is our first encounter with the concept known as “self-energy”. The
self-energy changes the pole of GR and furthermore gives some broadening to the spectral
function. Due to this term the “bare” d-electron energy, εd, is seen to be renormalized by
two effects: first the energy is shifted by U 〈nd↓〉 due to the interaction with the averaged
density of electrons having opposite spin, and secondly, the coupling to the conduction
band electrons gives through Σ(ω) an energy shift and most importantly an imaginary
part. In the time domain the imaginary part translates into a life-time. It arises because
the coupling to the c-electrons introduces off diagonal terms in the Hamiltonian, so that
it is no longer diagonal in the d-operators. The diagonal modes are instead superpositions
of c- and d-states.
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9.2.3 Solving the Anderson model and comparison with experiments

Assuming that the coupling tk only depends on the length of k and thus on ε, the self-
energy Σ is

ΣR(ω) =
∫

dε d(ε)
|t (ε) |2

ω − ε + µ + iη
= P

∫
dε d(ε)

|t (ε) |2
ω − ε + µ

−iπd(ω+µ)|t(ω+µ)|2. (9.31)

The density of states d (ε) and the coupling matrix element t (ε) depend on the details of
the material, but fortunately it is not important for the present considerations. Let us
assume that the product d(ε)|t(ε)|2 is constant within the band limits, −W < ε < W, and
define the important parameter Γ by

πd(ε)|t(ε)|2 = Γθ(W − |ε|). (9.32)

This approximation is good if the width of the Green’s function (which we shall see shortly
is given by Γ) turns out to be small compared to the scale on which d(ε)|t(ε)|2 typically
changes. Since in practice Γ ¿ εF , the approximation is indeed valid. For ω+µ ∈ [−W,W ]
we get

ΣR(ω) ≈ Γ
π

∫ W

−W

dε

ω − ε + µ
− iΓ

= −Γ
π

ln
∣∣∣∣
W + ω + µ

W − ω − µ

∣∣∣∣− iΓ, −W < ω + µ < W. (9.33)

The real part gives a shift of energy and since it is a slowly varying function, we simply
include it as a shift of ε and define the new onsite energy ε̃ = ε + ReΣR.

The spectral function hence becomes

A(d ↑, ω) = −2 ImGR(d ↑, ω)

=
2Γ

(ω − ε̃ + µ− U 〈nd↓〉)2 + Γ2
θ (W − |ε|) , (9.34)

where Γ is the width of the spectral function. Note that the spectral function derived here
is an example of the Lorentzian form discussed in Sec. 8.3.5.

Now the self-consistent mean-field equation for 〈nd↑〉 follows as

〈nd↑〉 =
∫

dω

2π
nF (ω)A (d ↑, ω)

=
∫ W

−W

dω

2π
nF (ω)

2Γ
(ω − ε̃ + µ− U 〈nd↓〉)2 + Γ2

. (9.35)

If we neglect the finite bandwidth, which is justified because Γ ¿ W , and if we furthermore
consider low temperatures, T = 0, we get

〈nd↑〉 ≈
∫ 0

−∞

dω

2π

2Γ
(ω − ε̃ + µ− U 〈nd↓〉)2 + Γ2

,

=
1
2
− 1

π
tan−1

(
ε̃− µ + U 〈nd↓〉

Γ

)
. (9.36)
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Figure 9.2: The upper part shows the mean field solution of the Anderson model with
the left panel being magnetization as a function of electron density nel, i.e. the chemical
potential, for two different Γ-values, while the right panel is the maximum magnetization as
function of the correlation energy. We see that there is a critical density and a critical U/Γ
where the magnetization sets in. The latter means that too strong hybridization destroys
the magnetization. The bottom panel shows experimental results (Clogston et al. (1962))
for the magnetic moment of Fe embedded in transition metals. The electron concentration
and hence µ is varied by changing the alloy. For 4 < nel < 8 the magnetization curve is
seen to be quite similar to the prediction of the model. For nel > 8 the effect of having
more than two d-orbitals in the Fe-atoms becomes important and the simple model is no
longer adequate.
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We obtain the two coupled equations

cot (πn↑) = y(n↓ − x), x = − (ε̃− µ) /U, (9.37a)
cot (πn↓) = y(n↑ − x), y = U/Γ. (9.37b)

The solution of these equation gives the occupation of the d-orbital and in particular tells
us whether there is a finite magnetization, i.e. whether there exists a solution n↓ 6= n↑,
different from the trivial solution n↓ = n↑.3 In Fig. 9.2 solutions of these equations are
shown together with experimental data. As is evident there, the model describes the
observed behavior, at least qualitatively.

9.2.4 Coulomb blockade and the Anderson model

Above we applied the mean-field approximation to the interaction. This means that the
energy of a given spin direction is only affected by the average occupation of the opposite
spin direction. In an experiment where one probes the actual occupation of the atom
this approach would not be sufficient. Such an experiment is for example a tunneling
experiment where current is passed through a single atom or a small metallic island which
can be thought of as an artificial atom. For the electron that wants to enter the island it
does matter whether the island is already occupied, because, if it is, the tunneling barrier
is increased by U . To capture this physics one must go one step beyond the mean-field
approximation and truncate the equations of motion at a later stage. This is the topic for
Exercise 8.4. See also Exercise 8.3.

9.2.5 Further correlations in the Anderson model: Kondo effect

9.3 The two-particle correlation function

The two particle correlation functions, such as the density-density correlation, was in
Chap. 6 shown to give the linear response properties. Also for this quantity one can
generate a set of equation of motions, and as for the single particle Green’s function they
are not solvable in general. But even so they may provide a good starting point for various
approximation schemes.

Consider for example the retarded charge-charge correlation function

χR(rt, r′t′) = −iθ
(
t− t′

) 〈[ρ(rt), ρ(r′t′)]〉. (9.38)

In Chap. 6 it was shown that this function is related to the dielectric response function
and therefore tells about the screening properties of the material.

9.3.1 The Random Phase Approximation (RPA)

A commonly used approximation scheme for correlation functions is the so-called Ran-
dom Phase Approximation (RPA). For the case of the electron gas, which is one of our

3We should also convince ourselves that the magnetic solution has lower energy, which it in fact does
have.
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main topics in this course, RPA is exact in some limits, but also in general gives a decent
description of the interacting electron gas. In Chap.12 RPA is derived using Feynman dia-
grams, but here we derive it using the equation of motion technique. The two derivations
give complementary insight into the physical content of the approximation.

We will for simplicity work with the translation-invariant electron gas with the Hamil-
tonian given by the usual kinetic energy plus interaction energy (here we disregard the
spin degree of freedom because it is not important)

H =
∑

k

ξkc†kck +
1
2

∑

kk′q6=0

V (q)c†k+qc†k−qck′ck = H0 + Vint. (9.39)

Furthermore, the q = 0 component is cancelled by the positively charged background.
The charge-charge correlation function is

χR(q, t− t′) = −iθ
(
t− t′

) 1
V

〈[
ρ (q,t) , ρ

(−q,t′
)]〉

, ρ (q) =
∑

k

c†kck+q. (9.40)

However, it turns out to be better to work with the function

χR(kq, t− t′) = −iθ
(
t− t′

) 〈[(c†kck+q) (t) , ρ
(−q,t′

)
]〉, (9.41)

from which we can easily obtain χ(q) by summing over k, χR(q) =
∑

k χR(kq). Let us
find the equation of motion

i∂tχ
R(kq, t− t′) = δ(t− t′)〈[(c†kck+q)(t), ρ(−q,t′)]〉

− iθ(t− t′)〈[−[H, c†kck+q] (t) , ρ(−q, t′)]〉, (9.42)

and for this purpose we need the following commutators

[
c†kck+q, ρ (−q)

]
=

∑[
c†kck+q, c†k′ck′−q

]
= c†kck − c†k+qck+q, (9.43)

[H0, c
†
kck+q] = (ξk − ξk+q) c†kck+q, (9.44)

[Vint, c
†
kck+q] = −1

2

∑

k′q′
V (q′)

{
c†
k+q′c

†
k′−q′ck′ck+q + c†k′+q′c

†
k−q′ck+qck′

− c†k′+q′c
†
kck+q+q′ck′ − c†kc†k′−qck′ck+q−q′

}
. (9.45)

When this is inserted into Eq. (9.42) a new 6-particle Green’s function is generated. Fur-
thermore for each level of the equation of motion a Green’s function with two more electron
operators pops up. At this stage we truncate this series by the random phase approxima-
tion which says that the right hand side of (9.45) is replaced by a mean-field expression
where pairs of operators are replaced by their average values. Using the recipe from Chap.
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4, we get

[Vint, c
†
kck+q] ≈ −1

2

∑

k′q′ 6=0

V (q′)
{

c†
k+q′ck+q

〈
c†k′−q′ck′

〉
+

〈
c†
k+q′ck+q

〉
c†k′−q′ck′

+
〈
c†
k−q′ck+q

〉
c†k′+q′ck′ + c†

k−q′ck+q

〈
c†k′+q′ck′

〉

−c†k′+q′ck′
〈
c†kck+q+q′

〉
−

〈
c†k′+q′ck′

〉
c†kck+q+q′

− c†kck+q−q′
〈
c†k′−qck′

〉
−

〈
c†kck+q−q′

〉
c†k′−qck′ + const.

}

=
∑

k′
V (q)

(〈
nk+q

〉− 〈nk〉
)
c†k′−q′ck′ , (9.46)

where we used that 〈c†kck′〉 = 〈nk〉δk,k′ . Note that the exchange pairings which we included
in the Hartree-Fock approximation is not included here.

Collecting everything and going to the frequency domain the equation of motion be-
comes,

(ω + iη + ξk − ξk+q) χR(kq, ω) =
(〈

nk+q

〉− 〈nk〉
)
(

1− V (q)
∑

k′
χR(k′q, ω)

)
, (9.47)

which, when summed over k, allows us to find an equation for χR(q, ω)

χR(q, ω) =
1
V

∑

k

χR(kq, ω) =
1
V

∑ 〈nk+q〉 − 〈nk〉
ω + ξk − ξk+q + iδ

(
1 + V (q) χR(q, ω)

)
, (9.48)

and hence

χR,RPA(q, ω) =
χR

0 (q, ω)
1− V (q)χR

0 (q, ω)
. (9.49)

This is the RPA result of the polarizability function. The free particle polarizability
χR

0 (q, ω) was derived in Sec. 8.5. The RPA dielectric function becomes

εRPA(q,ω) =
[
1 + V (q)χR(q, ω)

]−1
= 1− V (q) χR

0 (q, ω). (9.50)

Replacing the expectation values, nk, by the Fermi-Dirac distribution function, we
recognize the Lindhard function studied in Sec. 8.5. There we studied a non-interacting
electron gas and found that χR(q, ω) indeed was equal to the numerator in (9.49) and the
two results therefore agree nicely.

In Sec. 8.5 we also analyzed the excitation of the non-interacting electrons gas and the
analysis there is basically still correct. The excitations which were shown in Sec. 8.5 to be
related to the imaginary part of χR(q, ω) and therefore the structure of the electron-hole
excitations of the non-interacting gas (depicted in Fig. 8.3) is preserved here, but of course
the strength is modified by the real part of the denominator of (9.49).

However, the interactions add other fundamental excitations, namely collective modes,
and in the case of a charge liquid these modes are the plasmon modes. The additional
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modes are given by the part where the imaginary part of χR
0 (q, ω) is zero because then

there is a possibility of a pole in the polarizability. If we set ImχR
0 (q, ω) = −iδ, we have

− ImχR(q, ω) =
δ[

1− V (q)Re χR
0 (q, ω)

]2 + δ2
= πδ

(
1− V (q)Re χR

0 (q, ω)
)
. (9.51)

This means that there is a well-defined mode when 1 − V (q) ReχR
0 (q, ω) = 0 and this

is the plasma oscillation mode, also called a plasmon. The plasmon is studied in detail
in Chap. 12, here we just mention that the condition for the mode turns out to be
ω ∝

√
ω2

pl + const. q2.

9.4 Summary and outlook

In this chapter we have seen a method to deal with the dynamical aspects of interacting
many-body systems, namely the equation of motion method applied to the Green’s func-
tions. The set of differential equation is not soluble in general, and in fact only a very small
set of Hamiltonians describing interacting systems can be solved exactly. Therefore ap-
proximations are necessary and we saw particular examples of this, namely the mean-field
solution of a magnetic impurity embedded in a metallic host, and the RPA approximation
for the charge auto correlation function.

In the following chapter we use the equation of motion to derive the Green’s functions
in the imaginary time formalism and to derive the famous Wick’s theorem. Wick’s theorem
will then pave the way for introducing the Feynman diagrams.



Chapter 10

Imaginary time Green’s functions

We have seen that physical observables often have the form of Green’s functions, or that
they can be derived in a simple way from the Green’s functions. In all the situations we
have studied so far the physical observables have been related to the retarded Green’s
functions, which in general are defined as

CR
AB(t, t′) = −iθ(t− t′)

〈[
A(t), B(t′)

]
B,F

〉
,

{
B : for bosons
F : for fermions

}
, (10.1)

When A and B are single particle annihilation and creation operators, it is the single
particle Green’s function defined in Eq. (8.28) from which one could derive the density of
states. When A and B are two-particle operators, e.g. the density or current operators,
CR has the form of a retarded correlation function that was shown to give the linear
response results of Chap. 6. In Eq. (10.1) boson operators mean either single particle
operators like b or b† or an even number of fermion operators such as c†c appearing in for
example the density operator ρ. The important thing that distinguishes the boson case
from the fermion case is the sign change that is obtained upon interchange.

In this chapter, we introduce a mathematical method to work out the retarded Green’s
functions. For technical reasons it is convenient to use a mapping to a more general Green’s
function, where the time and frequency arguments are imaginary quantities. This has no
real physical meaning, and is only a clever mathematical trick, which we need to learn.
This is much like treating electrical circuit theory with complex numbers even though
all currents and voltages are real. The present chapter concentrates on the mathematical
details of the technique and applications are left for later. The imaginary time formalism is
particularly useful when we want to perform perturbation theory, and this will eventually
lead us to the Feynman diagrams.

Let us for example look at the definition of the following correlation function

CAB(t, t′) = − 〈
A(t)B(t′)

〉
, (10.2)

from which we can find the retarded function as CR = iθ(t−t′)(CAB∓CBA). By definition
we have

CAB(t, t′) = − 1
Z

Tr(e−βHA(t)B(t′)). (10.3)

157
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Suppose the Hamiltonian is H = H0 + V , where V is the perturbation. Then we saw in
Chap. 5 that the interaction picture provides a systematic way of expanding in powers of
V. We could try to utilize this and write CAB as

CAB(t, t′) = − 1
Z

Tr
[
e−βHÛ(0, t)Â(t)Û(t, t′)B̂(t′)Û(t′, 0)

]
, (10.4)

In Eq. (5.18) we saw also how a single Û operator could be expanded as a time-ordered
exponential. This would in Eq. (10.4) result in three time-ordered exponentials, which
could be collected into a single time-ordered exponential. But the trouble arises for the
density matrix e−βH , which should also be expanded in powers of the interaction. To
make a long story short: this is a mess and a new idea is therefore needed. The solution
to this problem is to use imaginary times instead of real times, but bare in mind that this
is purely a mathematical trick without physical contents.

To employ imaginary time is not as far fetched as it might look, because both the den-
sity operator ρ = e−βH/Z and the time evolution operator U(t) = e−iHt are both expo-
nential functions of the Hamiltonian.1 They therefore satisfy similar differential equations:
U satisfies the Schrödinger equation, i∂tU = HU while ρ is the solution to ∂βρ = −Hρ,
which is known as the Bloch equation. In order to treat both U and ρ in one go, one
replaces the time argument by a imaginary quantity t → −iτ , where τ is real and has
the dimension time. In the end this means that both U and ρ can be treated in just one
expansion in powers of V . Furthermore, we will see that there is a well-defined method
to obtain the physically relevant quantity, i.e. to go back to physical real times from the
imaginary time function.

As for real time we can define an imaginary time Heisenberg picture by substituting
it by τ . We define

A(τ) = eτHAe−τH , τ a Greek letter. (10.5)

In this notation, you should use the imaginary time definitions when the time argument
is a Greek letter and the usual definition when the times are written with roman letters,
so

A(t) = eitHAe−itH , t a Roman letter. (10.6)

Similar to the interaction picture defined for real times, we can define the interaction
picture for imaginary times as

Â(τ) = eτH0Ae−τH0 . (10.7)

Letting H = H0 + V , the relation between the Heisenberg and the interaction picture
in imaginary time follows the arguments in Chap. 5. If we consider a product of oper-
ators A(τ)B(τ ′) and write it in terms of the corresponding operators in the interaction
representation, we get

A(τ)B(τ ′) = Û(0, τ)Â(τ)Û(τ, τ ′)B̂(τ ′)Û(τ ′, 0), (10.8)
1Note that we consider only time-independent Hamiltonians in this section. If they are not time-

independent, one cannot use the ordinary equilibrium statistical mechanics but instead one must use a
non-equilibrium formalism. This we did in the linear response limit in Chap. 6, but we will not cover the
more general case of non-linear time dependent response in this course.
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where, like in Eq. (5.12), the time-evolution operator Û in the interaction picture is

Û(τ, τ ′) = eτH0e−(τ−τ ′)He−τ ′H0 . (10.9)

From this it follows directly that

Û(τ, τ ′′)Û(τ ′′, τ ′) = Û(τ, τ ′). (10.10)

An explicit expression for U(τ, τ ′) is found in analogy with the derivation of Eq. (5.18).
First we differentiate Eq. (10.9) with respect to τ and find

∂τ Û(τ, τ ′) = eτH0(H0 −H)e−(τ−τ ′)He−τ ′H0 = −V̂ (τ)Û(τ, τ ′). (10.11)

This is analogous to Eq. (5.13) and the boundary condition, Û(τ, τ) = 1, is of course the
same. Now the same iterative procedure is applied and we end with

Û(τ, τ ′) =
∞∑

n=0

1
n!

(−1)n

∫ τ

τ ′
dτ1 · · ·

∫ τ

τ ′
dτn Tτ

(
V̂ (τ1) · · · V̂ (τn)

)

= Tτ exp
(
−

∫ τ

τ ′
dτ1V̂ (τ1)

)
. (10.12)

The time ordering is again the same as defined in Sec. 5.3, i.e. the operators are ordered
such that Tτ (A(τ)B(τ ′)) is equal to A(τ)B(τ ′) for τ > τ ′ and B(τ ′)A(τ) when τ ′ > τ .

Above it was argued that the density operator naturally can be treated within the
imaginary time formalism, and indeed it can, because by combining Eqs. (10.9) and (10.12)
we obtain

e−βH = e−βH0 Û(β, 0) = e−βH0 Tτ exp
(
−

∫ β

0
dτ1V̂ (τ1)

)
. (10.13)

Consider now the time ordered expectation value of the pair of operators in Eq. (10.8)
〈
TτA(τ)B(τ ′)

〉
=

1
Z

Tr
[
e−βHTτA(τ)B(τ ′)

]
. (10.14)

Utilizing Eqs. (10.8) and (10.13) we can immediately expand in powers of V

〈
TτA(τ)B(τ ′)

〉
=

1
Z

Tr
[
e−βH0Û(β, 0) Tτ (Û(0, τ)Â(τ)Û(τ, τ ′)B̂(τ ′)Û(τ ′, 0))

]
. (10.15)

This can be written in a much more compact way relying on the properties of Tτ and
Eq. (10.10)

〈
TτA(τ)B(τ ′)

〉
=

1
Z

Tr
[
e−βH0Tτ Û(β, 0)Â(τ)B̂(τ ′)

]
=

〈
Tτ Û(β, 0)Â(τ)B̂(τ ′)

〉
0〈

Û(β, 0)
〉

0

, (10.16)

where we have used Z = Tr
[
e−βH

]
= Tr

[
e−βH0Û(β, 0)

]
, and where the averages 〈· · · 〉0

depending on e−βH0 appear after normalizing with 1/Z0 = 1/Tr
[
e−βH0

]
. This result

demonstrates that the trick of using imaginary time indeed allows for a systematic expan-
sion of the complicated looking expression in Eq. (10.4). However, before we can see the
usefulness fully, we need to relate the correlation functions written in imaginary time and
the correlation function with real time arguments.
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10.1 Definitions of Matsubara Green’s functions

The imaginary time Green’s functions, also called Matsubara Green’s function, is defined
in the following way

CAB(τ, τ ′) ≡ − 〈
Tτ

(
A(τ)B(τ ′)

)〉
, (10.17)

where the time-ordering symbol in imaginary time has been introduced. It means that
operators are ordered according to history and just like the time-ordering operator seen
in Chap. 5 with the later “times” to the left

Tτ

(
A(τ)B(τ ′)

)
= θ(τ − τ ′)A(τ)B(τ ′)± θ

(
τ ′ − τ

)
B(τ ′)A(τ),

{
+ for bosons,
− for fermions.

(10.18)
The next question is: What values can τ have? From the definition in Eq. (10.17)

three things are clear. Firstly, CAB(τ, τ ′) is a function of the time difference only, i.e.
CAB(τ, τ ′) = CAB(τ − τ ′). This follows from the cyclic properties of the trace. We have
for τ > τ ′

CAB(τ, τ ′) =
−1
Z

Tr
[
e−βHeτHAe−τHeτ ′HBe−τ ′H

]

=
−1
Z

Tr
[
e−βHe−τ ′HeτHAe−τHeτ ′HB

]

=
−1
Z

Tr
[
e−βHe(τ−τ ′)HAe−(τ−τ ′)HB

]

= CAB(τ − τ ′), (10.19)

and of course likewise for τ ′ > τ . Secondly, convergence of CAB(τ, τ ′) is guaranteed only
if −β < τ − τ ′ < β. For τ > τ ′ the equality τ − τ ′ < β is clearly seen if one uses
the Lehmann representation in Eq. (10.19) to get a factor exp (− [β − τ + τ ′] En) , and,
likewise, the second equality is obtained if τ < τ ′. Thirdly, we have the property

CAB(τ) = ±CAB(τ + β), for τ < 0, (10.20)

which again follows from the cyclic properties of the trace. The proof of Eq. (10.20) for
τ < 0 is

CAB(τ + β) =
−1
Z

Tr
[
e−βHe(τ+β)HAe−(τ+β)HB

]

=
−1
Z

Tr
[
eτHAe−τHe−βHB

]

=
−1
Z

Tr
[
e−βHBeτHAe−τH

]

=
−1
Z

Tr
[
e−βHBA(τ)

]

= ±−1
Z

Tr
[
e−βHTτ (A(τ)B)

]

= ±CAB(τ), (10.21)

and similarly for τ > 0.
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10.1.1 Fourier transform of Matsubara Green’s functions

Next we wish to find the Fourier transforms with respect to the “time” argument τ .
Because of the properties above, we take CAB(τ) to be defined in the interval −β < τ < β,
and thus according to the theory of Fourier transformations we have a discrete Fourier
series on that interval given by

CAB(n) ≡ 1
2

∫ β

−β
dτ eiπnτ/βCAB(τ), (10.22a)

CAB(τ) =
1
β

∞∑
n=−∞

e−iπnτ/βCAB(n). (10.22b)

However, due to the symmetry property (10.21) this can be simplified as

CAB(n) =
1
2

∫ β

0
dτ eiπnτ/βCAB(τ) +

1
2

∫ 0

−β
dτ eiπnτ/βCAB(τ),

=
1
2

∫ β

0
dτ eiπnτ/βCAB(τ) + e−iπn 1

2

∫ β

0
dτ eiπnτ/βCAB(τ − β),

=
1
2

(
1± e−iπn

) ∫ β

0
dτ eiπnτ/βCAB(τ), (10.23)

and since the factor
(
1± e−iπn

)
is zero for plus sign and n odd or for minus sign and n

even and 2 otherwise, we obtain

CAB(n) =
∫ β

0
dτ eiπnτ/βCAB(τ),

{
n is even for bosons,
n is odd for fermions.

(10.24)

From now on we use the following notation for the Fourier transforms of the Matsubara
Green’s functions

CAB(iωn) =
∫ β

0
dτ eiωnτCAB(τ),

{
ωn = 2nπ

β , for bosons,

ωn = (2n+1)π
β , for fermions.

(10.25)

The frequency variable ωn is denoted a Matsubara frequency. Note how the information
about the temperature is contained in the Matsubara frequencies through β.

Finally, we remark that the boundaries of the integral
∫ β
0 dτ in Eq. (10.25) leads to

a minor ambiguity of how to treat the boundary τ = 0, for example if CAB(τ) includes
a delta function δ(τ). A consistent choice is always to move the time argument into the
interior of the interval [0, β], e.g replace δ(τ) by δ(τ − 0+).

10.2 Connection between Matsubara and retarded functions

We shall now see why the Matsubara Green’s functions have been introduced at all. In
the frequency domain they are in fact the same analytic function as the usual real times
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Green’s functions. In other words, there exists an analytic function CAB(z), where z
is a complex frequency argument in the upper half plane, that equals CAB(iωn) on the
imaginary axis and CR

AB(ω) on the real axis. This means that once we have one of the
two, the other one follows by analytic continuation. Since it is in many cases much easier
to compute the Matsubara function, CAB(iωn), this is a powerful method for finding the
corresponding retarded function. Indeed we shall now show that the appropriate analytic
continuation is CR

AB(ω) = CAB(iωn → ω + iη),where η is a positive infinitesimal.
The relation between the two functions CAB and CR

AB is proven by use of the Lehmann
representation. In Sec. 8.3.3 we calculated the retarded single particle Green’s function
and the result Eq. (8.46) can be carried over for fermions. In the general case we get2

CR
AB(ω) =

1
Z

∑

nn′

〈n |A|n′〉 〈n′ |B|n〉
ω + En −En′ + iη

(
e−βEn − (±)e−βE

n′
)

, (10.26)

The Matsubara function is calculated in a similar way. For τ > 0, we have

CAB(τ) =
−1
Z

Tr
[
e−βHeτHAe−τHB

]

=
−1
Z

∑

nn′
e−βEn

〈
n |A|n′〉 〈

n′ |B|n〉
eτ(En−En′ ), (10.27)

and hence

CAB(iωn) =
∫ β

0
dτ eiωnτ −1

Z

∑

nn′
e−βEn

〈
n |A|n′〉 〈

n′ |B|n〉
eτ(En−En′ ),

=
−1
Z

∑

nn′
e−βEn

〈n |A|n′〉 〈n′ |B|n〉
iωn + En − En′

(
eiωnβeβ(En−En′ ) − 1

)
,

=
−1
Z

∑

nn′
e−βEn

〈n |A|n′〉 〈n′ |B|n〉
iωn + En − En′

(
±eβ(En−En′ ) − 1

)

=
1
Z

∑

nn′

〈n |A|n′〉 〈n′ |B|n〉
iωn + En − En′

(
e−βEn − (±)e−βEn′

)
, (10.28)

Eqs. (10.26) and (10.28) show that CAB(iωn) and CR
AB(ω) coincide and that they are just

special cases of the same function, because we can generate both CAB(iωn) and CR
AB(ω)

from the following function defined in the entire complex plane except for the real axis

CAB(z) =
1
Z

∑

nn′

〈n |A|n′〉 〈n′ |B|n〉
z + En −En′

(
e−βEn − (±) e−βE

n′
)

. (10.29)

This function is analytic in the upper (or lower) half plane, but has a series of poles at
En′−En along the real axis. According to the theory of analytic functions: if two functions

2Note that it is assumed that the grand canonical ensemble is being used because the complete set
of states includes states with any number of particles. Therefore the connection between imaginary time
functions and retarded real time functions derived here is only valid in this ensemble.
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Figure 10.1: The analytic continuation procedure in the complex z-plane where the Mat-
subara function defined for z = iωn goes to the retarded or advanced Green’s functions
defined infinitesimally close to real axis.

coincide in an infinite set of points then they are fully identical functions within the entire
domain where at least one of them is a analytic function and, furthermore, there is only
one such common function. This means that if we know CAB(iωn) we can find CR

AB(ω) by
analytic continuation:

CR
AB(ω) = CAB(iωn → ω + iη). (10.30)

Warning: this way of performing the analytic continuation is only true when CAB(iωn)
is written as a rational function which is analytic in the upper half plane. If not, it
is not obvious how to perform the continuation. For example look at the definition in
Eq. (10.25). If we näıvely insert iωn → ω + iη before doing the integral, the answer is
completely different and of course wrong. Later we shall see examples of how to perform
the analytic continuation correctly.

To summarize: Using the Lehmann representation we have shown that there exists
a function CAB(z) which is analytic for z not purely real and which coincides with the
Matsubara function, i.e. CAB(z = iωn) = CAB(iωn). On the real axis coming from above
this function is identical to the retarded function, i.e. CAB(z = ω + i0+) = CR

AB(ω).
However, it is not a simple task to determine CAB(z) unless it has been reduced to an
rational function as in Eq. (10.28), where it is evident that the replacement in (10.30)
iωn → z → ω + iη gives the right analytic function. This is illustrated in Fig. 10.1.

10.2.1 Advanced functions

The function CAB(z) is analytic for all z away from the real axis. Therefore instead
of the continuation in the upper half plane, we could do the same thing in the lower half
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plane iωn → z → ω − iη, which gives the so-called advanced Green’s function,

CA
AB(ω) = CAB(iωn → ω − iη). (10.31)

The advanced Green’s function is in the time domain defined as

CA
AB(t, t′) = iθ(t′ − t)

〈[
A(t), B(t′)

]
B,F

〉
. (10.32)

The term “advanced” means that it gives the state of the system at previous times
based on the state of system at present times. The retarded one, as was explained in
Chap. 6, gives the present state of the system as it has evolved from the state at previous
times, i.e. the effect of retardation.

10.3 Single-particle Matsubara Green’s function

An important type of Matsubara functions are the single-particle Green’s function G. They
are defined as

G(rστ, r′στ ′) = −
〈
Tτ

(
Ψσ(r,τ)Ψ†

σ(r′, τ ′)
)〉

, real space, (10.33a)

G(ντ, ν ′τ ′) = −
〈
Tτ

(
cν(τ)c†ν′(τ

′)
)〉

, {ν} representation. (10.33b)

10.3.1 Matsubara Green’s function for non-interacting particles

For non-interacting particles the Matsubara Green’s functions can be evaluated in the
same way we found the retarded Green’s function in Sec. 8.3.2. Suppose the Hamiltonian
is diagonal in the ν-quantum numbers

H0 =
∑

ν

ξνc
†
νcν , (10.34)

so that

cν(τ) = eτH0cνe
−τH0 = e−ξντ cν , c†ν(τ) = eτH0c†νe

−τH0 = eξντ c†ν , (10.35)

which gives

G0(ν, τ − τ ′) = −
〈
Tτ

(
cν(τ)c†ν(τ

′)
)〉

,

= −θ(τ − τ ′)〈cν(τ)c†ν(τ
′)〉 − (±) θ(τ ′ − τ)〈c†ν(τ ′)cν(τ)〉

= −
[
θ(τ − τ ′)〈cνc

†
ν〉(±)θ(τ ′ − τ)〈c†νcν〉

]
e−ξν(τ−τ ′), (10.36)

For fermions this is

G0,F (ν, τ − τ ′) = − [
θ(τ − τ ′)(1− nF (ξν))− θ(τ ′ − τ)nF (ξν)

]
e−ξν(τ−τ ′) (10.37)
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while the bosonic free particle Green’s function reads

G0,B(ν, τ − τ ′) = − [
θ(τ − τ ′) (1 + nB(ξν)) + θ(τ ′ − τ)nB(ξν)

]
e−ξν(τ−τ ′). (10.38)

In the frequency representation, the fermionic Green’s function is

G0,F (ν, ikn) =
∫ β

0
dτ eiknτG0,F (ν, τ), kn = (2n + 1)π/β

= − (1− nF (ξν))
∫ β

0
dτ eiknτe−ξντ ,

= − (1− nF (ξν))
1

ikn − ξν

(
eiknβe−ξνβ − 1

)
,

=
1

ikn − ξν
, (10.39)

because eiknβ = −1 and 1− nF (ε) =
(
e−βε + 1

)−1, while the bosonic one becomes

G0,B(ν, iqn) =
∫ β

0
dτ eiqnτG0,B(ν, τ), qn = 2nπ/β

= − (1 + nB(ξν))
∫ β

0
dτ eiqnτe−ξντ ,

= − (1 + nB(ξν))
1

iqn − ξν

(
eiqnβe−ξνβ − 1

)
,

=
1

iqn − ξν
, (10.40)

because eiqnβ = 1 and 1+nB(ε) = − (
e−βε − 1

)−1. Here we have anticipated the notation
that is used later: Matsubara frequencies ikn and ipn are used for fermion frequencies,
while iqn and iωn are used for boson frequencies.

According to our recipe Eq. (10.30), the retarded free particles Green’s functions are
for both fermions and bosons

GR
0 (ν, ω) =

1
ω − ξν + iη

, (10.41)

in agreement with Eq. (8.51).

10.4 Evaluation of Matsubara sums

When working with Matsubara Green’s functions we will often encounter sums over Mat-
subara frequencies, similar to integrals over frequencies in the real time language. For
example sums of the type

S1(ν, τ) =
1
β

∑

ikn

G(ν, ikn)eiknτ , τ > 0, (10.42)
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or sums with products of Green’s functions. The imaginary time formalism has been
introduced because it will be used to perform perturbation expansions, and therefore the
types of sums we will meet are often products of the such free Green’s functions, e.g.

S2(ν1, ν2, iωn, τ) =
1
β

∑

ikn

G0(ν1, ikn)G0(ν2, ikn + iωn)eiknτ , τ > 0. (10.43)

This section is devoted to the mathematical techniques for evaluating such sums. In order
to be more general, we define the two generic sums

SF (τ) =
1
β

∑

ikn

g(ikn)eiknτ , ikn fermion frequency (10.44a)

SB(τ) =
1
β

∑

iωn

g(iωn)eiωnτ , iωn boson frequency (10.44b)

and study them for τ > 0.
To evaluate these, the trick is to rewrite them as integrals over a complex variable and

to use residue theory. For this we need two functions, n(z), which have poles at z = ikn

and z = iωn, respectively. These functions turn out to be the well known Fermi and Bose
distribution functions

nF (z) =
1

eβz + 1
, poles for z = i(2n + 1)π/β, (10.45a)

nB(z) =
1

eβz − 1
, poles for z = i(2n)π/β. (10.45b)

The residues at these values are

Res
z=ikn

[nF (z)] = lim
z→ikn

(z − ikn)
eβz + 1

= lim
δ→0

δ

eβikneβδ + 1
= − 1

β
, (10.46a)

Res
z=iωn

[nB(z)] = lim
z→iωn

(z − iωn)
eβz − 1

= lim
δ→0

δ

eβiωneβδ − 1
= +

1
β

. (10.46b)

According to the theory of analytic functions, the contour integral which encloses one of
these points, but no singularity of g(z), is given by

∮
dz nF (z)g(z) = 2πi Res

z=ikn

[nF (z)g(ikn)] = −2πi

β
g(ikn), (10.47)

for fermions and similarly for boson frequencies
∮

dz nB(z)g(z) = 2πi Res
z=ikn

[nB(z)g(iωn)] =
2πi

β
g(iωn). (10.48)

If we therefore define contours, C, which enclose all point z = ikn in the fermionic case
and all points z = iωn in the bosonic case, but only regions where g(z) is analytic, we can
write

SF = −
∫

C

dz

2πi
nF (z)g(z)ezτ , (10.49a)

SB = +
∫

C

dz

2πi
nB(z)g(z)ezτ . (10.49b)
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Figure 10.2: The contour used to perform the Matsubara sum for a function with known
poles, zj . The contribution from the contour goes to zero as |z| → ∞ and hence the
contributions from the z = ikn and z = zj poles add up to zero.

In the following two subsections, we use the contour integration technique in two special
cases.

10.4.1 Summations over functions with simple poles

Consider a Matsubara frequency sum like Eq. (10.43) but let us take a slightly more
general function which could include more free Green’s function. Let us therefore consider
the sum

SF
0 (τ) =

1
β

∑

ikn

g0(ikn)eiknτ , τ > 0, (10.50)

where g0(z), has a number of known simple poles, e.g. in the form of non-interacting
Green’s functions like (10.43)

g0(z) =
∏

j

1
z − zj

, (10.51)

where {zj} is the set of known poles and hence g0(z) is analytic elsewhere in the z-plane.
Because we know the poles of g0 a good choice for a contour is to take one that covers
the entire complex plane C∞ : z = R eiθ where R → ∞, see Fig. 10.2. Such a contour
would give us the contribution for poles of nF (z) plus the contributions from poles of
g0(z). Furthermore, the contour integral itself gives zero because the integrand goes to
zero exponentially for z ∈ C∞ (remember 0 < τ < β)

nF (z)eτz =
eτz

eβz + 1
∝

{
e(τ−β)Re z → 0, for Re z > 0,
eτ Re z → 0, for Re z < 0.

(10.52)
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Figure 10.3: The contour used to perform the Matsubara sum for a function with known
branch cuts, i.e. it is known to be an analytic function in the entire complex plane exempt
on the branch cuts. The contribution from the outer parts of the contour goes to zero as
|z| → ∞ and hence only the paths parallel to the cut (here the real axis) contribute.

Hence

0 =
∫

C∞

dz

2πi
nF (z)g0(z)ezτ

= − 1
β

∑

ikn

g0(ikn)eiknτ +
∑

j

Res
z=zj

[g0(z)]nF (zj)ezjτ , (10.53)

and thus
SF

0 (τ) =
∑

j

Res
z=zj

[g0(z)]nF (zj)ezjτ . (10.54)

The Matsubara sum has thus been simplified considerably and we shall use this formula
several times during the course. For bosons the derivation is almost identical and we get

1
β

∑

iωn

g0(iωn)eiωnτ = SB
0 (τ) = −

∑

j

Res
z=zj

[g0(z)]nB(zj)ezjτ . (10.55)

10.4.2 Summations over functions with known branch cuts

The second type of sums we will meet are of the form in Eq.(10.42). If it is the full Green’s
function, including for example the influence of interaction, we do not know the poles of
the Green’s function, but we do know that it is analytic for z not on the real axis. This
general property of the Green’s function was shown in Sec. 10.2.

In general, consider the sum

S(τ) =
1
β

∑

ikn

g(ikn)eiknτ , τ > 0, (10.56)
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where it is known that g(z) is analytic in the entire complex plane except on the real
axis. A contour which includes all points z = ikn and no singularities of g is therefore
C = C1 + C2 depicted in Fig. 10.3. As for the example in the previous section, see Eq.
(10.52), the part where |z| → ∞ does not contribution to the integral and we are left
with the parts of the contour running parallel to the real axis. They are shifted by an
infinitesimal amount η away from the real axis on either side

S(τ) = −
∫

C1+C2

dz

2πi
nF (z)g(z)ezτ ,

= − 1
2πi

∫ ∞

−∞
dε nF (ε) [g(ε + iη)− g(ε− iη)] eετ . (10.57)

For example, the sum in Eq. (10.42), becomes in this way

S1(ν,τ) = − 1
2πi

∫ ∞

−∞
dε nF (ε) [G(ν, ε + iη)− G(ν, ε− iη)] eετ ,

= − 1
2πi

∫ ∞

−∞
dε nF (ε)2i Im

[
GR(ν, ε)

]
eετ

=
∫ ∞

−∞

dε

2π
nF (ε)A(ν, ε)eετ , (10.58)

according to the definition of the spectral function in Eq. (8.49). In the second equality
we used that G(ε − iη) = [G(ε + iη)]∗ which follows from Eq. (10.29) with A = cν and
B = c†ν . Now setting the time argument in the single particle imaginary time Green’s
function, Eq. (10.33b), to a negative infinitesimal 0−, we have in fact found an expression
for the expectation value of the occupation, because

〈c†νcν〉 = G(ν, 0−)

=
1
β

∑

ikn

G(ν, ikn)e−ikn0− = S1(ν,0+)

=
∫ ∞

−∞

dε

2π
nF (ε)A(ν, ε), (10.59)

which agrees with our previous finding, Eq. (8.57).

10.5 Equation of motion

The equation of motion technique, used in Chap. 8 to find various Green’s functions,
can also be used for the Matsubara functions. In the imaginary time formalism the time
derivative of an operator is

∂τA(τ) = ∂τ

(
eτHAe−τH

)
= eτH [H, A]e−τH = [H, A](τ) (10.60)

If we differentiate the Matsubara function Eq. (10.17) with respect to τ , we obtain

−∂τCAB(τ − τ ′) =
∂

∂τ

(
θ(τ − τ ′)

〈
A(τ)B(τ ′)

〉± θ(τ ′ − τ)
〈
B(τ ′)A(τ)

〉)
,

= δ(τ − τ ′) 〈AB − (±)BA〉+
〈
Tτ

(
[H,A](τ)B(τ ′)

)〉
,
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where the minus sign in 〈AB − (±)BA〉 is for fermion operators, whereas the plus sign
should be used for boson operators.

For the single-particle Green’s functions defined in Eqs. (10.33), we then get for both
fermion and boson Green’s functions

−∂τG(rτ, r′τ ′) = δ(τ − τ ′)δ(r− r′) +
〈
Tτ ([H, Ψ(r)](τ)Ψ†(r′, τ ′))

〉
, (10.61a)

−∂τG(ντ, ν′τ ′) = δ(τ − τ ′)δνν′ +
〈
Tτ ([H, cν ](τ)c†ν′(τ

′))
〉

. (10.61b)

For non-interacting electrons the Hamiltonian is quadratic, i.e. of the general form

H0 =
∫

dr
∫

dr′Ψ†(r)h0(r, r′)Ψ(r′), (10.62a)

H0 =
∑

νν′
tνν′c

†
νcν′ . (10.62b)

In this case, the equations of motion therefore in the two representations reduce to

−∂τG0(rτ, r′τ ′)−
∫

dr ′′ h0(r, r′′)G0(r′′τ, r′τ ′) = δ(τ − τ ′)δ(r− r′), (10.63a)

−∂τG0(ντ, ν′τ ′)−
∑

ν′′
tνν′′G0(ν ′′τ, ν ′τ ′) = δ(τ − τ ′)δνν′ , (10.63b)

or in matrix form
G−1

0 G0 = 1, G−1
0 = −∂τ −H0. (10.64)

This equation together with the boundary condition G(τ) = ±G(τ + β) gives the solution.
For example for free particle those given in Eqs. (10.37) and (10.38).

10.6 Wick’s theorem

We end this rather technical part by proving an extremely useful theorem, which we will
need later when doing perturbation theory, and which is used in the example ending this
chapter. The theorem - called Wick’s theorem - states that for non-interacting particles,
i.e. when the Hamiltonian is quadratic, higher order Green’s function involving more than
one particle can be factorized into products of single-particle Green’s functions.

Consider an n-particle Green’s function defined as

G(n)
0 (ν1τ1, . . . , νnτn; ν ′1τ

′
1, . . . , ν

′
nτ ′n)

= (−1)n
〈
Tτ

[
ĉν1

(τ1) · · · ĉνn
(τn)ĉ†ν′n(τ ′n) · · · ĉ†

ν′1
(τ ′1)

]〉
0
. (10.65)

The average is taken with respect to a non-interacting Hamiltonian H0 (like Eq. (10.62)),
which we have indicated by the subscript 0. The time-evolution is also with respect to H0

and it is given by
ĉ(τ) = eτH0c e−τH0 . (10.66)
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The expression in (10.65) is indeed quite complicated to look at if we write out all the
possible orderings and the conditions for that particular ordering. For example if n = 2,
there are 4 time arguments which can be ordered in 4! different ways. Let us simplify the
writing by defining one operator symbol for both creation and annihilation operators

dj(σj) =

{
ĉνj

(τj), j ∈ [1, n],

ĉ†
ν′
(2n+1−j)

(τ ′(2n+1−j)), j ∈ [n + 1, 2n], (10.67)

and furthermore define the permutations of the 2n operators as

P (d1(σ1) · · · d2n(σ2n)) = dP1
(σP1

) · · · dP2n
(σP2n

), (10.68)

where Pj denotes the j’th variable in the permutation P (e.g. define the list (a, b, c) and
the permutation (c, a, b) then P = (3, 1, 2)). Which permutation is the correct one of
course depends on how the time arguments in (10.65) are really ordered. Therefore if we
sum over all permutations and include the corresponding conditions, we can rewrite G(n)

0

as

G(n)
0 (j1, . . . , j2n) = (−1)n

∑

P∈S2n

(±1)P θ(σP1
− σP2

) · · · θ(σPn−1
− σPn

)

×
〈
dP1

(σP1
) · · · dP2n

(σP2n
)
〉

0
, (10.69)

where the factor (±1)P takes into account that for fermions (minus sign) it costs a sign
change every time a pair of operators are commuted.

The easiest way to show Wick’s theorem is through the equation of motion for the n-
particle Green’s function. Thus we differentiate G(n)

0 with respect to one of time arguments,
τ1, . . . , τn. This gives two kinds of contributions: the terms coming from the derivative of
the theta functions and one term from the derivative of the expectation value itself. The
last one gives for example for τ1

[
− ∂

∂τ1

G(n)
0

]

last term

= − (−1)n
〈
Tτ

[
[Ĥ0, ĉν1

](τ1) · · · ĉνn
(τn)ĉ†ν′n(τ ′n) · · · ĉ†

ν′1
(τ ′1)

]〉
, (10.70)

which is similar to the derivation that lead to Eqs. (10.63) and (10.64), so that we have

G−1
0i G(n)

0 = −∂θ
τi
G(n)

0 , (10.71)

where G−1
0i means that it works on the coordinate νi, τi. On the right hand side the

derivative only acts on the theta functions in Eq. (10.69).
Take now for example the case where τi is next to τ ′j . There are two such terms in

(10.69), corresponding to τi being either smaller or larger than τ ′j , and they will have
different order of the permutation. In this case G(n) has the structure

G(n)
0 =

[· · · θ(τi − τ ′j) · · ·
] 〈
· · · ĉνi

(τi)ĉ
†
ν′j

(τ ′j) · · ·
〉

± [· · · θ(τ ′j − τi) · · ·
] 〈
· · · ĉ†

ν′j
(τ ′j)ĉνi

(τi) · · ·
〉

, (10.72)
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and when this is differentiated with respect to τi it gives two delta functions, and hence

−∂θ
τi
G(n)

0 =
(
[· · · ]

〈
· · · ĉνi

(τi)ĉ
†
ν′j

(τ ′j) · · ·
〉
∓ [· · · ]

〈
· · · ĉ†

ν′j
(τ ′j)ĉνi

(τi) · · ·
〉)

δ(τi − τ ′j).

(10.73)
We can pull out the equal time commutator or anti-commutator for boson or fermions,
respectively [

ĉνi
(τi), ĉ

†
ν′j

(τi)
]
B,F

= δνi,ν
′
j
. (10.74)

If τi is next to τj instead of τ ′j , we get in the same manner the (anti-)commutator
[
ĉνi

(τi), ĉνj
(τi)

]
B,F

= 0, (10.75)

which therefore does not contribute. The number of creation and annihilation operators
has thus both been reduced by one, and it leaves a Green’s function which is no longer an
n-particle Green’s function but an (n− 1)-Green’s function. In fact, we saw a special case
of this in Eq. (10.63) where a one-particle Green’s function was reduced to a zero-particle
Green’s function, i.e. a constant. What we have not determined is the sign of the new
(n − 1)-Green’s function, and this sign denoted (−1)x will (for fermions) depend on the
τ ′j in question. Besides this undetermined sign, our equation of motion (10.71) now looks
like

G−1
0i G(n)

0 =
n∑

j=1

δνi,ν
′
j
δ(τi − τ ′j) (−1)x G(n−1)

0 (ν1τ1, . . . , νnτn︸ ︷︷ ︸
without i

; ν ′1τ
′
1, . . . , ν

′
nτ ′n︸ ︷︷ ︸

without j

). (10.76)

Let us collect the signs that go into (−1)x: (−1) from (−∂τ ), (−1)n from the definition
in (10.65) [(−1)n−1]−1 from the definition of G(n−1), and for fermions (−1)n−i+n−j from
moving ĉ†

ν′j
next to ĉνi

. Hence

fermions: (−1)x = − (−1)n (−1)1−n (−1)2n−i−j = (−1)j+i , (10.77a)

bosons : (−1)x = − (−1)n (−1)1−n = 1, (10.77b)

Now Eq. (10.76) can be integrated and because G(n)
0 has the same boundary conditions

as G0, i.e. periodic in the time arguments, it gives the same result and hence

G(n)
0 =

n∑

j=1

(±)j+i G0

(
νiτi, ν

′
jτ
′
j

)G(n−1)
0 (ν1τ1, . . . , νnτn︸ ︷︷ ︸

without i

; ν ′1τ
′
1, . . . , ν

′
nτ ′n︸ ︷︷ ︸

without j

). (10.78)

By recalling the definition of a determinants this formula is immediately recognized as the
determinant in the case where the minus sign should be used. With the plus sign it is
called a permanent. We therefore end up with

G(n)
0 (1, . . . , n; 1′, . . . , n′) =

∣∣∣∣∣∣∣

G0(1, 1′) · · · G0(1, n′)
...

. . .
...

G0(n, 1′) · · · G0(n, n′)

∣∣∣∣∣∣∣
B,F

, i ≡ (νi, τi) (10.79)
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where we used a shorthand notation with the orbital and the time arguments being col-
lected into one variable, and where the determinant |·|B,F means that for fermions it is
the usual determinant, while for bosons it should be understood as a permanent where all
have terms come with a plus sign; this is Wick’s theorem.

10.7 Example: polarizability of free electrons

In Sec. 8.5 we calculated the polarizability of non-interacting free electrons. In order to
illustrate the working principle of the imaginary time formalism, we do it again here.

The starting point is the physical quantity which is needed: the frequency dependent
retarded charge-charge correlation function, χR(q, ω), which follows from the correspond-
ing Matsubara function by

χR(q, ω) = χ(q, iqn → ω + iη). (10.80)

In order to find χ (q, iqn) we start from the time-dependent χ

χ0(q, τ) = − 1
V 〈Tτ (ρ (q, τ) ρ (−q))〉0 , (10.81)

and expresses it as a two-particle Green’s function

χ0(q, τ) = − 1
V

∑

k,k′σσ′

〈
Tτ

(
c†kσ (τ) ck+qσ (τ) c†k′σ′ck′−qσ′

)〉
0
. (10.82)

By Wick’s theorem this is given by a product of single-particle Green’s functions with
all possible pairings and with the sign given by the number of times we interchange two
fermion operators, i.e.

χ0(q, τ) =
1
V

∑

k,k′,σ,σ′

〈
Tτ

(
ck+qσ (τ) c†k′σ′

)〉
0

〈
Tτ

(
ck′−qσ′ (0) c†kσ (τ)

)〉
0
− 1
V

=0 for q 6=0︷ ︸︸ ︷
〈ρ (q)〉0 〈ρ (−q)〉0,

=
1
V

∑

kσ

G0(k + qσ, τ)G0(kσ,−τ). (10.83)

where we consider only q 6= 0 and use that G0(k,k′) ∝ δk,k′ .
The next step is to calculate the frequency dependent function, i.e. to Fourier trans-

form the product (10.83). The Fourier transform of a product in the time domain is a
convolution in the frequency domain. Because one function has argument τ while the
other has argument −τ , the internal frequencies in the two come with the same sign

χ0(q, iqn) =
1
β

∑

ikn

1
V

∑

kσ

G0(k + qσ, ikn + iqn)G0(kσ, ikn). (10.84)

The sum over Matsubara frequencies has exactly the form studied in Sec. 10.4.1.
Remembering that G0(kσ, ikn) = 1/ (ikn − ξk), we can read off the answer from Eq.(10.54)



174 CHAPTER 10. IMAGINARY TIME GREEN’S FUNCTIONS

by inserting the poles of the two G0(kσ, z) (z = ξk and z = ξk+q − iqn) and obtain

χ0(q, iqn) =
1
V

∑

k

{
nF (ξk)G0(k + qσ, ξk + iqn) + nF (ξk+q − iqn)G0(kσ, ξk+q − iqn)

}

=
1
V

∑

kσ

nF (ξk)− nF (ξk+q)
iqn + ξk − ξk+q

. (10.85)

Here we used that

nF (ξk+q − iqn) =
1

eβξk+qe−βiqn + 1
=

1

eβξk+q + 1
, (10.86)

because iqn is a bosonic frequency. After the substitution (10.80) Eq. (10.85) gives the
result we found in Eq. (8.81).

10.8 Summary and outlook

When performing calculations of physical quantities at finite temperatures it turns out
that the easiest way to find the “real time” introduced in Chap. 7 is often to go via the
imaginary time formalism. This formalism has been introduced in this chapter, and in the
following chapters on Feynman diagrams it is a necessary tool. There you will see why it
is more natural to use the imaginary time Green’s function, also called Matsubara Green’s
function. The reason is that the time evolution operator and the Boltzmann weight factor
can be treated on an equal footing and one single perturbation expansion suffices. In the
real time formalism there is no simple way of doing this.

We have also derived some very useful relations concerning sums over Matsubara fre-
quencies. The things to remember are the following.

Non-interacting particle Green’s function, valid for both bosons and fermions

G0(ν, iωn) =
1

iωn − ξv
. (10.87)

Matsubara frequency sum over products of non-interacting Green’s functions (for τ > 0)

SF (τ) =
1
β

∑

ikn

g0(ikn)eiknτ =
∑

j

Res (g0(zj))nF (zj)ezjτ , ikn fermion frequency,

(10.88a)

SB(τ) =
1
β

∑

iωn

g0(iωn)eiωnτ = −
∑

j

Res (g0(zj))nB(zj)ezjτ , iωn boson frequency,

(10.88b)

with g0(z) =
∏

i 1/ (z − ξi) . If we perform a sum over functions where the poles are
unknown but where the branch cuts are known, we can use a contour depicted in Fig.
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10.3. For example if g(ikn) is known to be analytic everywhere but on the real axis we get

SF (τ) =
1
β

∑

ikn

g(ikn)eiknτ = −
∫ ∞

−∞

dε

2πi
nF (ε) [g(ε + iη)− g(ε− iη)]

= −
∫ ∞

−∞

dε

2πi
nF (ε)

[
gR(ε)− gA(ε)

]
. (10.89)

Finally, we proved an important theorem, Wick’s theorem, which says that for non-
interacting an n-particle Green’s function is equal to a sum of products of single-particle
Green’s functions, where all possible pairings should be included in the sum. For fermions
we must furthermore keep track of the number of factors −1, because each time we inter-
change two fermion operators we must include a factor -1. The end result was

G(n)
0 (1, . . . , n; 1′, . . . , n′) =

∣∣∣∣∣∣∣

G0(1, 1′) · · · G0(1, n′)
...

. . .
...

G0(n, 1′) · · · G0(n, n′)

∣∣∣∣∣∣∣
B,F

, i ≡ (νi, τi) , (10.90)

where

G(n)
0 (1, . . . , n; 1′, . . . , n′) = (−1)n

〈
Tτ

[
ĉ(1) · · · ĉ(n)ĉ†(n′) · · · ĉ†(1′)

]〉
0
. (10.91)
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Chapter 11

Feynman diagrams and external
potentials

From the previous chapters on linear response theory and Green’s functions, it is clear
that complete calculations of thermal averages of time-dependent phenomena in quantum
field theory are a rather formidable task. Even the basic imaginary time evolution oper-
ator Û(τ) itself is an infinite series to all orders in the interaction V̂ (r, τ). One simply
faces the problem of getting lost in the myriads of integrals, and not being able to main-
tain a good physical intuition of which terms are important. In 1948 Feynman solved
this problem as part of his seminal work on quantum electrodynamics by inventing the
ingenious diagrams that today bear his name. The Feynman diagrams are both an exact
mathematical representation of perturbation theory to infinite order and a powerful pic-
torial method that elucidate the physical content of the complicated expressions. In this
chapter we introduce the Feynman diagrams for the case of non-interacting particles in an
external potential. Our main example of their use will be the analysis of electron-impurity
scattering in disordered metals.

11.1 Non-interacting particles in external potentials

Consider a time-independent Hamiltonian H in the space representation describing non-
interacting fermions in an external spin-diagonal single-particle potential Vσ(r):

H = H0 + V =
∑

σ

∫
dr Ψ†

σ(r)H0(r)Ψσ(r) +
∑

σ

∫
dr Ψ†

σ(r)Vσ(r)Ψσ(r). (11.1)

As usual we assume that the unperturbed system described by the time-independent
Hamiltonian H0 is solvable, and that we know the corresponding eigenstates |ν〉 and
Green’s functions G0

ν . In the following it will prove helpful to introduce the short-hand
notation

(r1, σ1, τ1) = (1) and
∫

d1 =
∑
σ1

∫
dr1

∫ β

0
dτ1 (11.2)

177
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for points and integrals in space-time.
We want to study the full Green’s function, G(b, a) = −〈Tτ Ψ(b)Ψ†(a)〉, governed by

H, and the bare one, G0(b, a) = −〈Tτ Ψ̂(b)Ψ̂†(a)〉0, governed by H0. We note that since
no particle-particle interaction is present in Eq. (11.1) both the full Hamiltonian H and
the bare H0 have the simple form of Eq. (10.62), and the equations of motion for the two
Green’s functions have the same form as Eq. (10.63):

[−∂τb
−H0(b)] G0(b, a) = δ(b−a) ⇔ [−∂τb

−H(b)+V (b)] G0(b, a) = δ(b−a) (11.3a)

[−∂τb
−H(b) ] G(b, a) = δ(b−a) ⇔ G(b, a) = [−∂τb

−H(b)]−1 δ(b−a), (11.3b)

where we have also given the formal solution of G, which is helpful in acquiring the actual
solution for G. Substituting δ(b − a) in Eq. (11.3b) by the expression from Eq. (11.3a)
yields:

[−∂τb
−H(b)] G(b, a) = [−∂τb

−H(b) + V (b)] G0(b, a)

= [−∂τb
−H(b)] G0(b, a) + V (b) G0(b, a) (11.4)

= [−∂τb
−H(b)] G0(b, a) +

∫
d1 δ(b− 1) V (1) G0(1, a).

Acting from the left with [−∂τb
−H(b)]−1 gives an integral equation for G, the so-called

Dyson equation,

G(b, a) = G0(b, a) +
∫

d1 G(b, 1) V (1) G0(1, a), (11.5)

where we have used the second expression in Eq. (11.3b) to introduce G in the integrand.
By iteratively inserting G itself in the integrand on the left-hand side we obtain the infinite
perturbation series

G(b, a) = G0(b, a) +
∫

d1 G0(b, 1) V (1) G0(1, a)

+
∫

d1
∫

d2 G0(b, 1) V (1) G0(1, 2) V (2) G0(2, a) (11.6)

+
∫

d1
∫

d2
∫

d3 G0(b, 1) V (1) G0(1, 2) V (2) G0(2, 3) V (3) G0(3, a) + . . . .

The solutions Eqs. (11.5) and (11.6) for G are easy to interpret. The propagator, G, of
a fermion in an external potential is given as the sum of all possible processes involving
unperturbed propagation, described by G0 , intersected by any number of scattering events
V . So in this simple case there is really no need for further elucidation, but we will anyway
proceed by introducing the corresponding Feynman diagrams.

The first step is to define the basic graphical vocabulary, i.e. to define the pictograms
representing the basic quantities G, G0 , and V of the problem. This vocabulary is known
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as the Feynman rules:

G(b, a) = �ab G0(b, a) = �ab ∫
d1 V (1) . . . = �1 (11.7)

Note how the fermion lines point from the points of creation, e.g. Ψ†(a), to the points of
annihilation, e.g. Ψ(b). Using the Feynman rules the infinite perturbation series Eq. (11.6)
becomes

�a
b

= �a
b

+ �a1
b

+ �a2
1

b

+ �a32
1

b

+ . . . (11.8)

In this form we clearly see how the full propagator from a to b is the sum over all possible
ways to connect a and b with bare propagators via any number of scattering events. We
can also perform calculations by manipulating the diagrams. Let us for example derive an
integral form equivalent to Eq. (11.5) from Eq. (11.8):

	a
b

= 
a
b

+ �1b×

�a1 + 
a2

1

+ �a32
1

+ . . .




= �a
b

+ �a1
b

(11.9)

which by using the Feynman rules can be written as

G(b, a) = G0(b, a) +
∫

d1 G0(b, 1) V (1) G(1, a). (11.10)

The former integral equation Eq. (11.5) for G is obtained by pulling out the bottom part
V (n) G0(n, a) of every diagram on the right hand side of Eq. (11.8), thereby exchanging
the arrow and the double-arrow in the last diagram of Eq. (11.9).

This is a first demonstration of the compactness of the Feynman diagram, and how
visual clarity is obtained without loss of mathematical rigor.

11.2 Elastic scattering and Matsubara frequencies

When a fermion system interacts with a static external potential no energy is transferred
between the two systems, a situation referred to as elastic scattering. The lack of energy
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transfer in elastic scattering is naturally reflected in a particularly simple form of the
single-particle Green’s function G(ikn) in Matsubara frequency space. In the following the
spin index σ is left out since the same answer is obtained for the two spin directions.

First we note that since the Hamiltonian H in Eq. (11.1) is time-independent for static
potentials we know from Eq. (10.19) that G(rτ, r′τ ′) depends only on the time difference
τ − τ ′, and according to Eqs. (10.22b) and (10.25) it can therefore be expressed in terms
of a Fourier transform with just one fermionic Matsubara frequency ikn:

G(rτ, r′τ ′) =
1
β

∑
n

G(r, r′; ikn) e−ikn(τ−τ ′), G(r, r′; ikn) =
∫ β

0
dτG(rτ, r′τ ′) eikn(τ−τ ′).

(11.11)
The Fourier transform of the time convolution

∫
dτ1 G0(τb − τ1)V G(τ1 − τa) appearing in

the integral equation of G is the product G0(ikn)V G(ikn). The elastic scattering, i.e. the
time-independent V , cannot change the frequencies of the propagators. In Matsubara
frequency space the Dyson equation Eq. (11.10) takes the form

G(rb, ra; ikn) = G0(rb, ra; ikn) +
∫

dr1 G0(rb, r1; ikn) V (1) G(r1, ra; ikn). (11.12)

As seen previously, the expressions are simplified by transforming from the |r〉-basis to the
basis |ν〉 which diagonalizes H0. We define the transformed Green’s function in this basis
as follows:

Gνν′ ≡
∫

drdr′ 〈ν|r〉G(r, r′)〈r′|ν ′〉 ⇔ G(r, r′) =
∑

νν′
〈r|ν〉Gνν′〈ν ′|r′〉. (11.13)

In a similar way we define the |ν〉-transform of V (r) as Vνν′ ≡
∫

dr 〈ν|r〉V (r)〈r|ν ′〉. In the
|ν, ikn〉 representation the equation of motion Eq. (11.3b) for G is a matrix equation,

∑

ν′′
[(ikn − ξν)δν,ν′′ − Vν,ν′′ ] Gν′′,ν′(ikn) = δν,ν′ or [ikn

¯̄1− ¯̄E0 − ¯̄V ] ¯̄G(ikn) = ¯̄1, (11.14)

where ¯̄E0 is a diagonal matrix with the eigenenergies ξν = εν − µ along the diagonal. We
have thus reduced the problem of finding the full Green’s function to a matrix inversion
problem. We note in particular that in accordance with Eq. (10.40) the bare propagator
G0 has the simple diagonal form

∑

ν′′
(ikn − ξν)δν,ν′′ G0

ν′′,ν′(ikn) = δν,ν′ ⇒ G0
ν,ν′(ikn) =

1
ikn − ξν

δν,ν′ . (11.15)

We can utilize this to rewrite the integral equation Eq. (11.12) as a simple matrix equation,

G(νbνa; ikn) = δνb,νa
G0(νaνa; ikn) +

∑
νc

G0(νbνb; ikn) Vνbνc G(νcνa; ikn). (11.16)

We can also formulate Feynman rules in (ν, ikn)-space. We note that ¯̄G0 is diagonal in
ν, while ¯̄V is a general matrix. To get the sum of all possible quantum processes one must
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sum over all matrix indices different from the externally given νa and νb. The frequency
argument is suppressed, since the Green’s functions are diagonal in ikn. .

Gνbνa = �νa

νb

G0
νb,νa

= δνb,νa�νa

νb

=
δνa,νb

ikn − ξνa

Vνν′ = �νν ′ (11.17)

Using these Feynman rules in (ν, ikn)-space we can express Dyson’s equation Eq. (11.16)
diagrammatically: �νa

νb

= δνb,νa�νa

νa

+ �νa

νb

νc

νb

(11.18)

11.3 Random impurities in disordered metals

An important example of elastic scattering by external potentials is the case of random
impurities in a disordered metal. One well-controlled experimental realization of this is
provided by a perfect metal Cu lattice with MgII ions substituting a small number of
randomly chosen CuI ions. The valence of the impurity ions is one higher than the host
ions, and as a first approximation an impurity ion at site Pj gives rise to a simple screened

mono-charge Coulomb potential uj(r) = −(e2
0/|r − Pj |) e−|r−Pj |/a. The screening is due

to the electrons in the system trying to neutralize the impurity charge, and as a result
the range of the potential is finite, given by the so-called screening length a. This will be
discussed in detail in Chap. 13.

In Fig. 11.1(a) is sketched a number of randomly positioned impurities in an otherwise
perfect metal lattice. The presence of the impurities can be detected by measuring the
(longitudinal) resistivity ρxx of the metal as a function of temperature. At high tempera-
ture the resistivity is mainly due to electron-phonon scattering, and since the vibrational

� � � � � �
� � �

� �� ���
	 �

��	

	

Figure 11.1: (a) A disordered metal consisting of an otherwise perfect metal lattice with
a number of randomly positioned impurities giving rise to elastic electron-impurity scat-
tering. (b) The electrical resistivity ρxx(T ) of the disordered metal as a function of tem-
perature. At high T the electron-phonon scattering dominates giving rise to a linear
behavior, while at low T only the electron-impurity scattering is effective and gives rise to
the non-zero value ρ0

xx of ρxx at T = 0.
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energy ~ω (n+ 1
2) in thermal equilibrium is proportional to kBT , the number n of phonons,

and hence the electron-phonon scattering rate, is also proportional to T (see e.g. Exer-
cise 3.2). At lower temperature the phonon degrees of freedom begin to freeze out and the
phase space available for scattering also shrinks, and consequently the resistivity becomes
proportional to some power α of T . Finally, at the lowest temperatures, typically a few
kelvin, only the electron-impurity scattering is left preventing the Bloch electrons in mov-
ing unhindered through the crystal. As a result the resistivity levels off at some value, ρ0,
the so-called residual resistivity. The temperature behavior of the resistivity is depicted
in Fig. 11.1(b).

We postpone the calculation of the resistivity and in this section just concentrate
on studying the electron Matsubara Green’s function G for electrons moving in such a
disordered metal. We use the plane wave states |kσ〉 from the effective mass approximation
Eq. (2.16) as the unperturbed basis |ν〉.

Now consider Nimp identical impurities situated at the randomly distributed but fixed
positions Pj . The elastic scattering potential V (r) then acquires the form

V (r) =
Nimp∑

j=1

u(r−Pj), Pj is randomly distributed. (11.19)

Two small dimensionless parameters of the system serve as guides to obtain good
approximative solutions. One is stating that the ratio between the impurity density,
nimp = Nimp/V, and the electron density nel is much smaller than unity:

nimp

nel

¿ 1. (11.20)

The other small parameter is stating that the strength of the scattering potential is weak.
We assume that the scattering potential u(r − Pj) differs only significantly from 0 for
|r−Pj | < a, and that the characteristic value in that region is ũ. Weak scattering means
that ũ is much smaller than some characteristic level spacing ~2/ma2 as follows:1

ũ
ma2

~2
¿ min {1, kFa}. (11.21)

11.3.1 Feynman diagrams for the impurity scattering

With the random potential Eq. (11.19) the Dyson equation Eq. (11.12) becomes

G(rb, ra; ikn) = G0(rb−ra; ikn)+
Nimp∑

j=1

∫
dr1 G0(rb−r1; ikn)u(r1−Pj)G(r1, ra; ikn), (11.22)

1Assume that u is only important in a sphere of radius a around the scattering center. The level spacing
for non-perturbed states in that sphere is near the ground state given by the size quantization ~2/ma2.
For high energies around, say ε = p2/2m, the level spacing is (∂ε/∂p) ∆p = (p/m) (~/a) = ka ~2/ma2,
where p = ~k has been used. Thus u is weak if it is smaller than the smallest of these level spacings.
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where we have used the fact that the unperturbed system is translation-invariant and
hence that G0(r1, ra; ikn) = G0(r1−ra; ikn). We now want to deduce the Feynman rules
for constructing diagrams in this situation. First expand the Dyson equation Eq. (11.22)
in orders n of the scattering potential u(r−Pj), and obtain G(rb, ra) =

∑∞
n=0 G(n)(rb, ra),

where the frequency argument ikn has been suppressed. The n-th order term G(n) is

G(n)(rb, ra) =
Nimp∑

j1

. . .

Nimp∑

jn

∫
dr1 . . .

∫
drn (11.23)

× G0(rb−rn) u(rn −Pjn
) . . . u(r2−Pj2

) G0(r2−r1) u(r1−Pj1
) G0(r1−ra).

This n-th order contribution can be interpreted as the sum over all processes involving
n scattering events in all possible combination of impurities. Naturally, we can never
hope to solve this problem exactly. Not only is it for all practical purposes impossible to
know where all the impurities in a given metallic sample de facto are situated, but even
if we did, no simple solution for the Green’s function could be found. However, if we are
satisfied with the answer to the less ambitious and more practical question of what is the
average behavior, then we shall soon find an answer. To this end we reformulate Dyson’s
equation in k space since according to Eq. (11.15) G0

k of the impurity free, and therefore
translation-invariant, problem has the simple form:

G0
k(ikn) =

1
ikn − ξk

, G0
k(r−r′; ikn) =

1
V

∑

k

G0
k(ikn) eik·(r−r′). (11.24)

The Fourier transform of the impurity potential u(r−Pj) is:

u(r−Pj) =
1
V

∑
q

uq eiq·(r−Pj) =
1
V

∑
q

e−iq·Pj uq eiq·r. (11.25)

The Fourier expansion of G(n)(rb, ra; ikn) in Eq. (11.23) is:

G(n)(rb, ra) =
Nimp∑

j1...jn

1
Vn

∑
q1...qn

1
V2

∑

kakb

1
Vn−1

∑

k1...kn−1

∫
dr1 . . .

∫
drn (11.26)

×G0
kb

uqn
G0
kn−1

uqn−1
. . . uq2

G0
k1

uq1
G0
ka

e
−i(qn·Pjn

+...+q2·Pj2
+q1·Pj1

)

×eikb·(rb−rn)eiqn·rneikn−1·(rn−rn−1) . . . eiq2·r2eik1·(r2−r1)eiq1·r1eika·(r1−ra).

This complicated expression can be simplified a lot by performing the n spatial integrals,∫
drj ei(kj−kj−1−qj)·rj = V δkj ,kj−1+qj

, which may be interpreted as momentum conserva-
tion in each electron-impurity scattering: the change of the electron momentum is absorbed
by the impurity. Utilizing these delta functions in the n q-sums leads to

G(n)(rbra) =
1
V2

∑

kakb

eikb·rbe−ika·ra

Nimp∑

j1...jn

1
Vn−1

∑

k1...kn−1

(11.27)

×G0
kb

ukb−kn−1
G0
kn−1

. . . uk2−k1
G0
k1

uk1−ka
G0
ka

e
−i[(kb−kn−1)·Pjn

+...+(k1−ka)·Pj1
]
.
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Introducing the Fourier transform G(n)
kbka

of G(n)(rb, ra) as

G(n)(rb, ra) =
1
V2

∑

kakb

eikb·rbe−ika·ra G(n)
kbka

, (11.28)

with

G(n)
kbka

=
Nimp∑

j1...jn

1
Vn−1

∑

k1...kn−1

e
−i[(kb−kn−1)·Pjn

+...+(k1−ka)·Pj1
] (11.29)

× G0
kb

ukb−kn−1
G0
kn−1

. . . uk2−k1
G0
k1

. . . uk1−ka
G0
ka

.

we can now easily deduce the Feynman rules for the diagrams corresponding to G(n)
kbka

:

(1) Let dashed arrows j� q,Pj denote a scattering event uqe−iq·Pj .
(2) Draw n scattering events.
(3) Let straight arrows� k denote G0

k.
(4) Let G0

ka
go into vertex •1 and G0

kb
away from vertex •n.

(5) Let G0
kj

go from vertex j to vertex j + 1.
(6) Maintain momentum conservation at each vertex.

(7) Perform the sums 1
V

∑
kj

over all internal momenta kj , and
∑Nimp

j1..jn
over Pjl

.

(11.30)

The diagram corresponding to Eq. (11.29) is:

G(n)
kbka

=�Pn

n
· · ·

kb kn−1

kb−kn−1 �P3 P2 P1

3 2 1k3 k2 k1 ka

k3−k2 k2−k1 k1−ka (11.31)

This diagram is very suggestive. One can see how an incoming electron with momentum
ka is scattered n times under momentum conservation with the impurities and leaves the
system with momentum kb. However, as mentioned above, it is not possible to continue the
study of impurity scattering on general grounds without further assumptions. We therefore
begin to consider the possibility of performing an average over the random positions Pj

of the impurities.

11.4 Impurity self-average

If the electron wavefunctions are completely coherent throughout the entire disordered
metal each true electronic eigenfunction exhibit an extremely complex diffraction pattern
spawned by the randomly positioned scatterers. If one imagine changing some external
parameter, e.g. the average electron density or an external magnetic field, each individual
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diffraction pattern will of course change drastically due to the sensitivity of the scattering
phases of the wavefunctions. Significant quantum fluctuations must therefore occur in any
observable at sufficiently low temperatures.

Using modern nano-technology to fabricate small (but still macroscopic) samples, and
standard cryogenic equipment to cool down these samples to ultra-low temperatures, one
can in fact obtain an experimental situation where the electrons can traverse the sample
without loosing their quantum-mechanical phase coherence. In Fig. 11.2(a) is shown the
conductance trace of a GaAs nano-device, such as the one shown in Fig. 2.10, at 0.31 K
as a function of the electron density. This density can be controlled by applying a gate
voltage Vg on an external electrode. The conductance G is seen to fluctuate strongly for
minute changes of Vg. These fluctuations turn out to be perfectly reproducible as Vg is
swept up and down several times.

As the temperature of a given sample is raised, the amount of electron-electron and
electron-phonon scattering increases because of an increased phase space for scattering
and an increased number of phonons. The quantum mechanical phase of each individual
electron is changed by a small random amount at each inelastic scattering event, and as a
result the coherence length lϕ for the electrons diminishes. At sufficiently high temperature
(e.g. 4.1 K) lϕ is much smaller than the size of the device, and we can think of the device
as being composed as a number of phase-independent small phase coherent sub-systems.
Therefore, when one measures an observable the result is in fact an incoherent average
of all these sub-systems. Note that this average is imposed by the physical properties of
the system itself, and this effective averaging is consequently denoted self-averaging. This
effect is illustrated in Fig. 11.2(b) where the conductance trace at 4.1 K is seen to be much
smoother than the one at 0.31 K, and where the many small phase coherent sub-systems
of the sample are indicated below the experimental graph.

For very large (mm sized) macroscopic samples lϕ is much smaller than the sample
size at all experimental realizable temperatures (T > 10 mK for electron gases in metals
and semiconductors), and we are in the impurity self-averaging case. Mathematically,
the impurity average is performed by summing over all the phase-independent coherent
sub-systems and dividing by their number Nsys. But due to the random distribution of
the impurities, this average is the same as an average over the impurity position within a
single subsystem - as can be seen from Fig. 11.2. However, even on the rather small length
scale lϕ the system is already homogeneous, and one can as well perform the position
average over the entire volume of the sample. Thus in the following we average over all
possible uncorrelated positions Pj of the Nimp impurities for the entire system:

1
V 〈Gkbka

〉imp ≡ δkb,ka
Ḡka

≡
δkb,ka

Nsys

Nsys∑

i=1

Gsysi
ka

∼ δkb,ka

1
V

∫
dP1

1
V

∫
dP2 ...

1
V

∫
dPNimp

Gka

(11.32)
Here we have anticipated that the impurity averaged Green’s function is diagonal in k
due to the restoring of translation-invariance upon average. Some care must be taken
regarding the average over the impurity positions Pj . Any n-th order contribution to Gk

contains n scattering events, but they need not be on n different scatterers. In fact, any
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Figure 11.2: (a) The measured conductance of a disordered GaAs sample at T = 0.31 K
displaying random but reproducible quantum fluctuations as a function of a gate voltage
Vg controlling the electron density. The fluctuations are due to phase coherent scattering
against randomly positioned impurities. Below is indicated that the phase coherence length
lϕ is large compared to the size of the sample. (b) The same system at T = 4.1 K. The
fluctuations are almost gone due to the smallness of lϕ at this temperature. The sample
now contains a large number of independent but phase-coherent sub-systems of size lϕ. As
a result a substantial self-averaging occurs, which suppresses the quantum fluctuations.

number p, 1 ≤ p ≤ n of scatterers could be involved. We must therefore carefully sort out
all possible ways to scatter on p different impurities.

As mentioned in Eq. (11.20) we work in the limit of small impurity densities nimp. For a
given fixed number n of scattering events the most important contribution therefore comes
from processes involving just one impurity. Then, down by the small factor nimp/nel, follow
processes involving two impurities, etc. We note that in Eq. (11.29) the only reference to
the impurity positions is the exponential e

i(q1·Pj1
+q2·Pj2

+...+qn·Pjn
), with the scattering

vectors qi = ki−ki−1. The sum in Eq. (11.29) over impurity positions in this exponential
is now ordered according to how many impurities are involved:
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Nimp∑

j1,...,jn

e
i
Pn

l=1 ql·Pjl =
Nimp∑

h1

e
i(
P

q
j1
∈Q qj1

)·Ph1

+
∑

Q1∪Q2=Q

Nimp∑

h1

Nimp∑

h2

e
i(
P

q
l1
∈Q1

ql1
)·Ph1e

i(
P

ql2
∈Q2

ql2
)·Ph2

+
∑

Q1∪Q2∪Q3=Q

Nimp∑

h1

Nimp∑

h2

Nimp∑

h3

e
i(
P

q
l1
∈Q1

ql1
)·Ph1e

i(
P

ql2
∈Q2

ql2
)·Ph2e

i(
P

ql3
∈Q3

ql3
)·Ph3

+ . . . (11.33)

Here Q = {q1,q2, . . . ,qn} is the set of the n scattering vectors, while Q1∪Q2∪. . .∪Qp = Q
denotes all possible unions of non-empty disjunct subsets spanning Q. All the scattering
vectors in one particular subset Qi are connected to the same impurity Phi

. Note, that
strictly speaking two different impurities cannot occupy the same position. However, in
Eq. (11.33) we let the j-sums run unrestricted. This introduces a small error of the order
1/Nimp for the important terms in the low impurity density limit involving only a few
impurities.2

Since all the p positions Ph now are manifestly different we can perform the impurity
average indicated in Eq. (11.32) over each exponential factor independently. The detailed
calculation is straightforward but somewhat cumbersome; the result may perhaps be easier
to understand than the derivation. As depicted in Eq. (11.38) the impurity averaged
Green’s function is a sum scattering processes against the position-averaged impurities.
Since translation-invariance is restored by the averaging, the sum of all scattering momenta
on the same impurity must be zero, cf. Fig. 11.3. But let us see how these conclusions are
reached.

The impurity average indicated in Eq. (11.32) over each independent exponential factor
results in some Kronecker delta’s meaning that all scattering vectors qhi connected to the
same impurity must add up to zero:

〈
e
i(
P

q
hi
∈Qi

qhi
)·Phi

〉

imp

=
1
V

∫
dPhi

e
i(
P

q
hi
∈Qh

qhi
)·Phi = δ0,

P
q

hi
∈Qh

qhi

. (11.34)

This of course no longer depends on the p impurity positions Phi
; the averaging has

restored translation-invariance. The result of the impurity averaging can now be written
as 〈 Nimp∑

j1,.,jn

e
i
Pn

l=1 ql·Pjl

〉

imp

=
n∑

p=1

∑Sp
h=1 Qh=Q

p∏

h=1

(
Nimpδ0,

P
q

hi
∈Qh

qhi

)
, (11.35)

2This error occurs since our approximation amounts to saying that the (p + 1)-st impurity can occupy
any of the Nimp impurity sites, and not just the Nimp−p available sites. For the important terms p ¿ Nimp

and the error is p/Nimp ¿ 1.
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which, when inserted in Eq. (11.29), leads to

〈G(n)
k 〉imp =

1
Vn−1

∑

k1...kn−1

n∑

p=1

∑Sp
h=1 Qh=Q

p∏

h=1

(
Nimpδ0,

P
Qh

(khi
−k

(hi−1)
)

)

× G0
kuk−k1

G0
k1

uk1−k2
G0
k2

. . . ukn−1−kG0
k . (11.36)

We note that due to the p factors containing δ-functions there are in fact only n − 1 − p
free momenta sums 1

V
∑

k′ to perform. The remaining p volume prefactors are combined
with Nimp to yield p impurity density factors nimp = Nimp/V.

The Feynman rules for constructing the n-th order contribution 〈G(n)
k 〉imp to the im-

purity averaged Green’s function 〈Gk〉imp are now easy to establish:

(1) Let scattering lines� q denote the scattering amplitude uq.
(2) Let � denote a momentum conserving impurity averaged factor nimpδ0,

P
q.

(3) Let fermion lines� k denote the unperturbed Green’s function G0
k.

(4) Draw p impurity stars. Let n1 scattering lines go out from star 1, n2 from
star 2, etc, so that the total number n1 + n2 + . . . + np of scattering lines is n.

(5) Draw all topological different diagrams containing an unbroken chain of n + 1
fermion lines connecting once to each of the n scattering line end-points.

(7) Let the first and last fermion line be G0
k.

(8) Maintain momentum conservation at each vertex.
(9) Make sure that the sum of all momenta leaving an impurity star is zero.

(10) Perform the sum 1
V

∑
kj

over all free internal momenta kj .
(11) Sum over all orders n of scattering and over p, with 1 ≤ p ≤ n.

(11.37)

The diagrammatic expansion of 〈Gk〉imp has a direct intuitive appeal:

〈Gk〉imp =�+�+

( +! )
(11.38)

+

("+#+$+%+& )

+

('+ · · ·+(+ · · ·+) )
+ · · ·

In this expression, showing all diagrams up to third order and three diagrams of fourth
order, we have for visual clarity suppressed all momentum labels and even the arrows of
the scattering lines. For each order the diagrams are arranged after powers of nimp, i.e.
the number of impurity stars. In Fig. 11.3 two diagrams with complete labels are shown.
In the following section we gain further insight in the solution of 〈Gk〉imp by rearranging
the terms in the diagrammatic expansion, a procedure known as resummation.
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Figure 11.3: Two fully labelled fifth order diagrams both with two impurity scatterers.
Diagram (a) is a so-called irreducible diagram, i.e. it cannot be cut into two pieces by
cutting one internal fermion line. In contrast, diagram (b) is reducible. It consists of two
irreducible parts.

11.5 Self-energy for impurity scattered electrons

In Fig. 11.3 we introduce the concept of irreducible diagrams, i.e. diagrams in the expan-
sion of 〈Gk〉imp that cannot be cut into two pieces by cutting a single internal fermion line.
We now use this concept to resum the diagrammatic expansion Eq. (11.38) for 〈Gk〉imp.
We remind the reader that this resummation is correct only in the limit of low impurity
density. First we define the so-called self-energy Σk:

Σk ≡
{

The sum of all irreducible diagrams in 〈Gk〉imp

without the two external fermion lines G0
k

}

= *+++

(,+- )
+

(.+ · · ·
)

+ · · ·

= / (11.39)

Using Σk and the product form of 〈Gk〉imp in Fourier space, Eq. (11.38) becomes

〈Gk〉imp = 0+1+2+ . . .

= 3+4×
(5+6+ . . .

)

= G0
k + G0

k Σk 〈Gk〉imp. (11.40)

This algebraic Dyson equation, equivalent to Eqs. (11.9) and (11.18), is readily solved:

〈Gk(ikn)〉imp =
G0
k

1− G0
k Σk

=
1

(G0
k)−1 − Σk

=
1

ikn − ξk − Σk(ikn)
. (11.41)

From this solution we immediately learn that Σk enters 〈Gk〉imp as an additive correction to
the original unperturbed energy, ξk → ξk + Σk, hence the name self-energy. The problem
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of finding 〈Gk〉imp is thus reduced to a calculation of Σk. In the following we go through
various approximations for Σk.

11.5.1 Lowest order approximation

One marvellous feature of the self-energy Σk is that even if it is approximated by a finite
number of diagrams, the Dyson equation Eq. (11.40) actually ensures that some diagrams
of all orders are included in the perturbation series for 〈Gk〉imp. This allows for essential
changes in 〈Gk〉imp, notably one can move the poles of 〈Gk〉imp and hence change the
excitation energies. This would not be possible if only a finite number of diagrams were
used in the expansion of 〈Gk〉imp itself.

Bearing in mind the inequalities Eqs. (11.20) and (11.21), the lowest order approxi-
mation ΣLOA

k to Σk is obtained by including only the diagram with the fewest number of
impurity stars and scattering lines,

ΣLOA
k (ikn) ≡ 7 = nimpu0 = nimp

∫
dr u(r), (11.42)

i.e. a constant, which upon insertion into Dyson’s equation Eq. (11.41) yields

GLOA
k (ikn) =

1
ikn − (ξk + nimpu0)

. (11.43)

But this just reveals a simple constant shift of all the energy levels with the amount
nimpu0. This shift constitutes a redefinition of the origin of the energy axis with no
dynamical consequences. In the following it is absorbed into the definition of the chemical
potential and will therefore not appear in the equations.

11.5.2 1st order Born approximation

The simplest non-trivial low-order approximation to the self-energy is the so-called first
order Born approximation given by the ’wigwam’-diagram

Σ1BA
k (ikn) ≡8

k′

k−k′ k′−k = nimp

∑

k′
|uk−k′ |2

1
ikn − ξk′

, (11.44)

where we have used that u−k = u∗k since u(r) is real. We shall see shortly that Σ1BA
k =

Re Σ1BA
k + i Im Σ1BA

k moves the poles of 〈Gk〉imp =9 away from the real axis, i.e.
the propagator acquires a finite life-time. By Eq. (11.40) we see that G1BA

k is the sum of
propagations with any number of sequential wigwam-diagrams::1BA =;+<+=+>+ · · · (11.45)

In the evaluation of Σ1BA
k we shall rely on our physical insight to facilitate the math.

We know that for the electron gas in a typical metal εF ∼ 7 eV ∼ 80 000 K, so as
usual only electrons with an energy εk in a narrow shell around εF ≈ µ play a role. For
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Figure 11.4: (a) The functions nimp|uk|2 and (ω −εk +µ)/[(ω −εk +µ)2 +η2] appearing in
the expression for ReΣ1BA

k (ikn). (b) The functions nimp|uk|2 and |kn|/[(ω − εk +µ)2 +η2]
appearing in the expression for Im Σ1BA

k (ikn).

T < 800 K we have kBT/εF < 10−2, and for applied voltage drops Vext less than 70 mV
over the coherence length lϕ < 10−5 m (the typical size we are looking at), i.e. applied
electrical fields less than 7000 V/m, we have eVext/εF < 10−2. Thus we are only interested
in Σ1BA

k (ikn) for

|k| ∼ kF and |ikn → ω + i sgn(kn)η| ¿ εF. (11.46)

Here we have also anticipated that at the end of the calculation, as sketched in Fig. 10.1,
we need to perform an analytical continuation down to the real axis, either from the upper
half-plane, where kn > 0, as ikn → ω + iη, or from the lower half-plane, where kn < 0, as
ikn → ω − iη.

Furthermore, as we shall study in great detail later, the electron gas redistributes itself
to screen out the external charges from the impurities, and as a result uk−k′ varies in a
smooth and gentle way for 0 < |k− k′| < 2kF.

With this physical input in mind we continue:

Σ1BA
k (ω + i sgn(kn)η) = nimp

∑

k′
|uk−k′ |2

1
(ω − ξk′) + i sgn(kn)η

(11.47)

=
∑

k′
nimp|uk−k′ |2

[
ω − ξk′

(ω − ξk′)
2 + η2

− i sgn(kn) πδ(ω − ξk′)
]

.

Since |uk−k′ |2 vary smoothly and |ω −ξk′ | ¿ εF ≈ µ we get the functional behavior shown
in Fig. 11.4. Since (ω − ξk′)/((ω − ξk′)

2 + η2) is an odd function of ω − ξk′ and the width
η is small, we have3 Re Σ1BA

k (ikn) ≈ 0; For the imaginary part of Σ1BA we obtain the
usual delta function for η → 0. Finally, since the spectral function for the unperturbed
system forces ω to equal ξk, we obtain:

Σ1BA
k (ikn) = −iπ sgn(kn)

∑

k′
nimp|uk−k′ |2 δ(ξk − ξk′) = −i sgn(kn)

1
2τk

, (11.48)

3Strictly speaking, we only get vanishing real part if the slope of |uk−k′ |2 is zero near µ. If this is not

the case we do get a non-zero real part. However, since |uk−k′ |2 is slowly varying near µ we get the same
real part for all k and k′ near kF. This contribution can be absorbed into the definition of µ.
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where we have introduced the impurity scattering time τk defined as

1
τk
≡ 2π

∑

k′
nimp|uk−k′ |2 δ(ξk − ξk′). (11.49)

This result can also be found using Fermi’s golden rule. Now we have obtained the 1st
order Born approximation for Gk(ikn) in Eq. (11.41) and the analytic continuation ikn → z
thereof into the entire complex plane:

G1BA
k (ikn) =

1

ikn − ξk + i sgn(kn)
2τk

−→
ikn→z

G1BA
k (z) =





1
z−ξk+ i

2τ
k

, Im z > 0

1
z−ξk− i

2τ
k

, Im z < 0.
(11.50)

We see that G1BA
k (z) has a branch cut along the real axis, but that it is analytic separately

in the upper and the lower half-plane. This is a property that will play an important role
later, when we calculate the electrical resistivity of disordered metals. Note that this
behavior is in accordance with the general results obtained in Sec. 9.2 concerning the
analytic properties of Matsubara Green’s functions.

We close this section by remarking three properties summarized in Fig. 11.5 related
to the retarded Green’s function GR,1BA(ω ) = G1BA(ω + iη). First, it is seen by Fourier
transforming to the time domain that G

R,1BA
k (t) decays exponentially in time with τk as

the typical time scale:

G
R,1BA
k (t) ≡

∫
dω

2π

e−i(ω+iη)t

ω − ξk + i/2τk
= −i θ(t) e−iξkt e−t/2τk . (11.51)

Second, exploiting that ω, τ−1
k ¿ εF, it is seen by Fourier transforming back to real space

that GR,1BA(r, ω ) decays exponentially in space with lk ≡ vFτk as the typical length scale:

GR,1BA(r, ω ) ≡
∫

dk
(2π)3

eik·r

ω − ξk + i/2τk
=

πd(εF)
kF|r|

eikF|r| e−|r|/2lk . (11.52)

Thirdly, the spectral function A1BA
k (ω ) is a Lorentzian of width 2τk:

A1BA
k (ω ) ≡ −2 Im G1BA

k (ω + iη) =
1/τk

(ω − ξk)2 + 1/4τ2
k

(11.53)

In conclusion the impurity averaged 1st Born approximation has resulted in a self-
energy with a non-zero imaginary part. The poles of the Matsubara Green’s function
G1BA
k (ikn) are therefore shifted away from the real axis, resulting in a both temporal and

spatial exponential decay of the retarded Green’s function. This is interpreted as follows:
the impurity scattering transforms the free electrons into quasiparticles with a finite life
time given by the scattering time τk and a finite mean free path given by lk = vFτk.
The finite life time of the quasiparticles is also reflected in the broadening of the spectral
function. The characteristic sharp δ-function for free electrons, Ak(ω ) = 2πδ(ω − ξk), is
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Figure 11.5: (a) The impurity averaged Green’s function 〈Gk(ikn)〉imp. The imaginary
part of the self-energy is related to the scattering time τk and hence also to the elastic
scattering length l = vFτk. (b) In the Born approximation the spectral function Ak(ω ) is
a Lorentzian centered around ξk = 0 with a width 1/2τk.

broadened into a Lorentzian of width 1/2τk. This means that a particle with momentum
k can have an energy ω that differs from ξk with an amount ~/2τk.

This calculation of self-averaged impurity scattering constitutes a first and very im-
portant example of what can happen in a many-particle system. Note in particular the
important role played by the self-energy, and the fact that it can have a non-zero imaginary
part. The results is obtained in the 1st order Born approximation, where the self-energy
is approximated by a single diagram. But what happens if we take more diagrams into
account? The surprising answer is that in the low impurity density limit, nimp ¿ nel no
qualitative difference arises by taking more diagrams into account. Only at higher impurity
densities where scattering events from different impurities begin to interfere new physical
effects, such as weak localization, appear. Let us see how this conclusion is reached.

11.5.3 The full Born approximation

A natural extension of the 1st Born approximation is the full Born approximation, which
is exact to lowest order in nimp. It is defined by the following self-energy ΣFBA

k (ikn), where
any number of scattering on the same impurity is taken into account, i.e. more dashed
lines on the wigwam-diagram:

ΣFBA
k ≡ ?

k k

+ @
k k

+ A
k k

+ B
k k

+ · · ·

= C
k k

+D
k k′

k−k′
×

( E
δk′,k

+ F
k′ k

+ G
k′ k

+ · · ·
)

(11.54)

In the parenthesis at the end of the second line we find a factor, which we denote tk′,k,
that is not diagonal in k but with a diagonal that equals the self-energy tk,k = ΣFBA

k . In
scattering theory tk′,k is known as the transition matrix. When this matrix is known all
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consequences of the complete scattering sequence can be calculated. An integral equation
for the transition matrix is derived diagrammatically:

tk1,k2
(ikn) ≡ H

δk1,k2

+ I
k1 k2

+ J
k1 k2

+ · · ·

= K
δk1,k2

+ L
k1 k′

k1−k′ ×
( M

δk′,k2

+ N
k′ k2

+ O
k′ k2

+ · · ·
)

= nimpu0δk1,k2
+

∑

k′
uk1−k′ G0

k′ tk′,k2
. (11.55)

This equation can in many cases be solved numerically. As before the task is simplified
by the fact that we are only interested at electrons moving at the Fermi surface. The real
part of the diagonal element tk,k(ikn), the one yielding the self-energy, is almost constant
for |k| ∼ kF and is absorbed into the definition of the chemical potential µ. We are then
left with Imtk,k(ikn), and by applying the optical theorem,4 Imtk,k = Im

∑
k′ t

†
k,k′G0

k′tk′,k,
we obtain

Im ΣFBA
k (ikn) = Im tk,k(ikn) = Im

∑

k′

|tk,k′ |2
ikn − ξk′

−→
ikn→ω+i sgn(kn)η

−sgn(kn) π
∑

k′
|tk,k′ |2 δ(ω − ξk′). (11.56)

This has the same form as Eq. (11.48) with |tk,k′ |2 instead of nimp|uk−k′ |2, and we write

ΣFBA
k (ikn) = −i sgn(kn)

1
2τk

, with
1
τk
≡ 2π

∑

k′
|tk,k′ |2 δ(ξk − ξk′). (11.57)

By iteration of Dyson’s equation we find that GFBA is the sum of propagations with any
number and any type of sequential wigwam-diagrams:PFBA =Q+R+S+T+ · · · (11.58)

11.5.4 The self-consistent Born approximation and beyond

Many more diagrams can be taken into account using the self-consistent Born approxima-
tion defined by substituting the bare G0 with the full G in the full Born approximation

4Eq. (11.55) states (i): t = u + uG0t. Since u† = u the Hermitian conjugate of (i) is (ii): u =
−t†(G0)†u + t†. Insert (ii) into (i): t = u + (t†G0t− t†(G0)†uG0t). Both u and t†(G0)†uG0t are Hermitian
so Im tk,k = Im 〈k|t†G0t|k〉 = Im

P
k′ t

†
k,k′G0

k′tk′,k.
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Eqs. (11.54) and (11.55) yields:

ΣSCBA
k ≡ U +V +W +X + · · ·

= nimpu0δk,k +
∑

k′
uk−k′ Gk′ tk′,k, (11.59)

a self-consistent equation in ΣSCBA
k since Gk′ = (ikn − ξk′ − ΣSCBA

k′ )−1. We again utilize
that tk,k is only weakly dependent on energy for |k| ≈ kF and ω ¿ εF, and if furthermore
the scattering strength is moderate, i.e. |ΣSCBA

k | ¿ εF we obtain almost the same result
as in Eq. (11.56). Only the imaginary part Σi

k of ΣSCBA
k = ΣR

k + iΣi
k plays a role, since

the small real part ΣR
k can be absorbed into µ.

Σi
k = Im tk,k = Im

∑

k′

|tk,k′ |2
ikn−ξk′−iΣi

k′
≈ −sgn(kn−Σi

k) π
∑

k′
|tk,k′ |2 δ(ω−ξk′). (11.60)

The only self-consistency requirement is thus connected with the sign of the imaginary
part. But this requirement is fulfilled by taking Im ΣSCBA(ikn) ∝ −sgn(kn) as seen by
direct substitution. The only difference between the full Born and the self-consistent
Born approximation is in the case of strong scattering, where the limiting δ-function in
Eq. (11.60) may acquire a small renormalization. The final result is

ΣSCBA
k (ikn) = −i sgn(kn)

1
2τk

, with
1
τk
≈ 2π

∑

k′
|tk,k′ |2 δ(ω − ξk′). (11.61)

By iteration of Dyson’s equation we find that GSCBA is the sum of propagations with
any number and any type of sequential wigwam-diagrams inside wigwam-diagrams but
without crossings of any scattering lines:YSCBA = Z+[+\+]+ · · ·

+^+_+ · · · (11.62)

+`+ · · ·+a+ · · ·

We have now resummed most of the diagrams in the diagrammatic expansion of 〈Gk〉imp

with the exception of wigwam-diagrams with crossing lines. In Fig. 11.6 are shown two
different types of irreducible diagrams of the same order in both nimp and uk. Also
sketched is the phase space Ω available for the internal momenta k1 and k2 in the two
cases. At zero temperature the energy broadening around the Fermi energy εF is given by
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Figure 11.6: (a) The non-crossing wigwam diagrams, one inside the other, where k1 and k2

can take any value on the spherical shell of radius kF and thickness ∆k ≈ 1/l. The phase
space is Ωa ∝ (4πk2

F∆k)2. (b) The crossing wigwam diagram has the same restrictions for
k1 and k2 as in (a) plus the constraint that |k+k2−k1| ≈ kF. For fixed k2 the variation of
k1 within its Fermi shell is restricted to the intersection between this shell and the Fermi
shell of k+k2−k1, i.e. to a ring with cross section 1/l2 and radius ≈ kF. The phase space
is now Ωb ∝ (4πk2

F∆k)(2πkF∆k2). Thus the crossing diagram (b) is suppressed relative
to the non-crossing diagram (a) with a factor 1/kFl.

|Σ| ≈ ~/τ which relaxes |k1|, |k2| = kF a bit. In k-space the broadening ∆k is given by
~2(kF + ∆k)2/2m ≈ εF + ~/τ which gives ∆k ≈ 1/vFτ = 1/l, i.e. the inverse scattering
length. This means that k1 and k2 are both confined to a thin spherical shell of thickness
1/l and radius kF.

In Fig. 11.6(a), where no crossing of scattering lines occurs, no further restrictions
applies, so the volume of the available phase space is Ωa = (4πk2

F/l)2. In Fig. 11.6(b),
where the scattering lines crosses, the Feynman rules dictate that one further constraint,
namely |k + k1 − k2| ≈ kF. Thus only one of the two internal momenta are free to be
anywhere on the Fermi shell, the other is bound to the intersection between two Fermi
shells, i.e. on a ring with radius ∼ kF and a cross section 1/l2 as indicated in Fig. 11.6(b).
So Ωb = (4πk2

F/l)(2πkF/l2). Thus by studying the phase space available for the non-
crossed and the crossed processes we have found that the crossed ones are suppressed by a
factor Ωb/Ωa ≈ 1/(kFl). Such a suppression factor enters the calculation for each crossing
of scattering lines in a diagram. Since for metals 1/kF ∼ 1 Å we find that

1
kFl

¿ 1, for l À 1 Å. (11.63)

In conclusion: all cases where the scattering length l is greater than 1 Å we have by
the various Born approximations indeed resummed the perturbation series for 〈Gk(ikn)〉imp

taking all relevant diagrams into account and obtained Σk(ikn) = −i sgn(kn)
2τk

. It is interest-
ing to note that in e.g. doped semiconductors it is possible to obtain a degenerate electron
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gas with a very low density. In these systems 1/kF or the Fermi wavelength is much
larger than in metals, and the condition in Eq. (11.63) is violated. In this case one may
therefore observe deviations from the simple theory presented here. One example is the
observation of weak localization, which is an increase in the resistivity due to quantum
interference between scattering events involving several impurities at the same time. The
weak localization effect is studied in Sec. 15.4.

11.6 Summary and outlook

In this chapter we have introduced the Feynman diagrams for elastic impurity scattering.
We have applied the diagrammatic technique to an analysis of the single-particle Matsub-
ara Green’s function for electron propagation in disordered metals. The main result was
the determination of the self-energy Σk(ikn) in terms of the scattering time τk,

ΣFBA
k (ikn) = −i sgn(kn)

1
2τk

, with
1
τk
≡ 2π

∑

k′
|tk,k′ |2 δ(ξk − ξk′),

and the scattering-time broadened spectral function

A1BA
k (ω ) =

1/τk
(ω − ξk)2 + 1/4τ2

k

.

The structure in the complex plane of the Green’s function was found to be:

G1BA
k (ikn) =

1

ikn − ξk + i sgn(kn)
2τk

−→
ikn→z

G1BA
k (z) =





1
z−ξk+ i

2τ
k

, Im z > 0

1
z−ξk− i

2τ
k

, Im z < 0.

These results will be employed in Chap. 15 in the study of the residual resistivity of metals.
The theory presented here provides in combination with the Kubo formalism the foun-

dation for a microscopic quantum theory of resistivity. The technique can be extended
to the study of quantum effects like weak localization (see Sec. 15.4) and universal con-
ductance fluctuations (see Fig. 11.2). These more subtle quantum effects are fundamental
parts of the modern research field known as mesoscopic physics. They can be explained
within the theoretical framework presented here, by taking higher order correlations into
account. For example is weak localization explained by treating crossed diagrams like the
one in Fig. 11.6(b), which was neglected in calculation presented in this chapter.
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Chapter 12

Feynman diagrams and pair
interactions

It is in the case of interacting particles and fields that the power of quantum field theory
and Feynman diagrams really comes into play. Below we develop the Feynman diagram
technique for a system of fermions with pair interactions. The time-independent Hamil-
tonian H0 of the unperturbed or non-interacting system is

H0 =
∑

σ

∫
dr Ψ†(r)H0Ψ(r), (12.1)

while the interaction Hamiltonian W is given by

W =
1
2

∑
σ1,σ2

∫
dr1dr2 Ψ†(σ1, r1)Ψ

†(σ2, r2) W (σ2, r2; σ1, r1) Ψ(σ2, r2)Ψ(σ1, r1). (12.2)

We have specialized to the case where no spin flip processes occur at the vertices, this
being the case for our coming main examples: electron-electron interactions mediated by
Coulomb or by phonon interactions. The total Hamiltonian H governing the dynamics of
the system is as usual given by H = H 0+W . The main goal of this chapter is to derive the
Feynman rules for the diagrammatic expansion in orders of W of the full single-particle
Matsubara Green’s function Eq. (10.33a)

G(σb, rb, τb; σa, ra, τa) ≡ −
〈
TτΨ(σb, rb, τb)Ψ

†(σa, ra, τa)
〉
. (12.3)

12.1 The perturbation series for G
12.2 infinite perturbation series!Matsubara Green’s func-

tion

The field operators in Eq. (12.3) defining G are of course given in the Heisenberg pic-
ture, but using Eq. (10.16) we can immediately transform the expression for G into the
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interaction picture. With the short-hand notation (σ1, r1, τ1) = (1) we obtain

G(b, a) = −
Tr

(
e−βHTτΨ(b)Ψ†(a)

)

Tr
(
e−βH

) = −

〈
Tτ

[
Û(β, 0) Ψ̂(b) Ψ̂†(a)

]〉
0〈

Û(β, 0)
〉

0

. (12.4)

The subscript 0 indicates that the averages in Eq. (12.4) are with respect to e−βH0 rather
than e−βH as in Eq. (12.3). The expansion Eq. (10.12) for Û is now inserted into Eq. (12.4):

G(b, a) = −

∞∑

n=0

(−1)n

n!

∫ β

0
dτ1 . . .

∫ β

0
dτn

〈
Tτ

[
Ŵ (τ1) . . . Ŵ (τn)Ψ̂(b) Ψ̂†(a)

]〉
0

∞∑

n=0

(−1)n

n!

∫ β

0
dτ1 . . .

∫ β

0
dτn

〈
Tτ

[
Ŵ (τ1) . . . Ŵ (τn)

]〉
0

. (12.5)

Here we need to calculate τ -integrals of Ŵ (τ). But one precaution must be taken regarding
the ordering of the four operators in the basic two-particle interaction operator. According
to Eq. (12.2) the two creation operators must always be to the left of the two annihilation
operators. To make sure of that we add an infinitesimal time η = 0+ to the time-arguments
of Ψ†(1) and Ψ†(2), which gives the right ordering when the time-ordering operator Tτ of
Eq. (12.4) acts. The τ -integrals of Ŵ (τ) is therefore

∫ β

0
dτj Ŵ (τj) =

1
2

∫
dj

∫
dj′ Ψ̂†(j+)Ψ̂†(j′+) Wj,j′ Ψ̂(j′)Ψ̂(j), (12.6)

where we have defined j+,
∫

dj , and Wj,j′ as

j+ ≡ (σj , rj , τj+η),
∫

dj ≡
∑
σj

∫
dr

∫ β

0
dτj , Wj,j′ ≡ W (rj , rj′) δ(τj−τj′). (12.7)

It is only in expressions where the initial and final times coincide that the infinitesimal
shift in time of Ψ† plays a role. Next insert Eq. (12.6) for Ŵ into Eq. (12.5) for G:

G(b, a) = (12.8)

−
∞∑

n=0

(−1
2)n

n!

∫
d1d1′..dndn′ W1,1′ ..Wn,n′

〈
Tτ

[
Ψ̂†

1Ψ̂
†
1′Ψ̂1′Ψ̂1 . . . Ψ̂†

nΨ̂†
n′Ψ̂n′Ψ̂n Ψ̂bΨ̂

†
a

]〉
0

∞∑

n=0

(−1
2)n

n!

∫
d1d1′..dndn′ W1,1′ ..Wn,n′

〈
Tτ

[
Ψ̂†

1Ψ̂
†
1′Ψ̂1′Ψ̂1 . . . Ψ̂†

nΨ̂†
n′Ψ̂n′Ψ̂n

]〉
0

.

The great advantage of Eq. (12.8) is that the average of the field operators now in-
volves bare propagation and thermal average both with respect to H0. In fact using
Eq. (10.65), we recognize that the average of the products of field operators in the numer-
ator is the bare (2n+1)-particle Green’s function G(2n+1)

0 (b, 1, 1′, .., n′; a, 1, 1′, .., n′) times
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(−1)2n+1 = −1, while in the denominator it is the bare (2n)-particle Green’s function
G(2n)

0 (1, 1′, .., n′; 1, 1′, .., n′) times (−1)2n = 1. The resulting sign, −1, thus cancels the
sign in Eq. (12.8). Now is the time for our main use of Wick’s theorem Eq. (10.79): the
bare many-particle Green’s functions in the expression for the full single-particle Green’s
function are written in terms of determinants containing the bare single-particle Green’s
functions G0(l, j):

G(b, a) = (12.9)

∞∑

n=0

(−1
2)n

n!

∫
d1d1′..dndn′ W1,1′ ..Wn,n′

∣∣∣∣∣∣∣∣∣∣∣

G0(b, a) G0(b, 1) G0(b, 1′) . . . G0(b, n′)
G0(1, a) G0(1, 1) G0(1, 1′) . . . G0(1, n′)
G0(1′, a) G0(1′, 1) G0(1′, 1′) . . . G0(1′, n′)

...
. . .

...
G0(n′, a) G0(n′, 1) G0(n′, 1′) . . . G0(n′, n′)

∣∣∣∣∣∣∣∣∣∣∣

∞∑

n=0

(−1
2)n

n!

∫
d1d1′..dndn′ W1,1′ ..Wn,n′

∣∣∣∣∣∣∣∣∣

G0(1, 1) G0(1, 1′) . . . G0(1, n′)
G0(1′, 1) G0(1′, 1′) . . . G0(1′, n′)

...
. . .

...
G0(n′, 1) G0(n′, 1′) . . . G0(n′, n′)

∣∣∣∣∣∣∣∣∣

This voluminous formula is the starting point for defining the Feynman rules for the
diagrammatic expansion of G in terms of the pair interaction W . We have suppressed,
but not forgotten, the fact that the initial time τj in G0(l, j) according to Eqs. (12.6)
and (12.7) is to be shifted infinitesimally to τj + η.

12.3 The Feynman rules for pair interactions

We formulate first a number of basic Feynman rules that are derived directly from Eq. (12.9).
However, it turns out that using these basic rules leads to a proof that the denominator
cancels out. This in turn leads to the formulation of the final Feynman rules to be used
in all later calculations.

12.3.1 Feynman rules for the denominator of G(b, a)

The basic Feynman rules for n’th order term in the denominator of G(b, a) are

(1) Fermion lines: j2� j1 ≡ G0(j2, j1), τ1 → τ1 + η.
(2) Interaction lines: j� j′ ≡ Wj,j′ .
(3) Vertices: j• ≡ ∫

dj δσin
j ,σout

j
, i.e. sum over internal variables, no spin flip.

(4) Draw (2n)! sets of n interaction lines j� j′.
(5) For each set connect the 2n vertices with 2n fermion lines: one entering

and one leaving each vertex. This can be done in (2n)! ways.

(12.10a)
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But this is not all, because what about the sign arising from the expansion of the de-
terminant? Here the concept of fermion loops enters the game. A fermion loop is an
uninterrupted sequence of fermion lines starting at some vertex j and ending there again
after connecting to other vertices, e.g. j1� , j1� j2, or j1�j3 j2. The overall sign
coming from the determinant is (−1)F , where F is the number of fermion loops in the
given diagram. An outline of the proof is as follows. The product of the diagonal terms
in the determinant is per definition positive and in diagram form it consist of n factors�j j′ , i.e. F = 2n is even. All other diagrams can be constructed one by one simply
by pair wise interchange of the endpoints of fermion lines. This changes the determinan-
tal sign of the product since sgn[..G0(j1, j

′
1)..G0(j2, j

′
2)..] = −sgn[..G0(j1, j

′
2)..G0(j2, j

′
1)..],

and at the same time it changes the number of fermion loops by 1, e.g.� becomes	 . Thus we obtain the last Feynman rule

(6) Multiply by 1
n!(−1

2)n(−1)F , F being the number of fermion loops,
and add the resulting (2n)! diagrams of order n.

(12.10b)

For all n there are (2n)! terms or diagrams of order n in the expansion of the deter-
minant in the denominator 〈Û(β, 0)〉0 of G(b, a) in Eq. (12.9). Suppressing the labels, but
indicating the number of diagrams of each order, this expansion takes the following form
using Feynman diagrams:

〈
Û(β, 0)

〉
0

= 1 +

[
 +� ]

2 terms

(12.11)

+

[�
 +
�� +
�� + . . . +� + . . .

]

24 terms

+



��� + . . . +� + . . . +� + . . .




720 terms

+ . . .

12.3.2 Feynman rules for the numerator of G(b, a)

The numerator 〈Tτ [Û(β, 0)Ψ̂(b)Ψ̂†(a)]〉0 of G(b, a) differs from the denominator by the
presence of the two external field operators Ψ̂(b) and Ψ̂†(a) that act at the external space-
time points (b) and (a). This raises the dimension of the n’th order determinant from 2n
to 2n+1. Consequently, only Feynman rules (4) and (5) given for the denominator have
to be changed to give the rules for the numerator:
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(4’) Draw (2n+1)! sets of n lines j� j′ and 2 external vertices •a and •b.
(5’) For each set connect the 2n+2 vertices with 2n+1 fermion lines: one leaving

a, one entering b, and one entering and leaving each internal vertex j.

(12.12)

Using these rules we obtain the diagrammatic expansion of the numerator:

〈
Tτ [Û(β, 0)Ψ̂(b)Ψ̂†(a)]

〉
0

= (12.13)

�ba+
�ba +�ba +�ba +�ba +�ba +�ba 


6 terms

+


 

b

a

+!
b

a

+ . . . +"
b

a

+ . . . +#
b

a

+ . . .




120 terms

+ . . .

12.3.3 The cancellation of disconnected Feynman diagrams

It looks like we are drowning in diagrams, but in fact there is a major reduction at
hand. We note that in Eq. (12.13) two classes of diagrams appear: those being connected
into one piece with the external vertices a and b, the so-called connected diagrams (e.g.
the last second-order diagram), and those consisting of two or more pieces, the so-called
disconnected diagrams (e.g. the first second order diagram). We furthermore note that the
parts of the diagrams in Eq. (12.13) disconnected from the external vertices are the same
as the diagrams appearing in Eq. (12.11) order by order. We also note that a diagram
containing two or more disconnected parts can be written as a product containing one
factor for each disconnected part. A detailed combinatorial analysis (given at the end of
this section) reveals that the denominator in G cancels exactly the disconnected parts of
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the diagrams in the numerator leaving only the connected ones:

G(b, a) =

( $ba +%ba + . . .

)(
1 +& + . . .

)

(
1 +' + . . .

)

=


 (ba +)ba +*ba ++

b

a

+,
b

a

+ . . .




connected

(12.14)

Being left with only the connected diagrams we find that since now all lines in the diagram
are connected in a specific way to the external points a and b the combinatorics of the
permutations of the internal vertex indices is particularly simple. There are n! ways to
choose the enumeration j of the n interaction lines j- j′, and for each line there are
2 ways to put a given pair of labels j and j′. We conclude that all 2n n! diagrams with the
same topology relative to the external points give the same value. Except for the sign this
factor cancels the prefactor 1

n!(−1
2)n, i.e. we are left with a factor of (−1) for each of the

n interaction lines. In conclusion, for pair interactions the final version of the Feynman
rules for expanding G diagrammatically is:

(1) Fermion lines: j2. j1 ≡ G0(j2, j1), τ1 → τ1 + η.
(2) Interaction lines: j/ j′ ≡ −Wj,j′

(3) Vertices: j• ≡ ∫
dj δσin

j ,σout
j

, i.e. sum over internal variables, no spin flip
(4) At order n draw all topologically different, connected diagrams containing n

interaction lines j0 j′, 2 vertices •a and •b, and 2n+1 fermion lines, so that
one leaves •a, one enters •b, and one enters and leaves each internal vertex •j.

(5) Multiply each diagram by (−1)F , F being the number of fermion loops.
(6) Sum over all the topologically different diagrams.

(12.15)

Pay attention to the fact that only the topology of the diagrams are mentioned. Thus
they can at will be stretched, mirror inverted and otherwise deformed. No notion of a
time-axis is implied in the imaginary time version of the Feynman diagrams.

For completeness we give the following proof of the cancellation of the disconnected
diagrams, but the reader may skip it since the essential conclusion has already been given
above. The proof goes through eight steps. We study the numerator of Eq. (12.9). (1)
Since all internal vertices have one incoming and one outgoing fermion line, the external
vertices a and b are always connected. (2) If vertex j somehow is connected to a, so is j′

due to the interaction line Wj,j′ . (3) In a diagram of order n, a is connected with r W -lines,
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Figure 12.1: Examples of irreducible, (a) and (b), and reducible, (c) and (d), Feynman
diagrams in the expansion of G(b, a) in the presence of pair-interactions.

where 0 ≤ r ≤ n. The number of disconnected W -lines is denoted m, i.e. m = n−r. (4) In
all terms of the expanded numerator the integral factorizes into a product of two integrals,
one over the 2r variables connected to a and one over the 2m variables disconnected from
a. (5) The r pairs of vertex variables j and j′ connected to a can be chosen out of the
available n pairs in n!

r!(n−r)! ways, each choice yielding the same value of the total integral.
(6) The structure of the sum is now:

∞∑

n=0

1
n!

(−1
2

)n

I[1, 1′, .., n, n′] (12.16)

=
∞∑

n=0

1
n!

(−1
2

)n n∑

r=0

n!
r!(n− r)!

I[1, 1′, .., r, r′]con I[r+1, (r+1)′, .., n, n′]discon

=
∞∑

r=0

1
r!

(−1
2

)r

I[1, 1′, .., r, r′]con

∞∑

m=0

1
m!

(−1
2

)m

I[r+1, (r+1)′, .., (r+m), (r+m)′]discon.

(7) In the connected part all r! permutations of the vertex variable pairs (j, j′) yield the
same result, and so does all the 2n ways of ordering each pair, if as usual Wj,j′ = Wj′,j .
(8) The disconnected part is seen to be 〈Û(β, 0)〉0. We thus reach the conclusion
〈
Tτ Û(β, 0) Ψ̂(b) Ψ̂†(a)

〉
0
=

〈
Û(β, 0)

〉
0

∞∑

r=0

[−W (1, 1′)]...[−W (r, r′)] Det
[
G0

](2r+1)×(2r+1)

connected
topological diff.

.

(12.17)

12.4 Self-energy and Dyson’s equation

In complete analogy with Fig. 11.3 for impurity scattering, we can now based on Eq. (12.14)
define the concept of irreducible diagrams in G(b, a) in the case of pair interactions. As
depicted in Fig. 12.1, such diagrams are the ones that cannot be cut into two pieces by
cutting a single fermion line. Continuing the analogy with the impurity scattering case
we can also define the self-energy Σ(l, j) as
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Σ(l, j) ≡
{

The sum of all irreducible diagrams in G(b, a)
without the two external fermion lines G0(j, a) and G0(b, l)

}

=1δl,j +2l j
+3jl +4jl + . . .

= 5l j (12.18)

From Eqs. (12.14) and (12.18) we obtain Dyson’s equation for G(b, a)

G(b, a) = 6b a

= 7b a
+ 8b l j a

+ 9b l j a
+ . . .

= :b a
+ ;b l j×

(<j a
+ =j a

+ . . .

)

= >b a
+ ?b l j a

= G0(b, a) +
∫

dl

∫
dj G0(b, l) Σ(l, j) G(j, a). (12.19)

Note how Dyson’s equation in this case is an integral equation. We shall shortly see that
for a translation-invariant system it becomes an algebraic equation in k-space.

12.5 The Feynman rules in Fourier space

For the special case where H0 describes a translation-invariant system and where the
interaction Wj,j′ only depends on the coordinate differences rj−r′j and τj−τ ′j it is a great
advantage to Fourier transform the representation from (r, τ)-space to (q, iqn)-space. Our
main example of such a system is the jellium model for Coulomb interacting electrons
studied in Sec. 2.2. In terms of the Fourier transform W (q) = 4πe2

0/q2 the Coulomb
interaction W (rτ ; r′, τ ′) is written

W (rτ ; r′τ ′) =
1

βV
∑

q,iqn

W (q) e[iq·(r−r′)−iqn(τ−τ ′)]. (12.20)

It is important to realize that the Matsubara frequency iqn is bosonic since the Coulomb
interaction is bosonic in nature: two fermions are annihilated and two fermions are created
by the interaction, i.e. one boson object is annihilated and one is created. Furthermore,
we note that due to the factor δ(τ −τ ′) in Eq. (12.7) the Matsubara frequency iqn appears
only in the argument of the exponential function.

Likewise, using Eq. (10.39) we can express the electronic Green’s function G0
σ(rτ, r′τ ′)

for spin σ in (k, ikn)-space as
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G0
σ(rτ ; r′τ ′) =

1
βV

∑

k,ikn

G0
σ(k, ikn) e[ik·(r−r′)−ikn(τ−τ ′)], (12.21)

where G0
σ(k, ikn) = 1/(ikn − ξk) depends on k and ikn, but not on σ. Here ξk ≡ ε − µ.

In the case of the Coulomb interacting electron gas in the jellium model we thus see
that both the Green’s function G0

σ and the interaction W depend only on the space and
imaginary time differences r− r′ and τ − τ ′. It follows from Eqs. (12.20) and (12.21) that
it saves some writing to introduce the four-vector notation k̃ ≡ (k, ikn), r̃ ≡ (r, τ), and
ik̃ · r̃ ≡ ik ·r − iknτ . Using this notation we analyze the Fourier transform of the basic
Coulomb scattering vertex

∫
dr̃ G0

σ(r̃2, r̃) G0
σ(r̃, r̃1) W (r̃3; r̃) = @p̃σ

k̃σ

q̃

r̃1

r̃

r̃2

r̃3, (12.22)

where the (r, τ)-space points r̃1, r̃2, r̃3, and r̃ are indicated as well as the wave vectors k̃,
p̃, and q̃ to be used in the Fourier transform. On top of their usual meaning the arrows
now also indicate the choice of sign for the four-momentum vectors: k̃ flows from r̃1 to
r̃, p̃ from r̃ to r̃2, and q̃ from r̃ to r̃3. Inserting the Fourier transforms of Eqs. (12.20)
and (12.21) into Eq. (12.22) yields with this sign convention

∫
dr̃ G0

σ(r̃2, r̃) G0
σ(r̃, r̃1) W (r̃3; r̃)

=
∫

dr̃
1

(βV)3
∑

k̃p̃q̃

G0
σ(p̃) G0

σ(k̃) W (q̃) ei[p̃·(r̃2−r̃)+k̃·(r̃−r̃1)+q̃·(r̃3−r̃)]

=
1

(βV)3
∑

k̃p̃q̃

G0
σ(p̃) G0

σ(k̃) W (q̃) ei[p̃·r̃2−k̃·r̃1+q̃·r̃3]

∫
dr̃ e−i(p̃−k̃+q̃)·r̃

=
1

(βV)2
∑

k̃q̃

G0
σ(k̃−q̃) G0

σ(k̃) W (q̃) ei[k̃·(r̃2−r̃1)+q̃·(r̃3−r̃2)]. (12.23)

From this follows that in Fourier space the four-momentum (k, ikn) is conserved at each
Coulomb scattering vertex: k̃ = p̃ + q̃. Since each vertex consists of two fermion lines
and one interaction line, the momentum conservation combined with the odd values of
the fermion Matsubara frequencies leads, in agreement with our previous remarks, to even
values for the Matsubara frequencies of the interaction lines. The momentum conserva-
tion rule for each of the 2n vertices also leads to 2n delta function constraints on the 2n
internal fermion momenta and the n interaction line momenta, and whence the number
of independent internal momenta equals n, i.e. the order of the diagram. For each in-
dependent momentum a factor 1/βV remains from the corresponding Fourier transform.
The topology of the diagram in (r, τ)-space is not changed by the Fourier transform. We
therefore end up with the following Feynman rules for the n-order diagrams in the expan-
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sion of Gσ(k, ikn), where (k, ikn) is to be interpreted as the externally given four-vector
momentum.

(1) Fermion lines with four-momentum orientation:Akσ, ikn
≡ G0

σ(k, ikn).

(2) Interaction lines with four-momentum orientation:Bq, iqn
≡ −W (q).

(3) Conserve the spin and four-momentum at each vertex,
i.e. incoming momenta must equal the outgoing, and no spin flipping.

(4) At order n draw all topologically different connected diagrams containing n
oriented interaction lines W (q̃), two external fermion lines G0

σ(k, ikn), and 2n
internal fermion lines G0

σ(pj , ipj). All vertices must contain an incoming
and an outgoing fermion line as well as an interaction line.

(5) Multiply each diagram by (−1)F , F being the number of fermion loops.

(6) Multiply G0
σ(k, ikn) in the ’same-time’ diagramsC andDby eiknη.

(7) Multiply by 1
βV for each internal four-momentum p̃; perform the sum

∑
p̃σ′ .

(12.24)

Note how the two ’same-time’ diagrams in rule (6) are the only ones where it is relevant
to take explicitly into account the infinitesimal shift τj → τj + η mentioned in Eqs. (12.6)
and (12.7). The factor eiknη follows directly from the Fourier transform when this shift is
included.

In (k, ikn)-space the fourth Feynman rule concerning the conservation of four-momentum
at the scattering vertices simplifies many calculations. Most noteworthy is the fact that
Dyson’s equation becomes an algebraic equation. Due to four-momentum conservation a
four-momentum k̃j entering a self-energy diagram, such as the ones shown in Eq. (12.18),
must also exit it, i.e. k̃l = k̃j . The self-energy (with spin σ) is thus diagonal in k-space,

Σσ(k̃, k̃′) = δ
k̃,k̃′

Σσ(k̃), Σσ(k̃) ≡ Σσ(k̃, k̃). (12.25)

Dyson’s equation Eq. (12.19) is therefore an algebraic equation,

Gσ(k̃) = G0
σ(k̃) + G0

σ(k̃) Σσ(k̃) Gσ(k̃)E = F + G ,
(12.26)

with the solutionGσ(k, ikn) =
G0

σ(k, ikn)
1− G0

σ(k, ikn) Σσ(k, ikn)
=

1
ikn − ξk − Σσ(k, ikn)

. (12.27)

As in Eq. (11.41) the self-energy Σσ(k, ikn), induced here by the Coulomb interaction W ,
appears as a direct additive renormalization of the bare energy ξk = εk − µ.

12.6 Examples of how to evaluate Feynman diagrams

The Feynman diagrams is an extremely useful tool to gain an overview of the very compli-
cated infinite-order perturbation calculation, and they allow one to identify the important
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processes for a given physical problem. When this part of the analysis is done one is
(hopefully) left with only a few important diagrams that then need to be evaluated. We
end this chapter by studying the explicit evaluation of three simple Feynman diagrams in
Fourier space using the Feynman rules Eq. (12.24).

12.6.1 The Hartree self-energy diagram

To evaluate a given diagram the first task is to label the fermion and interaction lines
with four-momenta and spin obeying the conservation rules at each vertex, rule (3) in
Eq. (12.24). We start with the so-called Hartree diagram GH

σ (which is zero in the presence
of a charge compensating back-ground), where we in accordance with Eq. (12.18) strip off
the two external fermion lines to obtain the self-energy ΣH :

GH
σ (k, ikn) ≡H = IG0

σ(k, ikn)

G0
σ(k, ikn)

0 p, ipn, σ′
(12.28)

The four-momentum transfer along the interaction line is zero, while the four-momentum
(p, ipn) and the spin σ′ in the fermion loop are free to take any value. The self-energy
diagram is a first order diagram, i.e. n = 1. It contains one internal four-momentum,
(p, ipn), yielding a factor of 1/βV, one internal spin, σ′, and one fermion loop, i.e. F = 1.
The Feynman rules therefore lead to the following expression for the Hartree self-energy
diagram Eq. (12.28):

ΣH
σ (k, ikn) ≡J =

−1
βV

∑

σ′

∑
p

∑

ipn

[−W (0)
] G0

σ′(p, ipn) eipnη

=
2W (0)

β

∫
dp

(2π)3
∑

ipn

eipnη

ipn − ξp

= 2W (0)
∫

dp
(2π)3

nF(ξp) = W (0)
N

V . (12.29)

Note the need for Feynman rule Eq. (12.24)(6) for evaluating this specific diagram. The
spin sum turns into a simple factor 2. The Matsubara sum can easily be carried out using
the method of Sec. 10.4.1. The evaluation of the p-integral is elementary and yields N/2.

According to Eq. (12.27) the self-energy is the interaction-induced renormalization of
the non-interacting single-particle energy. This renormalization we have calculated by
completely different means in Sec. 4.2 using the Hartree-Fock mean field approximation.
We see that the diagrammatic result Eq. (12.29) exactly equals the Hartree part of the
mean field energy in Eq. (4.25b). In other words we have shown that the tadpole-shaped
self-energy diagram is the diagrammatic equivalent of the Hartree mean field approxima-
tion.

12.6.2 The Fock self-energy diagram

We treat the Fock diagram GF
σ and Fock self-energy ΣF

σ similarly:
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GF
σ (k, ikn) =K = LG0

σ(k, ikn)

G0
σ(k, ikn)k−p

ikn−ipn

p, ipn, σ′

(12.30)

Once more the external fermion lines are written explicitly as two factors G0
σ(k, ikn),

leaving the Fock self-energy ΣF
σ to be determined. The four-momentum transferred by

the interaction line is (k− p, ikn − ipn). This diagram is a first order diagram, i.e. n = 1.
It contains one internal four-momentum, (p, ipn), yielding a factor 1/βV. However, in
contrast to Eq. (12.28) the internal spin σ′ is now forced to be equal to the external spin
σ. Finally, no fermion loops are present, i.e. F = 0. The Feynman rules therefore lead to
the following expression for the Fock self-energy diagram Eq. (12.30):

ΣF
σ (k, ikn) ≡M =

1
βV

∑

σ′

∑
p

∑

ipn

[−W (k−p)
]
δσ,σ′G0

σ′(p, ipn) eipnη

=
−1
β

∫
dp

(2π)3
W (k−p)

∑

ipn

eipnη

ipn − ξp

= −
∫

dp
(2π)3

W (k−p) nF(ξp). (12.31)

Note that also for this specific diagram we have used Feynman rule (6). The spin sum
turned into a simple factor 1. The Matsubara sum can easily be carried out using the
method of Sec. 10.4.1. The evaluation of the p-integral is in principle elementary. We see
that this self-energy diagram exactly equals the Fock part of the energy in Eq. (4.25b)
calculated using the Hartree-Fock mean field approximation. We have thus shown that
the half-oyster self-energy diagram1 is the diagrammatic equivalent of the Fock mean field
approximation.

12.6.3 The pair-bubble self-energy diagram

Our last example is the pair-bubble diagram GP
σ , which, as we shall see in Chap. 13, plays

a central role in studies of the electron gas. We proceed as in the previous examples:

GP
σ (k, ikn) ≡ N = OG0

σ(k, ikn)

G0
σ(k, ikn)

q, iqn

q, iqn

k−q, σ
ikn−iqn

p, σ′
ipn

p+q, σ′
ipn+iqn

(12.32)

Removing the two external fermion lines G0
σ(k, ikn) leaves us with the pair-bubble self-

energy diagram ΣP
σ . We immediately note that this diagram is of second order, i.e. n = 2,

containing one fermion loop, i.e. F = 1. At the first vertex the incoming momentum
1A full oyster diagram can be seen in e.g. Eq. (12.11)
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(k, ikn) is split, sending (q, iqn) out through the interaction line, while the remainder
(k−q, ikn−iqn) continues in the fermion line. At the fermion loop, (q, iqn) is joined by the
internal fermion momentum (p, ipn) and continues in a new fermion line as (p+q, ipn+iqn).
At the top of the loop the momentum (q, iqn) is sent out through the interaction line,
where it ultimately recombines with the former fermion momentum (k−q, ikn− iqn).
We have thereby ensured that the exit momentum equals that of the entrance: (k, ikn).
The internal degrees of freedom are (q, iqn), (p, ipn), and σ′, the former two yielding a
prefactor 1/(βV)2. The Feynman rules lead to the following expression for the pair-bubble
self-energy Eq. (12.32):

ΣP
σ (k, ikn) ≡ P̃qp̃

q̃

=
−1

(βV)2
∑

σ′pq

∑

ipniqn

[−W (q)
]2 G0

σ′(p, ipn) G0
σ′(p+q, ipn+iqn) G0

σ(k−q, ikn−iqn)

=
1
β

∑

iqn

∫
dq

(2π)3
W (q)2 Π0(q, iqn) G0

σ(k−q, ikn−iqn), (12.33)

where we have separated out the contribution Π0(q, iqn) from the fermion loop,

Π0(q, iqn) ≡ Q =
−2
β

∑

ipn

∫
dp

(2π)3
1

(ipn + iqn − ξp+q)
1

(ipn − ξp)
. (12.34)

The loop contribution Π0(q, iqn) is traditionally denoted the pair-bubble, and we shall
study it in more detail in the coming chapters. Here we just note that the spin sum
becomes a factor 2, and that the Matsubara sum over ipn can easily be carried out using
the method of Sec. 10.4.1. The evaluation of the p-integral is in principle elementary.
Inserting the result for Π0(q, iqn) into the pair-bubble self-energy diagram Eq. (12.32)
leads to a bit more involved Matsubara frequency summation over iqn and momentum
integration over q. However, the calculation can be performed, and we shall return to it
later.

12.7 Summary and outlook

In this chapter we have established the Feynman rules for writing down the Feynman
diagrams constituting the infinite-order perturbation expansion of the full single-particle
Green’s functions G (b, a) or Gσ(k, ikn) in terms of the pair-interaction W . Our main
example is the Coulomb interaction.

The Feynman diagram technique is a very powerful tool to use in the context of
perturbation theory. It enables a systematic analysis of the infinitely many terms that
need to be taken into account in a given calculation. Using the Feynman diagrammatic
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analysis one can, as we shall see in the following chapters, identify which sub-classes of
diagrams that give the most important contributions. We have already given explicit
examples of how to evaluate some of the diagrams that are going to play an important
role. Indeed, we show in Chap. 13 that the diagrams analyzed in Eqs. (12.31) and (12.34)
are the ones that dominate the physics of the interacting electron gas in the high density
limit. We shall learn how these diagrams determine the ground state energy of the system
as well as its dielectric properties such as static and dynamic screening.



Chapter 13

The interacting electron gas

In Sec. 2.2 we studied the Coulomb interaction as a perturbation to the non-interacting
electron gas in the jellium model. This was expected to be a valid procedure in the
high density limit, where according to Eq. (2.35) the interaction energy is negligible.
Nevertheless, the second order perturbation analysis of Sec. 2.2.2 revealed a divergence in
the contribution E

(2)
dir from the direct processes, see Eq. (2.49).

In this chapter we reanalyze the Coulomb-interacting electron gas in the jellium model
using the Feynman diagram technique, and we show how a meaningful finite ground state
energy can be found. To ensure well-behaved finite integrals during our analysis we work
with the Yukawa-potential with an artificial range 1/α instead of the pure long range
Coulomb potential, see Eq. (1.103) and the associated footnote,

W (r− r′) =
e2
0

|r− r′| e−α|r−r′|, W (q) =
4πe2

0

q2 + α2
. (13.1)

The range 1/α has no physical origin. At the end at the calculation we take the limit
α → 0 to recover the Coulomb interaction. For example, with the Yukawa potential we
can obtain a finite value for E

(2)
dir in Eq. (2.49) if α is finite, but the divergence reappears

as soon as we take the limit α → 0,

E
(2)
dir ∝

∫

0
dq q2 1

(q2 + α2)2
1
q

q q ∼ − ln(α) −→
α→0

∞. (13.2)

The main result of the following diagrammatic calculation is that the dynamics of the
interacting system by itself creates a renormalization of the pure Coulomb interaction into
a Yukawa-like potential independent of the value of α, which then without problems can
be taken to zero. The starting point of the theory is the self-energy Σσ(k, ikn).

13.1 The self-energy in the random phase approximation

To construct the diagrammatic expansion of the self-energy Σσ(k, ikn) in (k, ikn)-space
we use the Feynman rules Eq. (12.24). In analogy with Eq. (12.18) the self-energy is given
by the sum of all the irreducible diagrams in Gσ(k, ikn) removing the two external fermion

213
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lines G0
σ(k, ikn). We recall that due to the charge compensating back ground in the jellium

model the Hartree self-energy diagram vanishes, ΣH
σ (k, ikn) =� = 0. Thus:

Σσ(k, ikn) = � +� +� +� +� + . . . (13.3)

For each order of W we want to identify the most important terms, and then resum
the infinite series taking only these terms into account. This is achieved by noting that
each diagram in the expansion is characterized by its density dependence through the
dimensionless electron distance parameter rs of Eq. (2.37) and its degree of divergence in
the cut-off parameter α.

13.1.1 The density dependence of self-energy diagrams

Consider an arbitrary self-energy diagram Σ(n)
σ (k, ikn) of order n:

Σ(n)
σ (k, ikn) = � ∝

∫
dk̃1 . . .

∫
dk̃n

︸ ︷︷ ︸
n internal momenta

n interaction terms︷ ︸︸ ︷
W () . . . W () G0() . . .G0()︸ ︷︷ ︸

2n− 1 Green’s fcts

. (13.4)

We then make the integral dimensionless by measuring momenta and frequencies in powers
of the Fermi momentum kF and pulling out the corresponding factors of kF. We have
k ∝ kF, ε ∝ k2

F, and 1
β ∝ k2

F. Furthermore,
∫

dk̃1 ∝ 1
β

∑
ikn

∫
dk

(2π)3
∝ k2+3

F = k5
F, while

W (q) ∝ 1
q2+α2 ∝ k−2

F and G0
σ(k̃) = 1

ikn−εk
∝ k−2

F . The self-energy diagram therefore has
the following kF- and thus rs-dependence:

Σ(n)
σ (k, ikn) ∝

(
k5

F

)n(
k−2

F

)n(
k−2

F

)2n−1

= k
−(n−2)
F ∝ rn−2

s , (13.5)

where in the last proportionality we have used rs = (9π/4)
1
3 /(a0kF) from Eq. (2.37). We

can conclude that for two different orders n and n′ in the high density limit, rs → 0, we
have

n < n′ ⇒
∣∣∣Σ(n)

σ (k, ikn)
∣∣∣ À

∣∣∣Σ(n′)
σ (k, ikn)

∣∣∣, for rs → 0. (13.6)

Eqs. (13.5) and (13.6) are the precise statements for how to identify the most important
self-energy diagrams in the high density limit.
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13.1.2 The divergence number of self-energy diagrams

The singular nature of the Yukawa-modified Coulomb potential Eq. (13.1) in the limit
of small q and α leads to a divergent behavior of the self-energy integrals. The more
interaction lines carrying the same momentum there are in a given diagram, the more
divergent is this diagram. For example (taking α = 0) two lines with the momentum
q contributes with W (q)2 which diverges as q−4 for q → 0 independent of the behavior
of any other internal momentum p in the diagram. In contrast, two lines with different
momenta q and q− p contributes with W (q)W (q− p), which diverges as q−4 only when
both q → 0 and p → 0 at the same time, i.e. in a set of measure zero in the integral over
q and p.

In view of this discussion it is natural to define a divergence number δ
(n)
σ of the self-

energy diagram Σ(n)
σ (k, ikn) as

δ(n)
σ ≡

{
the largest number of interaction lines in
Σ(n)

σ (k, ikn) having the same momentum q.
(13.7)

Consider two diagrams Σ(n,1)
σ and Σ(n,2)

σ of the same order n. With one notable excep-
tion, it is in general not possible to determine which diagram is the larger based alone
on knowledge of the divergence number. The exception involves the diagram with the
maximal divergence number, i.e. when all n momenta in the diagram are the same. In the
limit α → 0 this diagram is the largest:

δ(n,1)
σ = n ⇒

∣∣∣Σ(n,1)
σ (k, ikn)

∣∣∣ À
∣∣∣Σ(n,2)

σ (k, ikn)
∣∣∣,

{
for α → 0 and any
n-order diagram Σ(n,2).

(13.8)

13.1.3 RPA resummation of the self-energy

Using the order n and the divergence number δ, we now order the self-energy diagrams
in a (n, δ)-table. According to Eqs. (13.6) and (13.8) the most important terms are those
in the diagonal in this table where δ = n. The first few diagrams (without arrows on the
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interaction lines for graphical clarity) are

Σσ(k̃) n = 1 n = 2 n = 3 n = 4

δ = 1 � 	 
 � � 

δ = 2 − � � �� �
δ = 3 − − � �
δ = 4 − − − �

(13.9)

It is clear that the most important diagrams in the high density limit are those having a
low order. For each given order the diagrams with the highest divergence number are the
most important. The self-energy in the random phase approximation (RPA) is an infinite
sum containing diagrams of all orders n, but only the most divergent one for each n:

ΣRPA
σ (k̃) ≡ �k̃−q̃

q̃

+ �k̃−q̃

q̃

q̃

p̃

p̃+q̃
+ �k̃−q̃

q̃

q̃

q̃
+ �k̃−q̃

q̃

q̃

q̃

q̃ + . . .

(13.10)
Below we are going to analyze parts of the diagrams individually. This is straightfor-

ward to do, since the Feynman rules Eq. (12.24) are still valid for each part. An important
part of the self-energy diagrams in Eq. (13.10) is clearly the pair-bubble Π0(q, iqn) ≡ �
already introduced in Sec. 12.6.3. It plays a crucial role, because it ensures that all inter-
action lines W (q) carry the same momentum q. To make the fermion-loop sign from the
pair-bubble appear explicitly we prefer to work with χ0 ≡ −Π0 , i.e.

� ≡ −χ0(q, iqn), χ0(q, iqn) =
2
β

∑

ipn

∫
dp

(2π)3
1

(ipn + iqn − ξp+q)
1

(ipn − ξp)
.

(13.11)
In fact, this χ0 is the same correlation function as the one introduced for other reasons in
Sec. 10.7.
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By introducing a renormalized interaction line −WRPA(q̃) =� we can, omitting
interaction line arrows, rewrite the RPA self-energy as

ΣRPA
σ = � ×


� +� + +! + . . .


 = " (13.12)

or, pulling out the convergent Fock self-energy# , as

ΣRPA
σ = $ +% ×


& +' +( + . . .


 = ) +* (13.13)

In the following we study the properties of the renormalized Coulomb interaction WRPA(q̃).

13.2 The renormalized Coulomb interaction in RPA

The renormalized Coulomb interaction WRPA(q, iqn) introduced in Eqs. (13.12) and (13.13)
can be found using a Dyson equation approach,

−WRPA(q, iqn) ≡+ ≡, +- +. +/ + . . .

=0 +1 ×


2 +3 +4 + . . .




=5 +6 ×7 (13.14)

In (q, iqn)-space this is an algebraic equation with the solution

−WRPA(q, iqn) =8 = 9
1−: =

−W (q)
1−W (q) χ0(q, iqn)

. (13.15)

Note the cancellation of the explicit signs from W and χ0 in the denominator. We can
now insert the specific form Eq. (13.1) for the Yukawa-modified Coulomb interaction, and
let the artificial cut-off parameter α tend to zero. The final result is

WRPA(q, iqn) −→
α→0

4πe2
0

q2 − 4πe2
0 χ0(q, iqn)

. (13.16)
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WRPA(q, iqn) thus has a form similar to W (q), but with the important difference that the
artificially introduced parameter α in the latter has been replaced with the pair-bubble
function −4πe2

0χ0(q, iqn) having its origin in the dynamics of the interacting electron gas.
Note that the pair-bubble is a function of both momentum and frequency. From now on
we no longer need a finite value of α, and it is put to zero in the following.

In the static, long-wave limit, q → 0 and iqn = 0 + iη, we find that WRPA appears in
a form identical with the Yukawa-modified Coulomb interaction, i.e. a screened Coulomb
interaction

WRPA(q, 0) −→
q→0

4πe2
0

q2 + k2
s

, (13.17)

where the so-called Thomas-Fermi screening wavenumber, ks has been introduced,

k2
s ≡ −4πe2

0 χ0(0, 0). (13.18)

In the extreme long wave limit we have

WRPA(0, 0) =
−1

χ0(0, 0)
. (13.19)

In the following section we calculate the pair-bubble χ0(q, iqn), find the value of the
Thomas-Fermi screening wavenumber ks, and discuss a physical interpretation of the ran-
dom phase approximation.

13.2.1 Calculation of the pair-bubble

In Eq. (12.34) the pair-bubble diagram is given in terms of a p-integral and a Matsubara
frequency sum. The sum was carried out in Eq. (10.85) using the recipe Eq. (10.54):

χ0(q, iqn) = 2
∫

dp
(2π)3

nF(ξp+q)− nF(ξp)
ξp+q − ξp − iqn

. (13.20)

The frequency dependence of the retarded pair-bubble χR
0 can now be found by the

usual analytical continuation iqn → ω + iη. We still have to perform the rather involved
p-integral. However, it is a simple matter to obtain the static, long-wave limit q → 0
and iqn = 0, and thus determine χR

0 (q, 0). In this limiting case ξp+q → ξp, and we can
perform a Taylor expansion in energy

χR
0 (q, 0) −→

q→0
2

∫
dp

(2π)3
(ξp+q − ξp) ∂nF

∂ξp

ξp+q − ξp
= −

∫
dξp d(µ + ξp)

[
−∂nF

∂ξp

]

' −d(εF), for kBT ¿ εF. (13.21)

In the static, long-wave limit at low temperatures χR
0 (q, 0) is simply minus the density

of states at the Fermi level, and consequently, according to Eq. (13.19), WRPA(q → 0, 0)
becomes

WRPA(q → 0, 0) =
1

d(εF)
. (13.22)
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The Thomas-Fermi screening wavenumber ks is found by combining Eq. (13.18) with
Eqs. (2.31) and (2.36),

k2
s = −4πe2

0 χR
0 (0, 0) = 4π e2

0 d(εF) =
4
π

kF

a0

, (13.23)

a0 being the Bohr radius. This result is very important, because it relates the screen-
ing length 1/ks to microscopic parameters of the electron gas. It is therefore useful for
numerous applications. For metals ks ≈ 0.1 nm−1.

We now turn to the more general case, but limit the calculation of χ0(q, ω + iη) to the
low temperature regime kBT ¿ εF. Finite temperature effects can be obtained by using
the Sommerfeld expansion or by numerical integration. In the low temperature limit an
analytical expression is obtained by a straightforward but rather tedious calculation. In
the p-integral the only angular dependence of the integrand is through cos θ, and we have

λ ≡ cos θ,

∫
dp

(2π)3
=

∫ ∞

0

dp

4π2
p2

∫ 1

−1
dλ, ξp−q − ξp =

1
2m

(q2 − 2pqλ). (13.24)

In the low temperature limit the Fermi-Dirac distribution is a step-function, and the
real part of χ0 is most easily calculated by splitting Eq. (13.20) in two terms, substituting
p with p− q in the first term, and collecting the terms again:

Re χ0(q, ω +iη) = −P
∫ kF

0

dp

2π2
p2

∫ 1

−1
dλ nF(ξp)

[
1

1
2m (q2−2pqλ)+ω

+
1

1
2m (q2+2pqλ)−ω

]
.

(13.25)
The integrand is now made dimensionless by measuring all momenta in units of kF and
all frequencies and energies in units of εF, such as

x ≡ q

2kF

and x0 ≡ ω

4εF

, (13.26)

and then the λ-integral followed by the p-integral is carried out using standard logarithmic
integrals1. The final result for the retarded function χR

0 is

Re χR
0 (q, ω ) = −2 d(εF)

(
1
2

+
f(x, x0) + f(x,−x0)

8x

)
, (13.27a)

where

f(x, x0) ≡
[
1− (x0

x
− x

)2
]

ln
∣∣∣∣
x + x2 − x0

x− x2 + x0

∣∣∣∣ . (13.27b)

The imaginary part of χ0 in Eq. (13.20) is

Im χ0(q, ω + iη) =
∫ kF

0

dp

2π
p2

∫ 1

−1
dλ [nF(ξp+q)− nF(ξp)] δ(ξp+q − ξp−ω ). (13.28)

1Useful integrals are
R

dx 1
ax+b

= 1
a

ln(ax + b) and
R

dx ln(ax + b) = 1
a
[(ax + b) ln(ax + b)− ax].
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Using δ(f [x]) =
∑

x0
δ(x− x0)/|f ′[x0]|, where x0 are the zeros of f [x], the λ-integral can

be performed. A careful analysis of when the delta-function and the theta-functions are
non-zero leads to

Im χR
0 (q, ω ) = −d(εF)





π
8x

[
1− (

x0
x − x

)2
]
, for |x− x2| < x0 < x + x2

π
2

x0
x , for 0 < x0 < x− x2

0, for other x0 ≥ 0.

(13.29)

13.2.2 The electron-hole pair interpretation of RPA

We have learned above that the RPA results in a screened Coulomb interaction. To gain
some physical insight into the nature of this renormalization, we study the pair-bubble
diagram a little closer in the (q, τ)-representation. Choosing τ > 0 in Eq. (10.83) we arrive
at

χ0(q, τ > 0) = −
∑

σ

∫
dp

(2π)3
〈cpσ(τ) c†pσ〉0 〈c†p+qσ(τ) cp+qσ〉0. (13.30)

Consequently we can interpret χ0(q, τ > 0) as the sum of all processes of the following
type: at τ = 0 an electron is created in the state |pσ〉 and a hole in the state |p + qσ〉,
which correspond to an electron jumping from the latter state to the former. At the later
time τ the process is reversed, and the electron falls back into the hole state. In the
time interval from 0 to τ an electron-hole pair is thus present, but this corresponds to
a polarization of the electron gas, and we now see the origin of the renormalization of
the Coulomb interaction. The RPA scheme takes interaction processes into account thus
changing the dielectric properties of the non-interacting electron gas. The imaginary part
of χR

0 (q, ω ), describes the corresponding dissipative processes, where momentum q and
energy ω is absorbed by the electron gas (see also the discussion in Sec. 8.5).

In the remaining sections of the chapter we study how the effective RPA interaction
influences the ground state energy and the dielectric properties (in linear response) of the
electron gas.

13.3 The ground state energy of the electron gas

We first show how to express the ground state energy in terms of the single-particle Green’s
functions G(k, ikn). That this is at all possible is perhaps surprising due to the presence
of the two-particle Coulomb interaction. But using the equation of motion technique
combined with an “integration over the coupling constant” method we obtain the result.

Let λ be a real number 0 ≤ λ ≤ 1, and define

Hλ ≡ H0 − µN + λW, (13.31)

where H0 is the kinetic energy and W the Coulomb interaction Eq. (2.34). For λ = 0
we have the non-interacting electron gas while for λ = 1 we retrieve the full Coulomb
interacting electron gas. According to Eq. (1.119) the thermodynamic potential Ω ≡
U − TS − µN is given by



13.3. THE GROUND STATE ENERGY OF THE ELECTRON GAS 221

Ω(λ) = − 1
β

ln Tr
[

e−β(H0−µN+λW)
]
. (13.32)

By differentiating with respect to λ we find

∂Ω
∂λ

= − 1
β

Tr
[−βW e−β(H0−µN+λW)

]

Tr
[
e−β(H0−µN+λW)

] = 〈W 〉λ. (13.33)

By integration over λ from 0 to 1 the change in Ω due to the interactions is found:

Ω(1)− Ω(0) =
∫ 1

0

dλ

λ
〈λW 〉λ. (13.34)

The subscript λ refers to averaging with respect to Hλ. At T = 0 we have ∆E = ∆Ω,
whence the ground state energy E of the system can be calculated as

E = E0 + lim
T→0

∫ 1

0

dλ

λ
〈λW 〉λ. (13.35)

The expectation value 〈λW 〉λ can be related to Gλ
σ(k, ikn) through the equation of motion

for Gλ
σ(k, τ) using Eqs. (5.31) and (10.61b)

− ∂τ
1
V

∑

kσ

Gλ
σ(k, τ)

= δ(τ) +
1
V

∑

kσ

〈Tτ [Hλ, ckσ](τ) c†kσ〉λ

= δ(τ) +
1
V

∑

kσ


εkGλ

σ(k, τ)− 2
∑

k′σ′q

λ

2
W (q)〈Tτ c†k′σ′(τ) ck′+qσ′(τ) ck−qσ(τ) c†kσ〉λ


 .

(13.36)

We now let τ = 0− = −η and note that the last term is nothing but the interaction part
〈λW 〉λ of the Hamiltonian. Furthermore, using Fourier transforms we can at τ = −η write
Gλ

σ(k,−η) = 1
β

∑
ikn
Gλ

σ(k, ikn) eiknη and δ(−η) = 1
β

∑
ikn

eiknη. We therefore arrive at the
following compact expression,

1
βV

∑

iknkσ

(ikn − εk) Gλ
σ(k, ikn) eiknη =

1
βV

∑

iknkσ

eiknη + 2〈λW 〉λ. (13.37)

Collecting the sums on the left-hand side yields

1
βV

∑

iknkσ

[
(ikn − εk)Gλ

σ(k, ikn) − 1
]

eiknη = 2〈λW 〉λ. (13.38)

We now utilize that 1 = [Gλ
σ ]−1Gλ

σ and furthermore that [Gλ
σ ]−1 = ikn − εk −Σλ

σ to obtain

〈λW 〉λ =
1

2βV
∑

ikn

∑

kσ

Σλ
σ(k, ikn) Gλ

σ(k, ikn) eiknη, (13.39)



222 CHAPTER 13. THE INTERACTING ELECTRON GAS

and when this is inserted in Eq. (13.35) we finally arrive at the expression for the ground
state energy

E = E0 + lim
T→0

1
2βV

∑

ikn

∑

kσ

∫ 1

0

dλ

λ
Σλ

σ(k, ikn) Gλ
σ(k, ikn) eiknη. (13.40)

This expression allows for an diagrammatic calculation with the additional Feynman rule
that limT→0

∫ 1
0

dλ
λ must be performed at the end of the calculation. Moreover, it is a

remarkable result, because it relates the ground state energy of the interacting system to
the single-particle Green’s function and the related self-energy.

To improve the high-density, second-order perturbation theory of Sec. 2.2 we include
in Eq. (13.40) all diagrams up to second order and, through RPA, the most divergent
diagram of each of the higher orders. Since the self-energy Σ contains diagrams from first
order and up, we do not have to expand the Green’s function G beyond first order:

Σλ
σ(k, ikn) ≈ ; + < += + > (13.41)

Gλ
σ(k, ikn) ≈? +@ (13.42)

Note that only the second diagram in Eq. (13.41) needs to be renormalized. This is
because only this diagram is divergent without renormalization. Combining Eq. (13.40)
with Eqs. (13.42) and (13.41) we obtain to (renormalized) second order:

E − E0 ≈ lim
T→0

∫ 1

0

dλ

λ


A + B +C + 2D




=
∫ 1

0

dλ

λ

[E + F + G
]

. (13.43)

Note the similarity between the three diagrams in this expression for E−E0 and the ones
depicted in Fig. 2.6b, Fig. 2.8a, and Fig. 2.8b. We will not go through the calculation of
these diagrams. The techniques are similar to those employed in the calculation of the
pair-bubble diagram in Sec. 13.2.1. The RPA renormalization of the interaction line in
the second diagram in Eq. (13.43) renders the diagram finite. Since the Thomas-Fermi
wavenumber ks replaced α as a cut-off, we know from Eq. (13.2) that this diagram must
be proportional to log ks and hence to log rs. We are now in a position to continue the
expansion Eq. (2.43) of E/N in terms of the dimensionless distance parameter rs,

E

N
−→
rs→0

(
2.211

r2
s

− 0.916
rs

+ 0.0622 log rs − 0.094
)

Ry. (13.44)

This expression ends the discussion of the ground state energy of the interacting electron
gas in the jellium model. By employing the powerful quantum field theoretic method,
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in casu resummation of the Feynman diagram series for the single-electron self-energy
and Green’s function, we could finally solve the problem posed by the failed second order
perturbation theory.

Having achieved this solution, we will also be able to study other aspects of the inter-
acting electron gas. In the following we focus on the dielectric properties of the system.

13.4 The dielectric function and screening

Already from Eq. (13.15) it is clear that the internal dynamics of the interacting electron
gas lead to a screening of the pure Coulomb interaction. One suspects that also external
potentials φext will be screened similarly; and indeed, as we shall see below, this is in fact
the case. As in Sec. 6.4 we study the linear response of the interacting system due to the
perturbation H ′ caused by φext,

H ′ =
∫

dr [−e ρ(r)] φext(r, t), (13.45)

where ρ(r) is the particle density and not, as in Sec. 6.4, the charge density. Since the
unperturbed system even with its Coulomb interacting electrons is translation-invariant,
we write all expressions in Fourier (q, ω )-space. The external potential φext(q, ω ) creates
an induced charge density −eρind(q, ω ). Through the Coulomb interaction this in turn
corresponds to an induced potential

φind(r, t) =
∫

dr′
−eρind(r′, t)
4πε0|r− r′| ⇒ φind(q, ω ) =

1
e2

W (q) [−e ρind(q, ω )]. (13.46)

We divide with e2 since W (q) by definition contains this factor. Next step is to use
the Kubo formula, which relates [−e ρind(r, ω)] with the external potential and with the
retarded density-density correlator

[−e ρind(q, ω)] = (−e)2 CR
ρρ(q,−q, ω) φext(q, ω) ≡ e2 χR(q, ω) φext(q, ω). (13.47)

Collecting our partial results we have

φind(q, ω ) = W (q) χR(q, ω ) φext(q, ω ), (13.48)

where χR(q, ω ) is the Fourier transform of the retarded Kubo density-density correlation
function χR(q, t− t′), see Eqs. (8.75) and (8.76),

χR(q, t− t′) ≡ CR
ρρ(qt,−qt′) = −iθ(t− t′)

1
V

〈[
ρ(qt), ρ(−qt′)

]〉
eq

. (13.49)

Here the subscript ’eq’ refers to averaging in equilibrium, i.e. with respect to H = H0 +W
omitting H ′. Using Eq. (13.48) the total potential φtot(q, ω ) can be written in terms of
the polarization function χR,

φtot(q, ω ) = φext(q, ω ) + φind(q, ω ) =
[
1 + W (q) χR(q, ω )

]
φext(q, ω ). (13.50)
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When recalling that φtot corresponds to the electric field E, and φext to the displacement
field D = ε0εE, we see that the following expression for the dielectric function or electrical
permittivity ε has been derived:

1
ε(q, ω )

= 1 + W (q) χR(q, ω ). (13.51)

So upon calculating χR(q, ω ) we can determine ε(q, ω ). But according to Eq. (10.30) and
the specific calculation in Sec. 10.7 we can obtain χR(q, ω ) by analytic continuation of the
corresponding Matsubara Green’s function

χR(q, ω ) = χ(q, iqn → ω + iη), (13.52)

where χ(q, iqn) is the Fourier transform in imaginary time of χ(q, τ) given by Eq. (10.81):

χ(q, τ) = − 1
V

〈
Tτ ρ(q, τ) ρ(−q, 0)

〉
eq

. (13.53)

We will calculate the latter Green’s function using the Feynman diagram technique.
From Eq. (1.96) we can read off the Fourier transform ρ(±q):

ρ(q) =
∑

pσ′
c†pσ′cp+qσ′ , ρ(−q) =

∑

kσ

c†k+qσckσ. (13.54)

Hence χ(q, τ) is seen to be a two-particle Green’s function of the form

χ(q, τ) = − 1
V

〈
Tτ

∑

pσ′kσ

c†pσ′(τ)cp+qσ′(τ) c†k+qσckσ

〉
eq

=
1
V


−〈

ρq=0

〉
eq

〈
ρq=0

〉
eq

+
∑

pσ′kσ

〈
Tτ cp+qσ′(τ)ckσc†pσ′(τ + η)c†k+qσ(η)

〉connected

eq


 .

(13.55)

Here, as in Eq. (12.6), η = 0+ has been inserted to ensure correct ordering, and we have
divided the contributions to χ into two parts. One part where the two density operators
are disconnected from one another, and the other part where they mix. The disconnected
part is zero since the expectation of the charge density in the neutralized and homogeneous
jellium model is zero. The second term has a structure similar to the simple pair-bubble
diagram with an external momentum q flowing through it.

It is now possible to apply the Feynman rules Eq. (12.24) directly and to write the
diagrammatic expansion in (q, iqn)-space of χ(q, iqn) = χ(q̃). We only have to pay special
attention to rule (4), where it for the single-particle Green’s function is stated that the
diagrams must contain two Green’s functions with the external momentum k. This rule
was a direct consequence of the definition of G(k, τ),

G(k, τ) = −〈Tτ ckσ(τ) c†kσ〉 ⇒ Hk̃ · · ·Ik̃
(13.56)



13.4. THE DIELECTRIC FUNCTION AND SCREENING 225

Likewise for χ(q, τ), except this is a two-particle Green’s function with two operators at
each of the external vertices instead of just one. One straightforwardly gets the following
vertices corresponding to ρ(q) and ρ(−q):

χ(q, τ) ∼ 〈
Tτ c†pσ′(τ)cp+qσ′(τ) ckσc†k+qσ

〉 ⇒ J
p̃+q̃

p̃

. . . K̃
k+q̃

k̃

(13.57)

The initial (right) vertex absorbs an external four-momentum q̃ while the final (left) vertex
reemits q̃. We must then have that χ(q̃) is the sum of all possible diagrams that connect
the two ρ-vertices and that involve any number of Coulomb interaction lines.

−χ(q̃) ≡ L
p̃+q̃

p̃

k̃+q̃

k̃

≡ M
k̃+q̃

k̃

+ N
p̃+q̃ k̃+q̃

p̃ k̃
p̃−k̃

+ O + P (13.58)

+Q + R
+S +T + . . .

In analogy with the self-energy diagrams in Sec. 12.4, we define the irreducible diagrams
in the χ-sum as the ones that cannot be cut into two pieces by cutting any single interaction
lineU :

−χirr(q̃) ≡ the sum of all irreducible diagrams in −χ(q̃)

= V +W +X +Y +Z + . . .

≡ [
p̃+q̃

p̃

k̃+q̃

k̃

(13.59)
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Hence we can resum χ(q̃) in terms of χirr(q̃) and obtain a Dyson equation for it,

−χ(q̃) =\
=] +^ +_ + . . .

=` +a ×
[

b +c + . . .

]

=d +e = −χirr(q̃)− χirr(q̃) W (q̃) χ(q̃) , (13.60)

with the solution

−χ(q̃) =f = g
1−h =

−χirr(q̃)
1−W (q̃) χirr(q̃)

(13.61)

With this result for χ(q, iqn) we can determine the dielectric function,

1
ε(q, iqn)

= 1 + W (q)
χirr(q, iqn)

1−W (q) χirr(q, iqn)
=

1
1−W (q) χirr(q, iqn)

, (13.62)

or more directly

ε(q, iqn) = 1−W (q) χirr(q, iqn) = 1− e2

ε0q
2

χirr(q, iqn). (13.63)

Note it is e2 and not e2
0 that appears in the last expression. In RPA χirr(q, iqn) is approx-

imated by the simple pair-bubble

−χirr(q, iqn) =i −→ −χirr
RPA(q, iqn) =j = −χ0(q, iqn), (13.64)

and the full correlation function χ(q, iqn) is approximated by χRPA(q, iqn),

−χRPA(q, iqn) =kRPA = l
1−m =

−χ0(q, iqn)
1−W (q̃) χ0(q, iqn)

. (13.65)

This results in the RPA dielectric function εRPA(q, iqn)
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εRPA(q, iqn) = 1−W (q) χ0(q, iqn) = 1− e2

ε0q
2

χ0(q, iqn). (13.66)

The entire analysis presented in this section leads to the conclusion that the external
potentials treated in linear response theory are renormalized (or screened) in the exact
same way as the internal Coulomb interactions of the previous section,

φRPA
tot (q, iqn) =

1
εRPA(q, iqn)

φext(q, iqn) =
φext(q, iqn)

1− e2

ε0q2 χ0(q, iqn)
. (13.67)

This conclusion can be summarized in the following two diagrammatic expansions. One is
the internal electron-electron interaction potential represented by the screened Coulomb in-
teraction line WRPA. The other is the external impurity potential Eqs. (11.25) and (11.30)
represented by the screened electron-impurity line uRPA.

−WRPA(q, iqn) =n =o +p +q + . . .

(13.68)

uRPA(q) =r =s +t +u + . . .

(13.69)

13.5 Plasma oscillations and Landau damping

We now leave the static case and turn on an external potential with frequency ω . The goal
of this section is to investigate the frequency dependence of the dielectric function ε(q, ω ).
We could choose to study the full case described through χR

0 (q, ω ) by Eqs. (13.27a)
and (13.29), but to draw some clear-cut physical conclusions, we confine the discussion to
the case of high frequencies, long wave lengths and low temperatures, all defined by the
conditions

vFq ¿ ω (or x ¿ x0), q ¿ kF (or x ¿ 1), kBT ¿ εF. (13.70)

In this regime we see from Eq. (13.29) that ImχR
0 = 0. To proceed we adopt the following

notation

λ ≡ cos θ,

∫
dp

(2π)3
=

∫ ∞

0

dp

4π2
p2

∫ 1

−1
dλ, ξp+q − ξp ≈ vpqλ. (13.71)

Utilizing this in Eq. (13.20) and Taylor expanding nF as in Eq. (13.21) we obtain

Re χR
0 (q, ω ) ≈ 1

2π2

∫
dp p2 δ(εp − εF)

∫ 1

−1
dλ

vpqλ

ω − vpqλ
. (13.72)

We rewrite the delta-function in energy-space to one in k-space, and furthermore we
introduce a small dimensionless variable z:

δ(εp − εF) =
δ(p− kF)

vF

, p → kF, vp → vF, z ≡ qvF

ω
λ ¿ 1. (13.73)
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This in inserted in Eq. (13.72). The variable λ is substituted by z, and the smallness of
this new variable permits the Taylor expansion z/(1− z) ≈ z + z2 + z3 + z4.

Re χR
0 (q, ω ) ≈ 1

2π2
k2

F

1
vF

ω

qvF

∫ qvF/ω

−qvF/ω
dz

z

1− z

≈ 1
2π2

k2
Fω

qv2
F

[1
2
z2 +

1
3
z3 +

1
4
z4 +

1
5
z5

]+qvF/ω

−qvF/ω

=
n

m

q2

ω2

[
1 +

3
5
(qvF

ω

)2
]
, (13.74)

where in the last line we used vF = kF/m and 3π2n = k3
F. Combining Eqs. (13.66)

and (13.74) we find the RPA dielectric function in the high-frequency and long-wavelength
limit to be

εRPA(q, ω ) = 1− ω2
p

ω2

[
1 +

3
5

(qvF

ω

)2
]
, (13.75)

where the characteristic frequency ωp, well known as the electronic plasma frequency, has
been introduced,

ωp ≡
√

ne2

mε0
. (13.76)

13.5.1 Plasma oscillations and plasmons

The plasma frequency is an important parameter of the interacting electron gas setting
the energy scale for several processes, e.g. it marks the limit below which metals reflects
incoming electromagnetic radiation, and above which they become transparent. Typical
values are ω ≈ 1016 Hz, putting it in the ultra-violet part of the electromagnetic spectrum.
It is determined by the electron density n and the effective band-mass m of Eq. (2.16). The
former parameter can be found by Hall effect measurements, while the latter can be de-
termined from de Haas-van Alphen effect2. Using the observed parameters for aluminum,
n = 1.81× 1029 m−2 and m = 1.115 m0, we obtain ωAl

p = 2.27× 1016 Hz = 15.0 eV.
A very direct manifestation of the plasmon frequency is the existence of the collective

charge density oscillations, the plasma oscillations. Theoretically, the existence of these
oscillations is proved as follows. Consider the relation D = ε ε0E or the related one,
φext(q, ω ) = ε(q, ω ) φtot(q, ω ). Note that ε(q, ω ) = 0 in fact allows for a situation where
the total potential varies in space and time in the absence of any external potential driving
these variations. We are thus about to identify an oscillatory eigenmode for the electron
gas. Let us calculate its properties in RPA from Eq. (13.75).

εRPA(q, ω ) = 0 ⇒ ω2 ≈ ω2
p +

3
5

(qvF)2 ⇒ ω (q) ≈ ωp +
3
10

v2
F

ωp
q2. (13.77)

2The de Haas-van Alphen effect is oscillations in the magnetization of a system as the function of an
applied external magnetic field. The Fermi surface can be mapped out using this technique as described
in Ashcroft and Mermin, Solid State Physics, chapter 14. For the determination of the electron band mass
m in aluminum see N.W. Ashcroft, Philos. Mag. 8, 2055 (1963) regarding aluminum.
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Figure 13.1: (a) Observation of plasmons in high-energy electron transmission spec-
troscopy on a 258 nm wide aluminum foil, by Marton et al. Phys. Rev. 126, 182 (1962).
The initial energy is Ei = 20 keV, and the final energy Ef is measured at zero scattering
angle on the other side of the foil. The energy loss Ei − Ef clearly reveals loss in quanta
of ∆E. The energy quantum ∆E was found to be 14.8 eV in good agreement with the
plasma frequency determined by other methods to be 15.0 eV. (b) A sketch of a typical
microscopic process, here with the emission of three plasmon during the traversal.

Recall that in the high frequency regime Im χR
0 and consequently Im ε is zero, so no

damping occurs. Thus by Eq. (13.77) it is indeed possible to find oscillatory eigenmodes,
the plasma oscillations. They have a simple quadratic dispersion relation ω (q) starting
out from ωp for q = 0 and then going up as q is increased.

But how could one be convinced of the existence of these oscillations? One beautiful
and very direct verification is the experiment discussed in Fig. 13.1. If some eigenmodes
exist with a frequency ∼ ωp, then, as is the case with any harmonic oscillator, they must
be quantized leading to oscillator quanta, denoted plasmons, with a characteristic energy
of ωp. In the experiment high energy electrons with an initial energy Ei = 20 keV are shot
through a 258 nm wide aluminum foil. The final energy, Ef , is measured on the other side
of the foil, and the energy loss Ei − Ef can be plotted. The result of the measurement
is shown in Fig. 13.1(a). The energy loss clearly happens in quanta of size ∆E. Some
electrons traverse the foil without exciting any plasmons (the first peak), others excite
one or more as sketched in Fig. 13.1(b). On the plot electrons exciting as many as seven
plasmons are clearly seen. Note that the most probable process is not the plasmon-free
traversal, but instead a traversal during which two plasmons are excited. The value of the
energy loss quantum was measured to be ∆E = 14.8 eV in very good agreement with the
value of the plasma frequency of 15.0 eV for bulk aluminum.
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Figure 13.2: A gray scale plot of Im χR
0 (q, ω ). The darker a shade the higher the value.

The variables are rescaled according to Eq. (13.26): x = q/2kF and x0 = ω/4εF. Note that
ImχR

0 (q, ω ) 6= 0 only in the gray scaled area, which is bounded by the constraint functions
given in Eq. (13.29). Also shown is the plasmon branch with its propagating and damped
parts. The parameters chosen for this branch are those of aluminum, εF = 11.7 eV and
ωp = 15.0 eV.

13.5.2 Landau damping

Finally, we discuss the damping of excitations, which is described by the imaginary part
Im χR

0 (q, ω ). The pure plasma oscillations discussed above are examples of undamped
or long-lived excitations. This can be elucidated by going to the retarded functions in
Eq. (13.67)

φRPA,R
tot (q, ω ) =

φext(q, ω )
1− e2

ε0q2 χ0(q, ω + iη)
. (13.78)

In the case of a vanishing imaginary part Im χ0 we find a pole on the real axis:

φRPA,R
tot (q, ω ) =

φext(q, ω )
1− e2

ε0q2 Re χR
0 (q, ω ) + iη

. (13.79)

If, however, ImχR
0 6= 0 we end up with a usual Lorentzian peak as a function of ω, signaling

a temporal decay of the total potential with a decay time proportional to Im χR
0 ,

φRPA,R
tot (q, ω ) =

φext(q, ω )
1− e2

ε0q2 Re χR
0 (q, ω ) + i e2

ε0q2 Im χR
0 (q, ω )

. (13.80)

In Eq. (13.29) we have within RPA calculated the region the (q, ω )-plane of non-vanishing
Im χR

0 , and this region is shown in Fig. 13.2. The physical origin of the non-zero imag-
inary part is the ability for the electron gas to absorb incoming energy by generating
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electron-hole pairs. Outside the appropriate area in (q, ω )-space, energy and momen-
tum constraints prohibit the excitation of electron-hole pairs, and the electron gas cannot
absorb energy by that mechanism.

Another way to understand the effect of a non-vanishing Im χR
0 is to link it to the

conductivity σ of the electron gas. It is well-known that the real part of σ is associated
with dissipation (Joule heating), when a current J is flowing. But from Eq. (6.47) it
follows that

e2 Im χR
0 = − 1

ω
q·(Re σ

)·q, (13.81)

whereby it is explicitly confirmed that a non-vanishing ImχR
0 is associated with the ability

of the system to dissipate energy.
Finally we remark that in Fig. 13.2 is shown the dispersion relation for the plasmon

excitation. It starts out as a bona fide excitation in the region of the (q, ω )-space where
the RPA dissipation is 0. Hence the plasmons have infinite life times for small q. However,
at some point the dispersion curve crosses into the dissipative Im χ0 6= 0 area, and there
the plasmon acquires a finite life time. In other words for high q-values the plasmonic
excitations are not exact eigenmodes of the system, and they are damped out as a function
of time. In the literature this damping mechanism is denoted Landau damping.

13.6 Summary and outlook

In this chapter we have used the Feynman rules for pair-wise interacting particles to
analyze the Coulomb-interacting electron gas in the jellium model. The main result was
the RPA resummation of diagrams to all orders in perturbation theory valid in the high
density limit. In particular we found the self-energy

ΣRPA
σ (k, ikn) = v ×


w +x +y +z + . . .


 = {

This result was used to calculate the ground state energy of the electron gas

E−E0

N
=| + } +~ =

(
2.211

r2
s

− 0.916
rs

+ 0.0622 log rs − 0.094
)

Ry.

We also used the RPA analysis to study the dielectric properties of the electron gas. One
main result was finding the screening of the Coulomb interaction both for the internal
interaction and for external potentials, here expressed by their Dyson’s equations

−WRPA(q, iqn) = � = � +�
uRPA(q) = � = � +�
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Explicit expressions for the dielectric function ε(q, ω ) was found in two cases, (i) the
static, long-wave limit and (ii) the high frequency, long-wave limit,

εRPA(q, 0) = 1 +
k2

s

q2
, where k2

s =
4
π

kF

a0

εRPA(q, ω À qvF) = 1− ω2
p

ω2

[
1 +

3
5

(qvF

ω

)2
]
.

Finally, we studied the plasma oscillations of the electron gas found from the condition
εRPA(q, ω ) = 0, and found the dispersion relation involving the plasma frequency ωp,

ω (q) = ωp +
3
10

v2
F

ωp
q2, where ωp ≡

√
ne2

mε0
.

The RPA analysis has already given us a good insight in some central physical proper-
ties of the electron gas. Moreover, it plays a crucial role in the studies of electron-impurity
scattering, electron-phonon interaction, superconductivity, and of many other physical
phenomena involving the electron gas.



Chapter 14

Fermi liquid theory

The concept of Fermi liquid theory was developed by Landau in 1957-59 and later refined
by others1. The basic conclusion is that a gas of interacting particles can be described by
a system of almost non-interacting “quasiparticles”. These quasiparticles are approximate
excitations of the system at sufficiently short time scales. What we mean by “sufficiently
short” of course has to be quantified, and this condition will set the limits for the appli-
cability of the theory.

The Fermi liquid theory is conceptually extremely important, because it explains why
the apparently immensely complicated system of for example interacting electrons in a
metal can be regarded as a gas of non-interacting particles. This is of course an enormous
simplification, and it gives the theoretical explanation of why all the results that one gets
from the widely used free electron model work so well.

The quasiparticle concept furthermore gives the theoretical foundation of the semi-
classical description. The quasiparticle distribution function satisfies a kinetic equation,
which may include scattering from one state to another for example due to impurity scat-
tering. This equation is known as the Landau transport equation, and it is equivalent
to the well-known Boltzmann equation from kinetic gas theory. In this description the
potential is allowed to vary in space due to some external perturbation or due to inter-
actions with the inhomogeneous density of quasiparticles. Using the Landau transport
equation we shall see that the collective modes derived in the previous chapter also come
out naturally from a semi-classical description and, furthermore, the conductivity, which is
calculated from microscopic considerations in Chap. 15, also is easily understood in terms
of scattering of quasiparticles.

14.1 Adiabatic continuity

The Fermi liquid theory is based on the assumption that starting from the non-interacting
system of particles one can analyze the interacting case by applying perturbation theory.
This is in fact a rather stringent criterion, because it means that one cannot cross a phase

1See for example the collection of reprints in the book: D. Pines The Many-body problem, Addison-
Wesley (1961,1997).
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boundary line. This is because a phase transition, such as for example the ferromagnetic
transition discussed in Chap. 4, cannot be reached by perturbation theory starting from
the paramagnetic phase.2

If the excitations of the non-interacting system are connected to the excitations of
the interacting system by a one-to-one correspondence (at least on short time scales as
explained below) the two cases are said to be connected by “adiabatic continuity”. If you
imagine that we start from the non-interacting system excited in some state and then
turn on the interaction adiabatically, i.e. so slowly that the occupation numbers are not
changed, then we would end up in a corresponding excited state of the interacting system.
What we really are claiming is that the excited states of the interacting system can be
labelled by the same quantum numbers as those we used to label the non-interacting
system by.

As a simple example of adiabatic continuity we now consider a particle trapped in a
one-dimensional potential. The one-dimensional potential will have a number of bound
states with discrete eigenenergies and a continuum of eigenenergies corresponding to the
delocalized states. We now imagine changing the potential slowly. As an example consider
a potential of the form

V (x, t) = −V0(t) exp
(−x2/2x2

0

)
, (14.1)

where the depth of the well is time dependent, and let us suppose that it is changing
from an initial value V01 to a final value V02. If this change is slow the solution of the
Schrödinger equation

i∂tψ(x, t) = H(t)ψ(x, t) =
(

p2

2m
+ V (x, t)

)
ψ(x, t), (14.2)

can be approximated by the adiabatic solution

ψadia(x, t) ≈ ψV0(t)(x) exp
(
−iE

V0(t)
t
)

, (14.3)

where ψV0(t)(x) is the solution of the static (or instantaneous) Schrödinger equation, with
energy E

V0(t)

H(t)ψV0(t)(x) = E
V0(t)

ψV0(t)(x). (14.4)

Note that both ψV0(t)(x) and EV0(t) depend parametrically on the time through V0(t). The
accuracy of the solution in Eq. (14.3) is estimated by inserting Eq. (14.3) into Eq. (14.2),
which yields

i∂tψadia(x, t) = E
V0(t)

ψadia(x, t) +
(

∂ψadia(x, t)
∂V0(t)

)(
∂V0(t)

∂t

)
= Hψadia(x, t). (14.5)

Thus we have an approximate solution if the first term dominates over the second term.
Thus apparently our conclusion is that if the rate of change of V0(t) is small enough

the solution for the new value of V0 = V02 can be found be by starting from the solution
2This fact you can understand from the concept of broken symmetry explained in Sec. 4.3. The phase

with broken symmetry can only occur if the ensemble of states in the statistical average is truncated.
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with the old value of V0 = V01 and “adiabatically” changing it to its new value. For
example if the first excited state is a bound state, it will change to a somewhat modified
state with a somewhat modified energy, but most importantly it is still the first excited
state and it is still a bound state. This may sound completely trivial, but it is not, and it
is not always true. For example if the real solution during this change of V0 from V01 to
V02 changes from a bound state to an un-bound state (if V02 is small enough there is only
one bound state), then it does not matter how slowly we change V0. The two states can
simply not be connected through small changes of V0, because one is a decaying function
and one is an oscillatory function. This is an example where perturbation theory to any
order would never give the right answer. The important message is, however, that if we
avoid these transitions between different kinds of states, adiabatic continuity does work.
In the following this idea is applied to the case of interacting particles.

14.1.1 The quasiparticle concept and conserved quantities

The principle of adiabatic continuity is now utilized to study a system of interacting
particles. It is used to bring the excitations of the interacting case back to the well-known
excitations of the non-interacting case, thus making computation possible. In doing so
we gain the fundamental understanding that the interacting and the non-interacting cases
have a lot in common at least under some restricting circumstances. This turns out to be
realized in many systems. The following arguments are meant to be the full theoretical
explanation for the applicability of Fermi liquid theory, but rather to give a physical
intuition for the reason why the quasiparticle picture is valid.

When calculating physical quantities, such as response functions or occupation num-
bers we are facing matrix elements between different states, for example between states
with added particles or added particle-hole pairs. Since we are dealing with the low energy
properties of the system, let us consider states with single particles or single electron-hole
pairs added to the groundstate

|(kσ)p〉 = c†kσ|G〉, |(kσ)p; (k′σ′)h〉 = c†kσck′σ′ |G〉, etc. (14.6)

where |G〉 is the groundstate of the interacting system. The first term inserts a particle
while the second term creates both a particle and hole. If we now imagine letting time
evolve according to a Hamiltonian where the interaction is gradually switched off at a rate
ζ

Hζ = H0 + Hinte
−ζt, t > 0, (14.7)

then according to Eq. (5.18) the time evolution with the time dependent Hamiltonian is

|kσ〉(t) = e−iH0tTt exp
(
−i

∫ t

0
dt′Hζ(t′)

)
|kσ〉 ≡ Uζ(t, 0)|kσ〉. (14.8)

If, under the conditions of adiabaticity, we can bring the states (|(kσ)p〉, |(kσ)p; (kσ′)h〉,
etc) all the way back to the non-interacting case, then the matrix elements are identical
to those of the non-interacting case. For example

〈(k′σ′)p|(kσ)p〉 = 〈(k′σ′)p|U †
ζ (t, 0)Uζ(t, 0)|(kσ)p〉 −→

t→∞ 〈(k′σ′)p|(kσ)p〉0. (14.9)
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There are two important assumptions built into this construction:

1. The adiabatic procedure is valid when the energy of the state is large com-
pared to the rate of change, i.e. εkσ À ζ, or, since typical excitation energies
are of order of the temperature, this is equivalent to assuming kBT À ζ.

2. The interactions do not induce transitions of the states in question, or in
other words the life-time τlife of the state is long compared to ζ−1, that is
τlife À ζ−1.

This apparently leaves an energy window where the idea makes sense, namely when
we can choose a switch-off rate ζ such that

τ−1
life ¿ ζ ¿ kBT. (14.10)

The last condition can in principle always be met at high enough temperatures, whereas
the first one is not necessarily possible. Below we shall see that it is indeed possible to make
the approximations consistent, because the life-time turns out to be inversely proportional
to the square of the temperature, τ−1

life ∝ T 2. Thus there is always a temperature range at
low temperature where Eq. (14.10) is fulfilled.

Next we discuss the properties of the state with an added particle, |(kσ)p〉. It is clear
that the state where the interaction is switched off Uζ(∞, 0)|kσ〉 has a number of properties
in common with the initial state |(kσ)p〉, namely those that are conserved by the Hamil-
tonian: (1) it has an excess charge e (compared to the groundstate), (2) it carries current
−e~k/m, and (3) it has excess spin σ. Here −e and m are charge and mass of the electrons,
respectively. These properties are all conserved quantities because the corresponding op-
erators (1) the total charge Q = −eN , (2) the total current Je = −e

∑
kσ vknkσ, and (3)

the total spin S =
∑

kσ σnkσ all commute with the Hamiltonian. Most importantly, the
adiabatic continuity principle can also be used to calculate the distribution function, and
therefore the distribution function 〈c†k′σ′ckσ〉 = 〈(k′σ′)p|(kσ)p〉 7−→ 〈(k′σ′)p|(kσ)p〉0 is a
Fermi-Dirac distribution function. This leads us to the definition of quasiparticles:
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Quasiparticles are the excitations of the interacting system corresponding to
the creation or annihilation of particles (for example particle-hole pair state
|(kσ)p; (k′σ′)h〉). The quasiparticles can be labelled by the same quantum num-
bers as the non-interacting case, provided that the corresponding operators com-
mute with the Hamiltonian. For a translation-invariant system of electrons inter-
acting through the Coulomb interaction, the quasiparticles quantum numbers are
thus k and σ and they carry charge−e and velocity vk = ~k/m. The quasiparticle
concept only makes sense on time scales shorter than the quasiparticle life time.
The quasiparticle are thus not to be thought of as the exact eigenstates. At low
temperatures there are only a few quasiparticles, and they therefore constitute a
dilute gas. Finally the quasiparticles are in equilibrium distributed according to
the Fermi-Dirac distribution function.

In the following we make use of the quasiparticle concept to calculate the screening
and the transport properties of an electron gas.

14.2 Semi-classical treatment of screening and plasmons

In Chap. 12 we saw how the collective modes of a charged Fermi gas came out of a
rigorous diagrammatical analysis. Here we shall rederive some of this using a less rigorous
but maybe physically more appealing approach. Consider a uniform electron gas which is
subject to an external potential φext(r, t). We can include the external potential as a local
change of the potential felt by the charged quasiparticles.3 Now, if the local potential of
the quasiparticles is space and time dependent so is then the density of quasiparticles,
because they will of course tend to move towards the low potential regions. This in turn
changes the electrical potential because the quasiparticles are charged and therefore the
total potential φtot is given by the sum of the external potential φext and the induced
potential φind. The induced potential is caused by the excess or deficit of quasiparticles.
Thus we write the resulting local potential φtot(r, t) as

φtot(r, t) = φext(r, t) + φind(r, t). (14.11)

The induced potential φind created by the induced density ρind, which in turn depends on
the total potential, must be determined self-consistently.

3Note that we are here invoking a new concept namely local equilibrium, because otherwise we could
not talk about a local potential. Clearly, this only makes sense on length scales larger than a typical
thermalization length. The thermalization length is the length scale on which thermal equilibrium is
established.
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14.2.1 Static screening

First we consider linear static screening. To linear order in the local total potential and
at low temperatures the induced charge density is given by

ρind(r) =
2
V

∑

k

[
nF

(
ξk + (−e)φtot(r)

)− nF

(
ξk

)]

≈ −(−e)φtot(r)
2
V

∑

k

(
−∂nF (ξk)

∂ξk

)
≈ −(−e)φtot(r)d(εF ), (14.12)

where ξk is quasiparticle energy measured relative to the equilibrium chemical potential
and d(εF ) is the density of states at the Fermi level. From this we get the induced potential
in real space and in q-space as

φind(r) =
1
−e

∫
dr′W (r−r′)ρind(r) ⇔ φind(q) =

1
−e

W (q)ρind(q) = −W (q)φtot(q)d(εF ),

(14.13)
which when inserted into (14.11) yields

φtot(r) = φext(r, t)−W (q)d(εF )φtot(q) ⇒ φtot(q) =
φext(q)

1 + W (q)d(εF )
, (14.14)

and hence
ε(q) = 1 + W (q) d(εF ), (14.15)

in full agreement with the conclusions of the RPA results Eqs. (13.66 ) and (13.67) using
χR

0 = −d(εF ) from Eq. (13.21).

14.2.2 Dynamical screening

In the dynamical case, we expect to find collective excitations similar to the plasmons
found in Sec. 13.5. In order to treat this case we need to refine the analysis a bit to allow
for the time it takes the charge to adjust to the varying external potential. Consequently,
the induced charge density at point r at time t now depends on the total potential at some
other point r′ and at some other (previous) time t′. The way to describe this is to look
at the deviation of the distribution function nk of a quasiparticle with a given momentum
p = ~k (below we as usual use ~ = 1). This depends on both r and t, so that

nk = nk(t)(r, t). (14.16)

The dynamics are controlled by two things: the conservation of charge and the change
of momentum with time. The first dependence arises from the flow of the distribution
function. Because we are interested in times shorter than the life time of the quasiparticles,
the number of quasiparticles in each state is conserved. The conservation of particles in
state k is expressed in the continuity equation

ṅk +∇r · jk = 0, (14.17)
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where the current carried of quasiparticles in state k is given by jk = vknk = (~k/m)nk,
and hence we get

∂t(nk) + k̇ · ∇knk + vk · ∇rnk = 0, (14.18)

which is known as the collision-free Boltzmann equation4.
The second dependence follows from how a negatively charged particle is accelerated

in a field, i.e. simply from Newton’s law

ṗ = −(−e)∇rφtot(r, t). (14.19)

Again it is convenient to use Fourier space and introducing the Fourier transform nk(q, ω).
Using Eq. (14.19) we find

(−iω + iq · vk)nk(q, ω) = −ie (q · ∇knk) φtot(q, ω) = ie (q·∇kξk)
(
−∂nk

∂ξk

)
φtot(q, ω).

(14.20)
To linear order in the potential φtot we can replace the nk on the righthand side by the
equilibrium distribution n0

k = nF (ξk) and hence we find

nk(q, ω) =
q·∇kξk

ω − q · vk

(
−∂nF (ξk)

∂ξk

)
(−eφtot(q, ω)). (14.21)

From this expression we easily get the induced density by summation over k

ρind(q, ω) =
2
V

∑

k

q·∇kξk
ω − q · vk

(
−∂nF (ξk)

∂ξk

)
(−eφtot(q, ω)), (14.22)

where the factor 2 comes from to spin degeneracy. This is inserted into Eqs. (14.13) and
(14.11) and we obtain the dielectric function ε = φext/φtot in the dynamical case

ε(q) = 1−W (q)
2
V

∑

k

q·∇kξk
ω − q · vk

(
−∂nF (ξk)

∂ξk

)
. (14.23)

At ω = 0 we recover the static case in Eq. (14.15), because∇kξk = vk. At long wavelengths
or large frequencies qv ¿ ω, we find by expanding in powers of q that

ε(q) ≈ 1− W (q)
ω2

2
V

∑
(q · vk)2

(
−∂nF (ξk)

∂ξk

)
= 1−

(ωp

ω

)2
, (14.24)

which agrees with Eq. (13.75) in Sec. 13.5. Note that q drops out because W (q) ∝ q−2.
We have thus shown that in the long wavelength limit the semi-classical treatment,

which relies on the Fermi liquid theory, gives the same result as the fully microscopic theory,
based on renormalization by summation of the most important diagrams. We have also
gained some physical understanding of this renormalization, because we saw explicitly how
it was due to the screening of the external potential by the mobile quasiparticles.

4Here r and t are independent space and time variables in contrast to the sometimes used fluid dynamical
formulation where r = r(t) follows the particle motion.
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14.3 Semi-classical transport equation

Our last application of the semi-classical approach is the calculation of conductivity of
a uniform electron gas with some embedded impurities. This will in fact lead us to the
famous Drude formula. Historically, the Drude formula was first derived in an incorrect
way, namely by assuming that the charge carriers form a classical gas. We know now that
they follow a Fermi-Dirac distribution, but amazingly the result turns out to be the same.
In Sec. 15 we will furthermore see how the very same result can be derived in a microscopic
quantum theory starting from the Kubo formula and using a diagrammatic approach.

As explained in Chap. 10, the finite resistivity of metals at low temperatures is due
to scattering against impurities or other imperfections in the crystal structure. These
collisions take momentum out of the electron system, thus introducing a mechanism for
momentum relaxation and hence resistivity. A simple minded approach to conductivity
would be to say that the forces acting on a small volume of charge is the sum of the
external force and a friction force that is taken to be proportional to the velocity of the
fluid at the given point. In steady state these forces are in balance and hence

−(−e)E+
mv

τp−relax
= 0 ⇒ J = −env =

e2nτp−relax

m
E ⇒ σ =

ne2τp−relax

m
, (14.25)

where σ is the conductivity and τp−relax is the momentum relaxation time.
Microscopically the momentum relaxation corresponds to scattering of quasiparticles

from one state |kσ〉 with momentum ~k to another state |k′σ′〉 with momentum ~k′. For
non-magnetic impurities, the ones considered here, the spin is conserved and thus σ = σ′.
The new scattering process thus introduced means that the number of quasiparticles in
a given k-state is no longer conserved and we have to modify Eq. (14.17) to take into
account the processes that change the occupation number nk. The rate of change is given
by the rate, Γ(k′σ← kσ), at which scattering from the state |kσ〉 to some other state |k′σ′〉
occurs. It can be found from Fermi’s golden rule

Γ(k′σ← kσ) = 2π
∣∣〈k′σ|Vimp|kσ

〉∣∣2 δ(ξk − ξk′), (14.26)

where Vimp is the impurity potential. The fact that the scattering on an external potential
is an elastic scattering is reflected in the energy-conserving delta function. The total
impurity potential is a sum over single impurity potentials situated at positions Ri (see
also Chap. 11)

Vimp(r) =
∑

i

u(r−Ri) (14.27)

We can then find the rate Γ by the adiabatic procedure where the matrix element 〈k′σ|Vimp|kσ〉
is identified with non-interacting counterpart 〈k′σ|Vimp|kσ〉0 , where |kσ〉0 = eik·r/

√V, and
we get

Γ(k′σ← kσ) = Γk′σ,kσ =
2π

V2

∣∣∣∣∣∣
∑

j

∫
dr e−ik′·ru(r−Rj)e+ik·r

∣∣∣∣∣∣

2

δ(ξk − ξk′). (14.28)



14.3. SEMI-CLASSICAL TRANSPORT EQUATION 241

Of course we do not know the location of the impurities exactly and therefore we perform
a positional average. The average is done assuming only lowest order scattering, i.e. leav-
ing out interference between scattering on different impurities. Therefore we can simply
replace the sum over impurities by the number of scattering centers, Nimp = nimpV, and
multiplied by the impurity potential for a single impurity u(r). We obtain

Γk′,k = 2π
nimp

V

∣∣∣∣
∫

dr ei(k−k′)·ru(r)
∣∣∣∣
2

δ(ξk − ξk′) ≡ nimp

V Wk′,k. (14.29)

Now the change of nk due to collisions is included in the differential equation Eq. (14.17)
as an additional term. The time derivative of nk becomes

ṅk(t)(r, t) =
(

d

dt
nk

)

flow−force

+
(

∂

∂t
nk

)

collisions

, (14.30)

where the change due to “flow and force” is given by the left hand side in Eq. (14.18).
The new collision term is not a derivative but an integral functional of nk

(
∂

∂t
nk

)

collisions

= −nimp

V
∑

k′

[
nk(1− nk′)Wk′,k − nk′(1− nk)Wk,k′

]
. (14.31)

The first term in the sum represents the rate for being scattered out of the state k and the
second term represents the rate for being scattered into to state k from the state k′. The
total rate is obtained from the Fermi golden rule expression (14.29) times the probability
for the initial state to be filled and the final state to be empty. Because Wk,k′ = Wk′,k,
we have (

∂

∂t
nk

)

collisions

= −nimp

V
∑

k′
Wk′,k (nk − nk′) , (14.32)

and the full Boltzmann transport equation in the presence of impurity scattering now
reads

∂t(nk) + k̇ · ∇knk + vk · ∇rnk = −nimp

V
∑

k′
Wk′,k (nk − nk′) . (14.33)

The Boltzmann equation for impurity scattering is rather easily solved in the linear
response regime. First we note that ṗ = −eE, and therefore to linear order in E the
term ∇knk multiplying k̇ can be replaced by the equilibrium occupation, which at zero
temperature becomes ∇kn0

k = ∇kθ(kF − k) = −k̂δ(kF − k), where k̂ is a unit vector
oriented along k. Let us furthermore concentrate on the long wave-length limit such that
∇rnk ≈ 0. By going to the frequency domain, we obtain

−iωnk + eE · k̂ δ(kF − k) = −nimp

V
∑

k′
Wk′,k (nk − nk′) . (14.34)

Without the nk′-term on the right hand side this equation is simple to solve, because the
right hand side is then of the form τ−1nk similar to −iωnk on the left hand side. This
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hints that we can obtain the full solution by some imaginary shift of ω, so let us try the
ansatz

nk(ω) =
1

iω − 1/τ tr
eE · k̂δ (kF − k), (14.35)

where the relaxation time τ tr needs to be determined. That this is in fact a solution is
seen by substitution

−iω

iω − 1/τ tr
eE · k̂δ(kF − k) + eE · k̂ δ(kF − k)

=
−e

iω − 1/τ tr

nimp

V
∑

|k′|
Wk′,k

(
k̂δ(kF − k)−k̂

′
δ(kF − k′)

)
·E. (14.36)

Since Wk′,k includes an energy conserving delta function, we can set k = k′ = kF and
remove the common factor δ(kF − k) to get

−iω

iω − 1/τ tr
eE · k̂ + eE · k̂ =

−e

iω − 1/τ tr

nimp

V
∑

|k′|=kF

Wk′,k(k̂− k̂
′
) ·E. (14.37)

which is solved by

cos θk
1

τ tr
=

nimp

V
∑

k′=kF

Wk′,k(cos θk − cos θk′). (14.38)

Here θk is angle between the vector k and the electric field E. For a uniform system the
result cannot depend on the direction of the electric field, and therefore we can put E
parallel to k, and get

1
τ tr

=
nimp

V
∑

k′=kF

Wk′,k(1− cos θk,k′). (14.39)

The time τ tr is known as the transport time, because it is the time that enters the
expression for the conductivity, as we see by calculating the current density

J = −2e

V
∑

k

nkvk

= −2e

V
∑

k

[
eδ(kF − k)
iω − 1/τ tr

k̂ ·E
]

k
m

=
2e2

(2π)2
E

−iω + 1/τ tr

1
m

∫ ∞

0
dk k3δ(kF − k)

∫ 1

−1
d(cos θ) cos2 θ

=
2e2E

−iω + 1/τ tr

1
(2π)2m

k3
F

2
3

=
e2n

(−iω + 1/τ tr) m
E, (14.40)

where we have used the relation between density and kF , n = k3
F /3π2. The result for the

conductivity is

σ = σ0
1

1− iωτ tr
; σ0 =

ne2τ tr

m
, (14.41)
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which agrees with Eq. (14.25) found by the simplified analysis. The reason that the two
approaches give the same result is that we can treat the quasiparticle as independent,
and the analysis that was applied in the fluid dynamical picture in Eq. (14.25) is indeed
applicable to each quasiparticle separately.

Often one uses an even simpler approximation for the collision term, namely the so-
called relaxation time approximation. In this approximation the collision is replaced by

(
∂

∂t
nk

)

collisions

= −nk − n0
k

τ0
, (14.42)

where n0
k is the equilibrium distribution function, and τ0 is the relaxation time. This

approximation in fact gives the correct answer if the relaxation time is identified with the
transport time τ0 = τ tr. At first sight, it is tempting to think of the τ0 as the time for
scattering out of the state k, i.e. the life time of the state k. This would however only give
the first term in the right hand side of Eq. (14.32) and it is therefore incorrect. The life
time, which was also calculated in Eq. (11.49 ), is given by the first Born approximation

1
τlife

=
nimp

V
∑

k′
Wk′,k. (14.43)

This time expresses the rate for scattering out of a given state k, but it does not tell us
how much the momentum is degraded by the scattering process. This is precisely what the
additional cosine-term in Eq. (14.39) accounts for. If the quasiparticle scatters forward,
i.e. cos θ ≈ 1, the state k is destroyed but the momentum is almost conserved and such
a process therefore does not effect the conductivity. On the contrary when the particle is
scattered backward, i.e. cos θ ≈ −1, there is a large change in momentum, corresponding
to a large momentum relaxation. Therefore the transport time is precisely the momentum
relaxation time defined in the simple fluid dynamical picture in Eq. (14.25).

14.3.1 Finite life time of the quasiparticles

Above we first assumed that the quasiparticles have an infinite life time. Then we included
some finite life time induced by scattering against impurities. But we never included
scattering of quasiparticle on other quasiparticles. Here we investigate the validity of this
approach by studying the rate of quasiparticle-quasiparticle scattering. Clearly there is a
mechanism for quasiparticle scattering against quasiparticles because they are charged and
therefore interact through the Coulomb interaction. The interaction between the particles
is screened by the other particles and we should use the RPA result for the interaction.
The Coulomb interactions thus introduces a two-particle scattering where momentum and
energy are exchanged, but of course both total momentum and total energy are conserved
in the scattering event. If two particles in states |kσ;k′σ′〉 scatter, the final state will
be a state |k + qσ;k′ − qσ′〉, such that the initial and the final energies are the same
εk + εk′ = εk+q + εk′−q or counting from the chemical potential ξk + ξk′ = ξk+q + ξk′−q.
The rate for quasiparticle-quasiparticle scattering can be calculated using Fermi’s golden
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rule

Γk+qσ,k′−qσ′;k′σ′,kσ = 2π
∣∣〈k+qσ,k′−qσ′|WRPA(q)|k′σ′,kσ

〉∣∣2 δ(ξk+ξk′−ξk+q− ξk′−q),
(14.44)

where WRPA(q) is the RPA screened Coulomb interaction. From this rate we can obtain
the total rate for changing the state of a given quasiparticle in state |kσ〉 by the Coulomb
interaction. To find that we must multiply Γ with the probability that the state |k′σ′〉 is
occupied and that final states are unoccupied and sum over all possible k′ and q. The
result for the “life-time” τk of the state |kσ〉 is then given by

1
τk

=

spin︷︸︸︷
2

2π

V2

∑

k′q

screened interaction︷ ︸︸ ︷∣∣∣∣
W (q)

εRPA(q, 0)

∣∣∣∣
2

δ
(
ξk + ξk′ − ξk+q − ξk′−q

)

×
{

nknk′
[
1− nk+q

][
1− nk′−q

]
︸ ︷︷ ︸

scattering out of state k

− [
1− nk

][
1− nk′

]
nk+qnk′−q︸ ︷︷ ︸

scattering into state k

}
. (14.45)

The expression (14.45) can be evaluated explicitly for a particle in state k added to a filled
Fermi sea, i.e. nk = 1 and np = θ(kF − p) for p equal to k′,k′ − q, or k + q. But for
now we just want the energy dependence of the life-time. A simple phase space argument
gives the answer, see also Fig. 14.1. We look at situation with a particle above the Fermi
surface ξk > 0. Suppose then we have integrated out the angle dependence, which takes
care of the delta function. At T = 0 this gives the condition that ξk + ξk′ − ξk+q > 0.
Then we are left with two energy integrals over ξk′ ≡ ξ′ < 0 and ξk′−q ≡ ξ′′ > 0. We then
have

1
τk
∼ |W |2 [d(εF )]3

∫ 0

−∞
dξ′

∫ ∞

0
dξ′′Θ(ξk + ξ′ − ξ′′)

= |W |2 [d(εF )]3
∫ 0

−∞
dξ′

(
ξk + ξ′

)
Θ(ξk + ξ′)

= |W |2 [d(εF )]3
ξ2
k

2
, for T < ξk, (14.46)

This is a very important result because it tells us that the life-time of the quasiparticles
diverges as we approach the Fermi level and thus the notion of quasiparticles is a consistent
picture. At finite temperature the typical excitation energy is kBT and ξk is replaced by
kBT

1
τk
∝ T 2, for T > ξk. (14.47)

The conclusion from this analysis is: the life-time of the quasiparticles based on Fermi’s
golden rule diverges at low temperatures and therefore the condition for the adiabatic
approach expressed in Eq. (14.10) holds as long the temperature is much smaller than the
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Figure 14.1: The two-particle scattering event that gives rise to a finite life time of the
quasiparticles. Both momentum and energy have to be conserved. This together with
the Pauli principle cause the phase space available for the scattering to be very limited,
which is illustrated on the right hand figure. The dashed circle indicates the energy of the
initial state. Since the particle can only loose energy, the other particle which is scattered
out of state k′ can only gain energy. Furthermore, because of the Pauli principle the final
states of both particles have to lie outside the Fermi surface and therefore the phase space
volume for the final state k + q (white area) and for the initial state k′ (gray area) both
scale with ξk giving rise to a maximum total phase proportional to ξ2

k.

Fermi energy. Because the Fermi energy in for example metal is in general a fairly large
energy scale, the condition in fact holds for even moderately elevated temperatures. As
illustrated in Fig. 14.1 the physical reason for the smallness of the scattering rate is that
although the Coulomb scattering matrix elements are big there is not much phase space
available for scattering due to the Pauli principle.

14.4 Microscopic basis of the Fermi liquid theory

14.4.1 Renormalization of the single particle Green’s function

The Fermi liquid theory relies on the assumption that the excitation created by adding
a particle to the system, can be described by a free particle with a long life time. These
were the quasiparticles. The function that measures precisely the density of states for
adding particles is the retarded Green’s function GR. If the retarded Green’s function of
the interacting system turns out to be similar to that of free particles, the quasiparticle
picture therefore has real physical meaning. This is what we are going to show in this
section and thereby give a microscopic foundation of the Fermi liquid theory.

We consider the one-particle retarded Green’s function, which in general can be written
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as
GR(kσ, ω) =

1
ω − ξk − ΣR(kσ, ω)

, (14.48)

where ξk = k2/2m −µ is the free electron energy measured with the respect to the chemical
potential µ, and where ΣR(k, ω) is the irreducible retarded self-energy. To calculate the
self-energy we should in principle include all possible diagrams, which of course is not
doable in the general case. Fortunately, important conclusions can be drawn from the
first non-trivial approximation, namely the RPA which in Chap. 12 was shown to give
the exact answer in the high density limit. Let us first write the general form of GR by
separating the self-energy in real and imaginary parts

GR(kσ, ω) =
1

ω − [ξk + Re ΣR(k, ω)]− i ImΣR(k, ω)
. (14.49)

We then anticipate the quasiparticle picture by looking at k-values close to the k̃F , meaning
close to the renormalized Fermi-energy. The renormalized Fermi wave number k̃F is defined
by the condition that the real part of the energy vanishes ξk̃F

+ Re Σ(k̃F , 0) = 0. At small
energies and for k close to k̃F , we can expand (GR)−1 in powers of k − k̃F and ω, which
leads to

GR(k, ω) ≈
[
ω − ω∂ω Re ΣR − (k − k̃F )∂k(ξ + Re ΣR)− i ImΣR

]−1

≡ Z

[
ω − ξ̃k +

i

2τ̃k(ω)

]−1

(14.50)

where

Z−1 = 1− ∂

∂ω
ReΣ(k̃F , ω)

∣∣∣∣
ω=0

, (14.51)

ξ̃k = (k − k̃F )Z
∂

∂k
(ξk + Re Σ(k, 0))k=k̃F

, (14.52)

1
τ̃k(ω)

= −2Z ImΣR(k, ω). (14.53)

The imaginary part of ΣR(k, ω) is not expanded because we look at its form later. The
effective energy ξ̃k is usually expressed as

ξ̃k = (k − k̃F )k̃F /m∗, (14.54)

where the effective mass by Eq. (14.52) is seen to be

m

m∗ = Z

(
1 +

m

k̃F

∂

∂k
ReΣ(k, 0)

∣∣∣∣
k=k̃F

)
. (14.55)

In Sec. 14.3.1 we saw that the life-time goes to infinity at low temperatures. If this also
holds here the spectral function therefore has a Lorentzian shape near k = k̃F . For a very
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Figure 14.2: The spectral function A(k, ω) as resulting from the analysis of the RPA
approximation. It contains a distinct peak, which is identified with the quasiparticle.
This part called Aqp however only carries part of the integrated spectral weight and the
rest must therefore be contained in the background function A′ stemming from other types
of excitations.

small imaginary part we could namely approximate Im ΣR ≈ −η, and hence Eq. (14.50)
gives

A(k, ω) = −2Im GR(k, ω) ≈ 2πZδ(ω − ξ̃k). (14.56)

This shows that with a small imaginary part, the Green’s function and the spectral function
has a sharp peak at ω = ξ̃k. The peaked spectral function therefore resembles that of a
free gas and the pole is identified as the quasiparticle that was defined in the Fermi liquid
theory. However, because the general sum rule

∫ ∞

−∞

dω

2π
A(k, ω) = 1, (14.57)

is not fulfilled by Eq. (14.56), the integral only amounts to Z, the quasiparticle peak
cannot be the whole story. There must be another part of the spectral function, which we
denoted A′, that has an integrated weight given by 1 − Z. See Fig. 14.2. Therefore we
instead write

A(k, ω) = 2πZ δ(ω − ξ̃k) + A′(k, ω), (14.58)

where the remaining contribution A′ not associated with the pole, contains more compli-
cated many body excitations not describable by a free electron like peak. The constant
Z is called the renormalization constant and it is a measure of the quasiparticle weight.
Typically Z is found from experiments to be between 0.7 and 1 for rs < 3, where rs

= (3/4πa3
0n)−1/3 is the parameter often used to parameterize the density of electron

gases. The renormalization constant shows up for example in the distribution function
n(k), where the jump at the Fermi level is a direct measure of Z, see Exercise 13.2. For
a discussion on the measurements of Z using Compton scattering see e.g. the book by
Mahan.
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We still need to show that the assumption of a large τk is valid and we now turn to
evaluating the imaginary part of the self-energy.

14.4.2 Imaginary part of the single particle Green’s function

We base our analysis on the most important diagram, the RPA self-energy
�

, in
Eq. (13.12). In the Matsubara frequency domain it is given by

ΣRPA
σ (kσ, ikn) = − 1

β

∑

iωn

1
V

∑
q

W (q)
εRPA(q, iωn)

G0(k + q, σ; ikn + iωn). (14.59)

where W/εRPA is the screened interaction. As usual we perform the Matsubara summation
by a contour integration

ΣRPA
σ (kσ, ikn) = −

∫

C

dz

2πi
nB(z)

1
V

∑
q

W (q)
εRPA(q, z)

G0(k + q, σ; ikn + z), (14.60)

where C is a suitable contour that encloses all the bosonic Matsubara frequencies z = iωn.
The integrand in analytic everywhere but in z = ξk+q − ikn and for z purely real. If we
therefore make a contour which is like the one in Fig. (10.3) C = C1 + C2 then we include
all the Matsubara frequencies except the one in origin (note that the points shown in
Fig. (10.3) are the fermionic Matsubara frequencies). Therefore we include a loop around
the origin so that the contour C = C1 + C2 + C3 shown in Fig. 14.3 includes all boson
Matsubara frequencies z = iωn. The small loop C3 shown in Fig. 14.3 is now seen to
cancel parts of the counters C1 and C2 so that they are modified to run between ]−∞,−δ]
and [δ,∞[ only, and this is equivalent to stating that the integration are replaced by the
principal part, when letting δ → 0+. As seen in Fig. 14.3 we, however, also enclose the
pole in z = ξk+q − ikn, which we therefore have to subtract again. We now get

ΣRPA(kσ, ikn) = − 1
V

∑
q

P
∫ ∞

−∞

dω

2πi
nB(ω)

×
[

W (q)
εRPA(q, ω + iη)

G0(k + q, σ; ikn + ω)− (η → −η)
]

+
1
V

∑
q

nB(ξk+q − ikn)
[

W (q)
εRPA(q, ξk+q − ikn)

]
. (14.61)

In the last term we should use that nB(ξk+q− ikn) = −nF (ξk+q) because ikn is a fermion
frequency. Now that we have performed the Matsubara sum, we are allowed to get the
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Figure 14.3: The contour C = C1 + C2 + C3 used for integration for a the Matsubara sum
that enters the RPA self-energy in Eq. (14.60). The poles from the boson frequencies are
shown by black dots, while the that of G0 is the white dot. The contour C3 which picks
up the contribution from the pole z = 0 cancels the parts of C1 and C2 given by the small
loops.

retarded self-energy by the substitution ikn → ε + iη which leads to

ΣRPA,R(kσ, ε) = − 1
V

∑
q

P
∫ ∞

−∞

dω

2πi
nB(ω)

× (2i) Im
[

1
εRPA(q, ω + iη)

]
W (q)GR

0 (k + q, σ; ε + ω)

− 1
V

∑
q

nF (ξk+q)
[

W (q)
εRPA(q, ξk+q − ε− iη)

]
, (14.62)

because
[
εRPA(q, ω + iη)

]
=

[
εRPA(q, ω − iη)

]∗. The imaginary part of the self-energy
becomes

ImΣRPA(kσ, ε) =
1
V

∑
q

[nB(ξk+q − ε) + nF (ξk+q)] Im
[

W (q)
εRPA(q, ξk+q − ε + iη)

]
,

(14.63)
where we used that − ImGR

0 (k + q, σ; ε + ω) = πδ(ε + ω − ξk+q) and then performed the
ω-integration. Since we are interested in the case where a particle with ξk is scattered, we
evaluate the imaginary part in ε = ξk and find

1
τk

= −2 Im ΣRPA(kσ, ξk) =
−2
V

∑
q

[
nB(ξk+q − ξk) + nF (ξk+q)

] ∣∣∣∣
W (q)

εRPA,R(q, ξk+q − ξk)

∣∣∣∣
2

× ImχR
0 (q, ξk+q − ξk). (14.64)

The imaginary part of the polarization function follows from Eq. (13.20)

ImχR
0 (q, ξk+q − ξk) =

2π

V
∑

k′

[
nF (ξk′)− nF (ξk′−q)

]
δ(ξk′ − ξk′−q − ξk+q + ξk) (14.65)
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(here we shifted k′ → k′−q as compared with Eq. (13.20)) and when this is inserted back
into Eq. (14.64), we obtain

1
τk

= −2 Im ΣRPA(kσ, ε) = −4π

V
∑

qk′
[nB(ξk+q − ξk) + nF (ξk+q)]

[
nF (ξk′)− nF (ξk′−q)

]

×
∣∣∣∣

W (q)
εRPA,R(q, ξk+q − ξk)

∣∣∣∣
2

δ(ξk′ − ξk′−q − ξk+q + ξk).

(14.66)

Let us study the occupation factors in this expression and compare with the Fermi’s golden
rule expression Eq. (14.45). For the first term in the first parenthesis we use the identity

nB(ε1 − ε2)[nF (ε2)− nF (ε2)] = nF (ε1)[1− nF (ε2)],

combined with ξk− ξk+q = −ξk′ + ξk′−q. For the second term we use the obvious identity

nF (ε1)[1− nF (ε2)]− nF (ε2)[1− nF (ε2] = nF (ε1)− nF (ε2)

and nF (−ε) = 1 − nF (ε). All together this allows us to write the occupation factors in
Eq. (14.66) as

−nF (ξk′)[1− nF (ξk+q)]
[
1− nF (ξk′−q′)

]− [1− nF (ξk′)]nF (ξk+q)nF (ξk′−q) (14.67)

At low temperature the first term is due to the energy conservation condition non-zero for
ξk > 0, while the last term is non-zero for ξk < 0. The first term thus corresponds to the
scattering out term in Eq. (14.45), while the second term corresponds to the scattering
in term. If we furthermore approximate ξk − ξk+q ≈ 0 in εRPA we now see that the life
time in Eq. (14.66) is equivalent to the Fermi’s golden rule expression Eq. (14.45). We
have thus verified that the imaginary part of the retarded Green’s function indeed goes to
zero. At least when employing the RPA approximation for the self-energy, but the RPA
approximation in Chap. 12 was shown to be exact in the high density limit. An explicit
calculation of Eq. (14.66) was done by Quinn and Ferrell5 who got

1
τk

=
√

3π2

128
ωp

(
ξk

εF

)2

. (14.68)

Going beyond RPA, it can in fact be shown that the imaginary part vanishes to all orders
in the interaction. This was done by Luttinger6 who proved that the imaginary part of any
diagram for the self-energy goes to zero as ξ2 or faster. The derivation is rather lengthy and
we do not give it here. It is however not hard to imagine that more complicated scattering
events than the simple one depicted in Fig. 14.1 will have even more constrains on the
energies. Hence after integration, they will result in higher powers of ξk. This concludes
our analysis of the single particle Green’s function. The analysis indeed confirmed the
physical picture put forward by Landau in his Fermi liquid theory.

5J. J. Quinn and R. A. Ferrell, Phys. Rev 112, 812 (1958).
6J.M. Luttinger, Phys. Rev. 121, 942 (1961).
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14.4.3 Mass renormalization?

In the previous section we saw how the assumption of weakly interacting quasiparticles was
justified by the long life time of the single particle Green’s function. We also found that the
effective mass of the quasiparticle was renormalized due to the interactions. This seems to
contradict the postulate of the Fermi liquid theory that the current of the quasiparticles
is independent of interactions, i.e. it is given by k/m and not k/m∗. The bare velocity
of the quasiparticles was important for obtaining the Drude formula for the conductivity,
σ = ne2τ tr/m. How come the renormalized mass m∗ appears in the Green’s function
whereas the physically observable conductivity contains the bare mass m? The answer to
this question in found by studying how the conductivity is calculated diagrammatically.
The conductivity is as we remember from the Kubo formula related to the current-current
correlation function. The calculation has to be done in a consistent way such that the
diagrams included in the irreducible self-energy is also included in the diagrams for the
two-particle correlation function. When the same type of diagrams are included both
in the self-energy and in the lines that cross the two-particle “bubble” then the mass
renormalization exactly cancels. In Chap. 15 we shall see an explicit example of this by
calculating diagrammatically the finite resistance due to impurity scattering starting from
the fully microscopic theory. See also Exercise 14.4

14.5 Outlook and summary

We have developed the semi-classical Fermi liquid theory of interacting particles. The
theory is valid whenever perturbation theory is valid, i.e. when the interaction does not
induce a phase transition. Miraculously, the interacting system of particles can be de-
scribed by a gas of non-interacting particles. These particles we call quasiparticles and
they can be labelled by the same quantum numbers of those of the non-interacting system,
provided that the corresponding operators also commute with the full Hamiltonian. For
a translation-invariant system the quantum numbers are k and σ.

On long length and time scales we can use a semi-classical approach to study various
properties. This approach is based on the Boltzmann equation

∂t(nk) + k̇ · ∇knk + vk · ∇rnk =
(

∂nk

∂t

)

collisions

. (14.69)

This equation is extremely useful since it in many situations gives a sufficiently accu-
rate description of the physics. It has been widely used to explain numerous transport
phenomena in gases and solids. One can include both electric and magnetic fields driv-
ing the system out of equilibrium. The driving fields enter through the Lorentz force as
ṗ = ~k̇ = (−e)(E + v ×B). On the right hand side of Eq. (14.69) we have included colli-
sions due to impurities and particle-particle collisions . One can also include for example
particle-phonon scattering in solids and thus explain the temperature dependence of the
different transport coefficients.

Landau’s phenomenological theory was shown to be justified by a rigors microscopic
calculation, using the random phase approximation result for the self-energy. The result
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of this analysis was that even in the presence of interactions does the Fermi surface persist
and near the Fermi surface the imaginary part of the single particle Green’s function
rapidly vanish as

ImΣR(kF , ε) ∝ max(ε2, T 2). (14.70)

This explains why the Fermi liquid theory works: when the imaginary part goes to zero
the single particle Green’s function is identical to that of a free particle.



Chapter 15

Impurity scattering and
conductivity

We now return to the problem of calculating the resistance of a metallic conductor due
to scattering against impurities. The basic physics of impurity scattering was discussed
in Chap. 10, where we saw how the single-particle Green’s function acquired a finite life
time after averaging over the positions of the impurities. In Chap. 13 the conductivity
was calculated within the Boltzmann equation approach. We now rederive the Boltzmann
equation result starting from a microscopic quantum approach. The advantage of this
microscopic approach, besides giving a first principle justification of the Boltzmann equa-
tion, is that it can be extended to include correlation and coherence effects that cannot be
described in the semiclassical Boltzmann approach. In order to get familiar with the tech-
niques, we therefore start by deriving the semiclassical result. Then we go on to include
the quantum mechanical effect known as weak localization, which is due to interference
between time reversed paths. Weak localization involves coherent scattering on many
impurities, and it can therefore not be explained semiclassically.

In 1979 the weak localization correction to resistivity was observed experimentally in
large 2D samples at low temperatures. It was explained theoretically later the same year,
and an extended research was initiated on the role of quantum coherence in transport
properties. A few years later another low-temperature interference effect, the so-called
universal conductance fluctuations, was discovered in small (∼ µm) phase-coherent struc-
tures. This discovery started the modern field of mesoscopic physics. To understand these
smaller systems one must take into account the finite size of the conductors, which is the
topic in Chap. 15. In this chapter we deal with extended systems and discuss the most
important disorder-induced quantum corrections. The leading quantum correction is pre-
cisely the weak localization effect, at least in two dimensions. In one dimension, things
are more complicated because there all states are localized and one cannot talk about
a conductivity that scales in a simple fashion with the length of the system. In three
dimensions, the situation is again different in that at some critical amount of impurity
scattering there exists a metal-insulator transition known as the Anderson localization.
This is however outside the scope this book.

253
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Based on the physical picture that emerged from the Fermi liquid description in
Chap. 13, we assume in the first part of this chapter that we can describe the electrons as
non-interacting. In the second part of the chapter we include electron-electron interactions
together with impurity scattering and explicitly demonstrate that the non-interacting ap-
proximation is valid. This means that we shall see how the mass renormalization discussed
in Sec. 14.4.3 is cancelled out. Furthermore, we shall see that in order to obtain meaning-
ful results, it is absolutely imperative to include vertex corrections to the current-current
correlation bubble diagrams. These corrections cannot be treated evaluating only single-
particle Green’s functions. They are thus genuine two-particle correlation effects, which
can be described by diagrams where interaction lines “cross” the bubble diagrams.

15.1 Vertex corrections and dressed Green’s functions

Let us start by the Kubo formula for the electrical conductivity tensor σαβ given in
Eq. (6.25) in terms of the retarded current-current correlation function Eq. (6.26). Here
we shall only look at the dissipative part of the conductivity, and therefore we take the
real part of Eq. (6.25)

Re σαβ(r, r′;ω) = −e2

ω
ImΠR

αβ(r, r′, ω). (15.1)

Note that the last, so-called “diamagnetic”, term of σ in Eq. (6.25) drops out of the real
part. In the following we therefore only include the first, so-called “paramagnetic”, term
in Eq. (6.25), denoted σ∇. For a translation-invariant system we consider as usual the
Fourier transform

σ∇αβ(q; ω) =
ie2

ω
ΠR

αβ(q, ω). (15.2)

The dc-conductivity is then found by letting1 q → 0 and then ω → 0. The dc-response at
long wavelengths is thus obtained as

Re σαβ = −e2 lim
ω→0

lim
q→0

1
ω

ImΠR
αβ(q, ω). (15.3)

In this chapter we consider only homogeneous translation-invariant systems, i.e. the con-
ductivity tensor is isotropic and therefore diagonal, σαβ = σ δαβ . In particular we have
no magnetic field and take A = 0. In the computation we can choose α to be the x direc-
tion. Note that the system is translation-invariant even in the presence of impurities after
performing the position average described in Chap. 10.

As usual we calculate the retarded function starting from the corresponding Matsubara
function. The Matsubara current-current correlation function is

Πxx(q, τ − τ ′) = − 1
V

〈
TτJx(q, τ)Jx(−q, τ ′)

〉
. (15.4)

1If in doubt always perform the limit q → 0 first, because having a electric field E(q,ω) where ω = 0
and q finite is unphysical, since it would give rise to an infinite charge built up.
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In the frequency domain it is

Πxx(q, iqn) = − 1
V

∫ β

0
d(τ − τ ′)eiqn(τ−τ ′) 〈

Jx(q, τ)Jx(−q, τ ′)
〉
, (15.5)

where the time-ordering operator Tτ is omitted, because τ > τ ′. We can now express
Jx(q, τ) in terms of Jx(q, iqn) and obtain

Πxx(q, iqn) = − 1
V

∫ β

0
d(τ − τ ′)eiqn(τ−τ ′) 1

β

∑

iql

1
β

∑

iqm

〈Jx(q, iql)Jx(−q, iqm)〉 e−iqlτe−iqmτ ′ .

(15.6)
The integration with respect to τ leads to iqn = iql. Finally, since the result cannot depend
on τ ′, we must have iqn = −iqm, and whence

Πxx(q, iqn) = − 1
Vβ

〈Jx(q, iqn)Jx(−q,−iqn)〉 . (15.7)

This we conveniently rewrite using the four-vector notation q̃ = (iqn,q)

Πxx(q̃) = − 1
Vβ

〈Jx(q̃)Jx(−q̃)〉 . (15.8)

In order to begin the diagrammatical analysis we write the current density Jx(q̃) in
four-vector notation

Jx(q̃) =
∫ β

0
dτeiqnτ 1

2m

1
V

∑

kσ

(2k + q)xc†kσ(τ)ck+qσ(τ)

=
1

2m

1
β

∑

ikn

1
V

∑

kσ

(2k + q)xc†kσ(ikn)ck+qσ(ikn + iqn),

≡ 1
2m

1
β

1
V

∑

k̃

∑
σ

(2kx+qx)c†σ(k̃)cσ(k̃ + q̃), (15.9)

which we draw diagrammatically as a vertex

Jx(q̃) = �k̃+q̃

k̃

(15.10)

The vertex conserves four-momentum, and thus has the momentum q̃ = (iqn,q) flowing
out from it to the left.

We can now draw diagrams for the current-current correlation function using the Feyn-
man rules. The procedure is analogous to that for the charge-charge correlation function
in Chap. 12, however, here we include both the impurity lines� from Chap. 10 and
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the Coulomb interaction lines� from Chap. 12. We obtain

Πxx(q̃) =� (15.11)

≡� +� +� +�
+	 +
 +� +�
+
 +� +� +�
+� +�
+� +� + . . .

We can perform a partial summation of diagrams to all orders by replacing each Green’s
function G0 by the full Green’s function G. In doing so we have in one step resummed
Eq. (15.11) and are left with bubble diagrams where the only interaction and impurity
lines to be drawn are those connecting the lower and upper electron Green’s functions.
Eq. (15.11) then becomes

Πxx(q̃) =� +� +� +� (15.12)

+� +� +� +�
+� +�
+� + + . . .

Here the double lines represent full Green’s functions expressed by Dyson’s equation as in
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Eq. (12.19)

G(k̃) =!
=" +#
= G0(k̃) + G0(k̃)Σirr(k̃)G(k̃), (15.13)

where Σirr = $ is the irreducible self-energy. For example in the case where we include
impurity scattering within the first Born approximation and electron-electron interaction
in the RPA approximation, the irreducible self-energy is simply

1BA + RPA: Σirr(k̃) =% ≈ & + ' (15.14)

where RPA means the following screening of all impurity and interaction lines

( = ) +* (15.15)

+ = , +- (15.16)

The next step is to organize the diagrams according to the lines crossing the bubbles from
the upper to the lower fermion line in a systematic way. These diagrams are denoted
vertex corrections. To obtain a Dyson equation for Πxx we first introduce the irreducible
line-crossing diagram Λirr consisting of the sum of all possible diagrams connecting the
upper and lower fermion line, which cannot be cut into two pieces by cutting both the
upper and the lower line just once2,

Λirr ≡. ≡ / + 0 +1 +2 +3 +4 + . . . (15.17)

2We do not include diagrams like the terms 9, 10 , and 11 in Eq. (15.12). Diagrams of this type are
proportional to q−2 and thus they vanish in the limit q → 0.



258 CHAPTER 15. IMPURITY SCATTERING AND CONDUCTIVITY

Using Λirr we see that we can resum all diagrams in Πxx in the following way

Πxx(q̃) =5 +6 +7 +8 + . . .

= 9 ×
(

: +; +< += + . . .

)

≡>
≡ −

∫
dk̃′ Γ0,x(k̃′, k̃′ + q̃)G(k̃′)G(k̃′ + q̃)Γx(k̃′ + q̃, k̃′), (15.18)

where the unperturbed vertex is

Γ0,x(k̃, k̃ + q̃) =
1

2m
(2kx+qx), (15.19)

and the “dressed” vertex function is given by an integral equation, which can be read off
from Eq. (15.18)

Γx(k̃+q̃, k̃) ≡? = @ +A (15.20a)

≡ Γ0,x(k̃+q̃, k̃) +
∫

dq̃′Λirr(k̃, q̃, q̃′)G(k̃+q̃′)G(k̃+q̃′+q̃)Γx(k̃+q̃′+q̃, k̃+q̃′),

(15.20b)

The notation for the arguments of the Γ functions is Γ = Γ(“out going”,“in going”).
The question is now which diagrams to include in Λirr. We have seen examples of

how to choose the physically most important self-energies, both for the impurity scat-
tering problem in Chap. 10 and for the case of interacting particles in Chap. 12. In the
present case once the approximation for Σirr is chosen, the answer is simply that there
is no freedom left in the choice for the vertex function ΓΓ. If we include certain diagrams
for the self-energy we must include the corresponding diagrams in the vertex function.
This follows from a general relation between the self-energy and the vertex function. This
relation, called the Ward identity,3 is derived using the continuity equation. Consequently,

3The Ward identity reads

iq0Γ0(k̃ + q̃, k̃)− iq · ΓΓ(k̃ + q̃, k̃) = −G−1(k̃ + q̃) + G−1(k̃),

where the function Γ0 is the charge vertex function, and ΓΓ is the current vertex function. For more details
see e.g. R.B. Schrieffer, Theory of Superconductivity, Addison-Wesley (1964).
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not fulfilling this identity is equivalent to a lack of conservation of particles. Therefore
a physically sensible approximation must obey Ward’s identity, and one uses the term
“conserving approximation” for the correct choice for the vertex function. For a deriva-
tion and discussion see for example the book by Schrieffer. Here we simply follow the
rule as dictated by the Ward identity: if an irreducible diagram is included in Σirr the
corresponding diagrams should also be included in Λirr.

If we consider the first Born approximation and RPA for Σirr as depicted in Eq. (15.14),
we get for Λirr

Λirr =B ≈ C + D ≡ W̃ , (15.21)

and in this case the integral function for Γ becomes

Γx(k̃+ q̃, k̃) = Γ0,x(k̃+ q̃, k̃)+
∫

dq̃
′
W̃ (q̃′)G(k̃+ q̃′)G(k̃+ q̃′+ q̃)Γx(k̃+ q̃′+ q̃, k̃+ q̃′), (15.22)

where

W̃ (q̃) = WRPA(q̃) + nimp
u(q)

εRPA(q̃)
u(−q)

εRPA(−q̃)
. (15.23)

This particular approximation is also known as the ladder sum, a name which perhaps
becomes clear graphically if Eq. (15.21) for Λirr is inserted into the first line of Eq. (15.18)
for Πxx, and if for clarity we consider only the impurity scattering lines:

Πxx(q̃) =E +F +G +H + . . . (15.24)

15.2 The conductivity in terms of a general vertex function

Having the expressions for both the single-particle Green’s function G and the vertex
function Γ, we can obtain from Eq. (15.18) a general formula for the conductivity. This
definition involves a summation over the internal Matsubara frequency. If we drop the
four-vector notation in favor of the standard notation, and furthermore treat the case
q = 0, the current-current function is

Πxx(0, iqn) = − 1
β

∑

ikn

1
V

∑

k

Γ0,x(k,k)G(k, ikn)G(k,ikn + iqn)Γx(k,k;ikn + iqn, ikn).

(15.25)
The Matsubara sum over ikn is performed in the usual way by a contour integration over
z = ikn. The presence of two G’s in the summand leads to two branch cuts; one along
z = ε and one along z = −iqn +ε, with ε being real. Therefore we first study a summation
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Figure 15.1: The contour used in the frequency summation in Eq. (15.26).

of the form

S2F (iqn) =
1
β

∑

ikn

f(ikn, ikn + iqn)

= −
∫

C

dz

2πi
nF (z)f(z, z + iqn), (15.26)

where the integration contour C is the one shown in Fig. (15.1) made of three contours
leading to four integrals over ε

S2F (iqn) = −
∫ ∞

−∞

dε

2πi
nF (ε)

[
f(ε + iη, ε + iqn)− f(ε− iη, ε + iqn)

]

−
∫ ∞

−∞

dε

2πi
nF (ε− iqn)

[
f(ε− iqn, ε + iη)− f(ε− iqn, ε− iη)

]
. (15.27)

At the end of the calculation we continue iqn analytically to ω + iη, and find

SR
2F (ω) = −

∫ ∞

−∞

dε

2πi
nF (ε)

[
fRR(ε, ε + ω)− fAR(ε, ε + ω)

+ fAR(ε− ω, ε)− fAA(ε− ω, ε)
]
, (15.28)

with the convention that fAR(ε, ε′) means that the first argument is advanced, ε− iη, and
the second argument is retarded, i.e. ε + iη, and so on. If we shift the integration variable
ε → ε + ω in the two last terms, we obtain

SR
2F (ω) =

∫ ∞

−∞

dε

2πi
[nF (ε)− nF (ε + ω)] fAR(ε, ε + ω)

−
∫ ∞

−∞

dε

2πi

[
nF (ε)fRR(ε, ε + ω)− nF (ε + ω)fAA(ε, ε + ω)

]
. (15.29)

Since we are interested in the low frequency limit, we expand to first order in ω. Fur-
thermore, we also take the imaginary part as in Eq. (15.3). Since

(
fAA

)∗ = fRR, we
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find

Im SR
2F (ω) = −ω Im

∫ ∞

−∞

dε

2πi

(
−∂nF (ε)

∂ε

) [
fAR(ε, ε)− fRR(ε, ε)

]
. (15.30)

At low temperatures, we can approximate the derivative of the Fermi-Dirac function by a
delta function (

−∂nF (ε)
∂ε

)
≈ δ(ε) (15.31)

and hence
Im SR

2F (ω) =
ω

2π
Re

[
fAA(0, 0)− fAR(0, 0)

]
. (15.32)

By applying this to Eq. (15.25) and then inserting into Eq. (15.3) one obtains

Reσxx = 2 Re
e2

2π

1
V

∑

k

Γ0,x(k,k)
[
GA(k, 0)GR(k, 0)ΓRA

x (k,k; 0, 0)

−GA(k, 0)GA(k, 0)ΓAA
x (k,k; 0, 0)

]
, (15.33)

where we have included a factor of 2 due to spin degeneracy. This is how far one can go
on general principles. To proceed further, one must look at the specific physical cases and
then solve for the vertex function satisfying Eq. (15.20b) and insert the result into (15.33).
In the following we consider various cases. We will consider only cases where the disorder
is weak and for this case it is shown in the next section that the product GRGA exceeds
GAGA by a factor of order 1/τEF , where τ is the scattering time for impurity scattering.
Hence in the weak disorder limit, we may replace the general formula in Eq. (15.33) by
the first term only.

15.3 The conductivity in the first Born approximation

The conductivity was calculated in Sec. 14.3 using a semiclassical approximation for the
scattering against the impurities. The semiclassical approximation is similar to the first
Born approximation in that it only includes scattering against a single impurity and ne-
glects interference effects. Therefore we expect to reproduce the semiclassical result if we
only include the first Born approximation in our diagrammatical calculation. The starting
point in this section is non-interacting electrons scattering on impurities. The RPA part
of the self-energy in Eq. (15.14) is not included in this section. Later we discuss what
happens if interactions are included.

The vertex function is now solved using the first Born approximation, i.e. the first
diagram in Eq. (15.21). In this case, again taking q = 0, the integral equation Eq. (15.22)
becomes

Γx(k,k;ikn + iqn, ikn) = Γ0,x(k,k) +
1
V

∑

q′
nimp

∣∣uRPA(q′)
∣∣2 G(k + q′, ikn) (15.34)

× G(k + q′,ikn + iqn)Γx(k + q′,k+q′;ikn + iqn, ikn),
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where the second term in Eq. (15.23) has been inserted and where uRPA = u/εRPA. The
Green’s functions G are, as we learned from the Ward identity, also those obtained in
the first Born approximation. Note that there is no internal Matsubara sum because the
impurity scattering conserves energy. Since we do not expect the dynamical screening
to be important for the elastic scattering, we set the frequency in εRPA(q, 0) to zero.
Remembering that Γx is a component of a vector function ΓΓ and that the unperturbed
vertex is ΓΓ0(k,k) = k/m, we define for convenience a scalar function γ(k, ε) defined
as ΓΓ(k, ε) = k γ(k, ε)/m. In doing so we in fact use that the system is isotropic which
means that only the vector k can give the direction. When inserting this into Eq. (15.34),
multiplying by (1/k2)k·, and shifting the variable q′ to q′ = k′ − k, we get

γ(k,k;ikn + iqn, ikn) = 1 +
1
V

∑

k′
nimp

∣∣uRPA(k′ − k)
∣∣2 G(k′, ikn)

× G(k′,ikn + iqn)
k · k′
k2

γ1BA(k′,k′;ikn + iqn, ikn), (15.35)

In the formula Eq. (15.33) for the conductivity both ΓRA
x and ΓRR

x appear (or rather
ΓRR

x = (ΓAA
x )∗. They satisfy two different integral equations, which we obtain from

Eq. (15.35) by letting iqn → ω + iη and ikn → ε ± iη, and subsequently taking the
dc-limit ω → 0. We arrive at

γRX(k, ε) = 1 +
1
V

∑

k′
nimp

∣∣uRPA(k′ − k)
∣∣2 GX(k′, ε)GR(k′, ε)

k · k′
k2

γRX(k′, ε), (15.36)

where X = A or R. One immediately sees that the small factor nimp tends to kill the
sum, and in the weak scattering limit one should expect the solution of this equation to
be simply γRX(k, ε) ≈ 1. It is immediately seen that this is a consistent solution for the
imaginary part of both γRA and γRR but it turns out that for the real part of γRA a factor
1/nimp is contained in the Green’s function. The lesson we learn here is that we have to
be rather careful with products of Green’s function carrying the same arguments, because
in the limit of small nimp, ImGX tends to a delta function, and the product of two delta
functions has to be defined with care. Let us look more carefully into the products GAGR

and GRGR, which also appear in Eq. (15.33). This first combination is

GA(k, ε)GR(k, ε) =
∣∣GR(k, ε)

∣∣2 ≡
∣∣∣∣

1
ε− ξk − ΣR(k, ε)

∣∣∣∣
2

=
1

ImΣR(k, ε)
Im

1
ε− ξk − ΣR(k, ε)

≡ 1
−2 ImΣR(k, ε)

A(k, ε) ≡ τA(k, ε), (15.37)

where A = −2 Im GR is the spectral function, and where as before the life-time τ is defined
by τ−1 = −2 Im ΣR(k, ε). For the case of weak impurity scattering the scattering rate τ−1

is small, whence the spectral function is approximately a delta function. In the case of
small nimp we therefore get

GA(k, ε)GR(k, ε) ≈ τ2πδ(ε− ξk). (15.38)
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Because τ ∝ n−1
imp, the product nimpG

AGR in Eq. (15.36) is finite in the limit nimp → 0.
The combination GRGR on the other hand is not divergent and in fact nimpG

RGR → 0
as nimp → 0. That GRGR is finite is seen as follows

GR(k, ε)GR(k, ε) ≈
(

ε− ξk − i
2τ(

ε− ξk
)2 +

(
1
2τ

)2

)2

=
(ε− ξk)2 − (

1
2τ

)2

((
ε− ξk

)2 +
(

1
2τ

)2
)2 + i (ε− ξk) A(k, ε). (15.39)

The last term clearly goes to zero when τ is large and when A is approximated by a delta
function. The first term is a peaked function at ε− ξk = 0, but the integrated weight is in
fact zero as can be checked by performing an integration over ε. From these arguments it
follows that the terms with GRGR can be omitted and only terms with GRGA are kept. As
explained above, we use the first Born approximation for the self-energy. In the following
we therefore approximate τ with the first Born approximation life time τ0

τ−1 ≈ τ−1
0 ≡ 2πnimp

∑

k′
|u(k− k′)|2δ(ξk − ξk′). (15.40)

Because all energies are at the Fermi energy, this life time is independent of k.
The conductivity Eq. (15.33) then becomes

Re σxx = 2e2 Re
1
V

∑

k

Γ0,x(k,k)τ0δ(ξk)ΓRA
x (k,k; 0, 0)

= 2e2τ0 Re
1
V

∑

k

kx

m
δ(ξk)

kx

m
γRA(k,k; 0, 0) =

e2n

m
τ0γ

RA(kF , kF ; 0, 0) (15.41)

The remaining problem is to find γRA(k,k; 0,0) for |k| = kF . The solution follows from
the integral equation Eq. (15.35)

γRA(k) = 1 +
2π

V
∑

k′
nimp

∣∣uRPA(k′ − k)
∣∣2 τ0δ(ξk′)

k · k′
k2

γRA(k′). (15.42)

Since this equation has no dependence on the direction of k, and since the lengths of both
k and k′ are given by kF , γRA depends only on kF . But kF is constant, and we get

γRA = 1 +

[
2π

V
∑

k′
nimp

∣∣uRPA(k′ − k)
∣∣2 δ(ξk′)

k · k′
k2

]
τ0γ

RA. (15.43)

The solution is thus simply

γRA =
1

1− λ τ0
, (15.44)

where

λ =
2π

V
∑

k′
nimp

∣∣uRPA(k′ − k)
∣∣2 δ(ξk′)

k · k′
k2

= (τ0)
−1 − (

τ tr
)−1

. (15.45)
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Here the transport time τ tr is defined as

(
τ tr

)−1 ≡ 2π

V
∑

|k′|=kF

nimp

∣∣uRPA(k′ − k)
∣∣2

(
1− k · k′

k2

)
. (15.46)

This expression is precisely the transport time that we derived in the Boltzmann equation
approach leading to Eq. (14.39). When inserted back into Eq. (15.44) γRA becomes

γRA =
τ tr

τ0
. (15.47)

Finally, the conductivity formula (15.41) at zero temperature is

σ =
e2τ tr

m2

1
V

∑

k

δ(ξk)k2
x =

e2nτ tr

m
. (15.48)

We thus find full agreement with the semiclassical result obtained in the previous chap-
ter. This is what we expected, and thereby having gained confidence in the mathematical
structure of the theory, we can go on to calculate various quantum corrections to the
Drude formula; corrections not obtainable in the Boltzmann approach.

15.4 The weak localization correction to the conductivity

The Born approximation includes only scattering on one impurity at a time. We saw in
Chap. 10 that there was in practice only little difference between the first Born and the
full Born approximation. The reason is that even the full Born approximation depicted
in Eq. (11.54), which does take into account multiple scattering does so only for multiple
scatterings on the same impurity. Quantum effects such as interference between scattering
on different impurities can therefore not be incorporated within the Born approximation
scheme. In Sec. 11.5.4 it was hinted that such interference processes are represented by
crossing diagrams as in Fig. 11.6. In this section we shall study in detail why that is.

As the temperature is lowered we expect quantum mechanical coherence to become
more important because the phase coherence length `φ increases with decreasing tem-
perature. When the coherence length `φ exceeds the mean free path `imp for impurity
scattering, scattering on different impurities can interfere. Here the coherence length
means the scale on which the electrons preserve their quantum mechanical phase, i.e. the
scale on which the wave function evolves according to the one-particle Schrödinger equa-
tion. If an electron interacts with another electron or with a phonon through an inelastic
scattering event its energy changes, and hence the evolution of its phase. Due to these
processes the phase of the electron wave acquires some randomization or “dephasing”,
and its coherence length becomes finite. At low temperatures the dominant dephasing
mechanism is electron-electron scattering, and as we know from Chap. 13 the scattering
rate for these processes is proportional to T 2. Hence `φ ∝ T−2 can become very large
at sufficiently low temperatures. At liquid helium temperature, 4.2 K, and below, typical
coherence lengths are of the order 1-10 µm, spacing 104-105 atomic lattice spacings.
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Figure 15.2: (a) A sketch of the electrical resistivity ρxx(T ) of a disordered metal as a
function of temperature. As in Fig. 11.1 the linear behavior at high temperatures is due
to electron-phonon scattering, but now at low temperatures we have added the small
but significant increase due to the quantum interference known as weak localization. (b)
Experimental data from measurements on a PdAu film by Dolan and Osheroff, Phys. Rev.
Lett. 43, 721 (1979), showing that the low-temperature weak localization correction to
the resistivity increases logarithmically as the temperature decreases.

If the coherence length `φ is longer than the mean free path `0, but still smaller than the
sample size L, most of the interference effects disappear. This is because the limit `φ ¿ L
effectively corresponds to averaging over many small independent segments, the so-called
self-averaging illustrated in Fig. (11.2). However, around 1980 it was found through the
observation of the so-called weak localization, shown in Fig. 15.2, that even in the case
of large samples, `0 ¿ `φ ¿ L, one very important class of interference processes survive
the self-averaging. Naturally, as discovered around 1985, much more dramatic quantum
effects appear in small samples in the so-called mesoscopic regime (see also Chap. 7) given
by L ' `φ. In this regime all kinds of quantum interference processes become important,
and most notably cause the appearance of the universal conductance fluctuations shown
in Fig. (11.2).

In the following we study only the weak localization phenomenon appearing in large
samples and not the universal conductance fluctuations appearing in small samples. To
picture how averaging over impurity configurations influences the interference effects, we
follow an electron after it has been scattered to a state with momentum k by an impurity
positioned at R1. When the electron hits the next impurity at position R2 it has acquired
a phase factor eiφ = eik·(R1−R2). Terms describing interference between the two scattering
events will thus contain the factor eik·(R1−R2), and it is therefore intuitively clear that
these terms vanish when one averages over R1 and R2. Only the interference processes
which are independent of the impurity positions survive self-averaging.

Interference generally means that the amplitude for two paths t1 and t2 are added as
t1+t2, so that when taking the absolute square |t1+t2|2 = |t1|2+|t2|2+2|t1t2| cos(φ1−φ2),
the cross-term expresses the interference. The relative phase φ1 − φ2 determines whether
the contributions from the two paths interfere constructively or destructively. If we can
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Figure 15.3: Illustration of the two interfering time-reversed paths discussed in the text.

find two paths where the relative phase is independent of the position of the impurities, the
cross term would thus survive the impurity average. This is indeed possible, and two such
paths are shown in Fig. 15.3. The key observation is that for each path that ends in the
starting point after a specific sequence of scattering events, there is a corresponding reverse
path which scatters on the same impurities but in the opposite order. Most remarkably,
these two paths pick up exactly the same phase factor, and thus their relative phase φ1−φ2

is always zero independent of the actual positions of the impurities. Thus for two such
time-reversed paths there is always constructive interference. As a consequence there is
an enhanced probability for returning to the same point, and the electrons therefore tend
to be localized in space, hence the name “weak localization”4.

Having realized that the interference between time reversed paths survive impurity
averaging, we now want to calculate the resulting correction to the conductivity. In order
to do so we need to identify the corresponding diagrams. First we recall the Dyson equation
for the single-particle Green’s functions in an external potential, which was derived in
Chap. 10. Here the external potential is given by the impurity potential, Uimp. Writing it
in the frequency domain and making analytic continuation, ikn → ε + iη, we have for the
retarded Green’s function

GR(r, r′, ε) = GR
0 (r, r′, ε) +

∫
dr′′GR

0 (r, r′′, ε)Uimp(r′′)GR(r′′, r′, ε). (15.49)

If we for simplicity assume Uimp(r) ≈
∑

i U0δ(r−Ri), i.e. short range impurities located
at the positions {Ri}, we have

GR(r, r′, ε) = GR
0 (r, r′, ε) +

∑

i

GR
0 (r,Ri, ε)U0G

R(Ri, r′, ε). (15.50)

Let us look at a specific process where an electron scatters at, say, two impurities located
at R1 and R2. To study interference effects between scattering at these two impurities
we must expand to second order in the impurity potential. The interesting second order

4The term “strong localization” is used for the so-called Anderson localization where a metal-insulator
transition is induced in three dimensions at a critical strength of the disorder potential.



15.4. THE WEAK LOCALIZATION CORRECTION TO THE CONDUCTIVITY 267

terms (there are also less interesting ones where the electron scatters on the same impurities
twice) are

GR(2)(r, r′, ε) = GR
0 (r,R1, ε)U0G

R
0 (R1,R2, ε)U0G

R
0 (R2, r′, ε)

+ GR
0 (r,R2, ε)U0G

R
0 (R2,R1, ε)U0G

R
0 (R1, r′, ε). (15.51)

These two terms correspond to the transmission amplitudes t1 and t2 discussed above and
illustrated in Fig. 15.3. The probability for the process is obtained from the absolute square
of the Green’s function, and because we want to find the correction δ|r|2 to the reflection
coefficient, we set r = r′ at the end of the calculation. First the quantum correction due
to interference to the transmission from r to r′ is

δ|t(r, r′)|2 ∝ Re
[
GR

0 (r,R1, ε)U0G
R
0 (R1,R2, ε)U0G

R
0 (R2, r′, ε)

× (
GR

0 (r,R2, ε)U0G
R
0 (R2,R1, ε)U0G

R
0 (R1, r′, ε)

)∗ ]
. (15.52)

Now reflection is described by setting r = r′. Doing this and averaging over impurity
positions R1 and R2 we find the quantum correction δ|r|2 to the reflection. In k-space
one gets

〈
δ|r|2〉

imp
≡ 〈

δ|t(r = r′)|2〉
imp

∝ Re
1
V4

∑

p1p2p3Q

GR
0 (Q− p1, ε)U0G

R
0 (Q− p2, ω)U0G

R
0 (Q− p3, ε)

× GA
0 (p1, ε)U0G

A
0 (p2, ε)U0G

A
0 (p3, ε). (15.53)

This formula can be represented by a diagram similar to the last one in Eq. (15.61) with the
upper lines being retarded and the lower lines being advanced Green’s functions. Notice
however that contrary to the usual diagram for conductance the Green’s function and the
lower and upper branch run in same direction. If we however twist the lower branch such
that the Green’s function run in opposite directions while the impurity lines cross, the
diagram looks like conductivity diagram if we furthermore join the retarded and advanced
Green’s function like this

〈
δ|r|2〉

imp
=IGR

GR

GR

GA

GA

GA

. (15.54)

This hints that the interference term coming from time reversed paths can be summed
by taking diagrams of this form into account. These crossed diagrams were not included
in the Born approximation, which we used to derive the Boltzmann equation result, and
in fact they were shown in Sec. 11.5.4 to be smaller than the Born approximation by
a factor 1/kF `. Nevertheless, at low temperatures they do play a role as the leading
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quantum correction. If we continue this line of reasoning we should include also diagrams
where paths scattering on more than two impurities interfere with their time reversed
counter parts. It is straightforward to see that the corresponding diagrams are of the
same type as (15.54) but with more crossing lines. This class of diagrams are called the
maximally crossed diagrams. We have now identified which diagrams we need to sum in
order to get the leading quantum correction to the conductivity. Most importantly, this
is a contribution which does not disappear upon self-averaging.

Let us return to the Kubo formula for conductance, and let us sum the maximally
crossed diagrams. We write the current-current correlation function as Π = ΠB + ΠWL

where ΠB is the Boltzmann result derived in the previous section, and where

ΠWL
xx (q̃) =J +K (15.55)

+L + . . . (15.56)

The full electron Green’s functions in these diagrams are as before the full Green’s function
with an appropriately chosen self-energy. Since we include crossed diagrams in the vertex
function we should in principle also include these in the self-energy. However, they can
safely be ignored, since they only give a small contribution, down by a factor 1/kFvFτ0 (see
the discussion in Fig. 11.6). The crossed diagrams we are about to evaluate are also small
by the same factor, but as we shall see they nevertheless yield a divergent contribution.
This divergence stems from summing the interference of many time-reversed paths. This
sum is different from the ladder diagrams that we summed in the Born approximation.
There is however a trick which allows for a summation just like a ladder diagram. Let us
twist the diagram in Eq. (15.56) with for example three impurity lines so as to make the
impurity lines parallel,

ΠWL(3)
xx (q̃) =M . (15.57)

Then we see that the full series in Eq. (15.56) can be written as

ΠWL
xx (q̃) =NC

k̃

k̃ + q̃

k̃′

k̃′ + q̃

(15.58)

= − 1
(2m)2

1
V2

∫
dk̃

∫
dk̃′ (2kx + qx)G(k̃)G(k̃ + q̃)C(k̃, k̃′, q̃)G(k̃′)G(k̃′ + q̃)(2k′x + q′x),

where the box C is a sum of parallel impurity lines, i.e. analogous to the normal ladder sum
of Eq. (15.24), but now with the fermion lines running in the same direction. This reversed
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ladder sum, C, which couples two electron lines or two hole lines rather one electron line
and one hole line, is called a cooperon. The solution for the cooperon C is found from the
following Dyson-like equation

OC ≡ P +Q +R + . . . (15.59)

= S +TC U (15.60)

In order to simplify our calculation, we only study the case q = 0, and furthermore
we restrict the analysis to the case of short range impurities so that we can approximate
W (q) by a constant, W0 = ni|u0|2. With these approximations, and denoting k + k′ ≡ Q
the cooperon becomes

VC
k k′

k′ k

= W
Q−p

p

+X
Q−p

p

Q−p′

p′

+Y
Q−p

p

Q−p′

p′

Q−p′′

p′′

+ . . . (15.61)

Because the impurity scattering conserves Matsubara frequencies the upper fermion lines
all carry the frequency ikn + iqn, while the lower ones carry the frequency ikn. It is now
straightforward to solve the Dyson-equation for the cooperon ladder and obtain

C(Q; ikn + iqn, ikn) =
1
V

∑
p W0G(Q− p, ikn + iqn)G(p, ikn)W0

1− 1
V

∑
p W0G(Q− p, ikn + iqn)G(p, ikn)

. (15.62)

This can then be inserted into the expression for the current-current correlation function
ΠWL

xx in Eq. (15.58)

ΠWL
xx (0, iqn) = − 1

(2m)2
1
V2

1
β

∑

ikn

∑

kk′
(2kx)G(k, ikn)G(k, ikn + iqn)

× C(k + k′; ikn + iqn, ikn)G(k′, ikn)G(k′, ikn + iqn)(2k′x). (15.63)

The Green’s function G is here the Born approximation Green’s function which after
analytic continuation is

GR(k, ε) = G(k, ikn → ε + iη) =
1

ε− ξk + i/2τ0
, (15.64)

where [τ0]
−1 = 2πW0d(εF ). It is now simple to find the solution for the cooperon C.



270 CHAPTER 15. IMPURITY SCATTERING AND CONDUCTIVITY

In the previous section we learned that only the GAGR term in Eq. (15.33) contributed
in the limit of weak scattering and therefore we should replace ikn + iωn by a retarded
frequency and ikn by an advanced frequency. Likewise, we obtain from (15.63) the weak
localization correction by the replacements ikn + iqn → ε + ω + iη and ikn → ε − iη,
followed by inserting the result into Eq. (15.33). Taking the dc-limit ω → 0 and the low
temperature limit T → 0, we have

Re δσWL
xx = 2× e2

2π

(
1
m

)2 1
V2

∑

kk′
(kxk′x)GR(k, 0)GA(k, 0)CAR(k + k′; 0, 0)GR(k′, 0)GA(k′, 0).

(15.65)
As in the previous section we have factors of GAGR appearing. However, here we cannot
replace them by delta functions, because k and k′ are connected through CRA(k + k′).
Instead we evaluate the cooperon as follows. After analytical continuation the cooperon
in Eq. (15.62) becomes

CRA(Q) =
W0ζ(Q)
1− ζ(Q)

, (15.66)

ζ(Q) ≡ ni

V
∑
p

|u0|2GR(Q− p, 0)GA(p, 0), (15.67)

where we have introduced the auxiliary function ζ(Q). Using Eq. (15.64) ζ(Q) becomes

ζ(Q) = ni|u0|2 1
V

∑
p

1
−ξQ−p + i/2τ0

1
−ξp − i/2τ0

. (15.68)

To proceed further we must now evaluate the p-sum in ζ(Q). We begin by studying Q = 0,
in which case we have

ζ(0) = ni|u0|2d(εF )
∫ ∞

−∞
dξ

1
−ξ + i/2τ0

1
−ξ − i/2τ0

= ni|u0|2d(εF )
∫ ∞

−∞
dξ

1
ξ2 + (1/2τ0)

2 = ni|u0|2d(εF )2πτ0 = 1, (15.69)

where we have used the definition of the life time τ0 in the Born approximation. Combining
Eqs. (15.66) and (15.69) it follows that CRA diverges in the limit of small Q and small
frequency. The dc conductivity is therefore dominated by the contribution from values of
Q near zero. Consequently, we study this contribution by expanding Eq. (15.68) for small
Q. Here small means small compared the width τ−1

0 of the spectral function, i.e. we study
the limit QvFτ0 ¿ 1 or Q ¿ `−1

0 = 1/vFτ0. Furthermore, by symmetry arguments the
term linear in Q vanish, so we need to go to second order in Q

ζ(Q) ≈ 1 + ni|u0|2 1
V

∑
p

(
1

−ξp + i/2τ0

)2 1
−ξp − i/2τ0

(
−vp ·Q+

Q2

2m

)

+ ni|u0|2 1
V

∑
p

(
1

−ξp + i/2τ0

)3 1
−ξp − i/2τ0

(vp ·Q)2 , (15.70)
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where it is indeed seen that the term linear in Q is zero because vp is an odd function
of p. Now transforming the sum into integrations over ξ and performing the angular
integrations, we find

ζ(Q) ≈ 1 +
1

2πτ0

∫ ∞

−∞
dξ

(
1

−ξ + i/2τ0

)2 1
−ξ − i/2τ0

(
Q2

2m

)

+
1

2πτ0

∫ ∞

−∞
dξ

(
1

−ξ + i/2τ0

)3 1
−ξ − i/2τ0

Q2vF
2

Ndim
, (15.71)

where Ndim is the number of dimensions. Closing the contour in the lower part of the
complex ξ plan, we find that

ζ(Q) ≈ 1 +
2πi

2πτ0

[(
1

i/τ0

)2 Q2

2m
+

(
1

i/τ0

)3 Q2vF
2

Ndim

]
. (15.72)

To leading order in τ−1
0 , τ3

0 dominates over τ2
0 , and we end up with

ζ(Q) ≈ 1− 1
Ndim

Q2`2
0 ≡ 1−Dτ0Q

2, (15.73)

where

`0 = vFτ0, D =
vF

2τ0

Ndim
, (15.74)

D being the diffusion constant. We emphasize that Eq. (15.73) is only valid for Q ¿ `−1
0 .

With this result for ζ(Q) inserted into (15.66) we obtain the final result for the cooperon

CRA(Q; 0, 0) =
W0(1−Dτ0Q

2)
Dτ0Q2

≈ W0

τ0

1
DQ2

. (15.75)

Because the important contribution comes from Q ≈ 0, δσWL in Eq. (15.65) becomes

δσWL = 2×e2

π

(
1
m

)2 W0

τ0

1
V2

∑

k,Q<`−1
0

(−k2
x)GR(k, 0)GA(k, 0)

1
DQ2

GR(Q− k, 0)GA(Q− k, 0).

(15.76)
First we perform the sum over k. Since Q < `−1

0 , and hence smaller than the width of the
spectral function, we can approximate Q− k by just −k and obtain

1
V

∑

k

k2
xGR(k, 0)GA(k, 0)GR(−k, 0)GA(−k, 0) = d(εF )

k2
F

Ndim

∫ ∞

−∞
dξ

(
1

ξ2 + (1/2τ0)
2

)2

=
4πk2

F

Ndim
d(εF )τ3

0 . (15.77)

From this follows

δσWL = −e2

π

(
kF

m

)2 2τ0

Ndim

1
V

∑

Q<`−1

1
DQ2

(15.78)
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We are then left with the Q-integration, which amounts to

1
V

∑

Q<`−1
0

1
DQ2

=
∫

Q<`−1
0

dQ
(2π)Ndim

1
DQ2

∝
∫

Q<`−1
0

dQ
QNdim−1

DQ2
. (15.79)

It is evident that this integral is divergent in the small Q limit in both one and two di-
mensions. Physically this is because we have allowed interference between path of infinite
length, which does not occur in reality. In a real system the electron cannot maintain
coherence over arbitrarily long distances due to scattering processes that cause decoher-
ence. We must therefore find a method to cut-off these unphysical paths. To properly
describe the breaking of phase coherence between the time-reversed paths one should
include coupling to other degrees of freedom such as coupling to phonons or electron-
electron scatterings. Here we choose to do this in a phenomenological fashion instead. Let
us suppose that each path in the sum over paths in Eq. (15.61) has a probability of being
destroyed by a scattering event and that this probability is proportional to the length of
the path, or equivalently to the number of impurity scattering events involved in the path.
This can be modelled by including a factor e−γ in the impurity potential so that instead
of W0 we write W0e

−γ . Clearly a path with n scatterings will then carry a factor e−nγ .
The parameter γ is then interpreted as the amount of decoherence experienced within a
mean free path, i.e. γ = `0/`φ. With this modification, the function ζ(Q) is changed into

ζ(Q, ω) ≈ e−γ
(
1−Dτ0Q

2
)
, (15.80)

and hence the cooperon gets modified as

CRA(Q; 0, 0) =
W0

1− e−γ + e−γDQ2τ0
. (15.81)

In the limit of large `φ or small γ, we therefore have

CRA(Q; 0, 0) ' W0

τ0

1
1/τφ + DQ2

. (15.82)

where τφ = `φ/vF. This is a physical sensible result. It says that the paths corresponding to
a diffusion time longer than the phase breaking time cannot contribute to the interference
effect. If the phase coherence length becomes larger than the sample, the sample size L
must of course replace `φ as a cut-off length, because paths longer than the sample should
not be included. We can now return to (15.79) and evaluate the integral in one, two and
three dimensions, respectively

∫
dQ

(2π)Ndim

1
1/τφ + DQ2

=
∫ 1/`0

0
dQ

1
1/τφ + DQ2




1
π

1
2πQ
1

2π2 Q2




=





1
π

√
τφ

D tan−1
√

Dτφ

`20
, 1D

1
4Dπ ln

(
1 + Dτφ

`20

)
, 2D

1
2π2D`0

− 1

2π2D
√

Dτφ
tan−1

√
Dτφ

`20
, 3D

(15.83)
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which in the limit of large τφ gives us information about the importance of the quantum
corrections:

δσWL ∝





− (τφ)1/2 , 1D

− ln
(

τφ

τ0

)
, 2D

(τφ)−1/2 , 3D.

(15.84)

This is an important result, which states that due to the localization correction the conduc-
tivity decreases with increasing phase coherence time. Furthermore, in the one-dimensional
case it tells us that in one dimension the localization correction is enormously important
and may exceed the Drude result. In fact it can be shown that a quantum particle in a
one dimensional disordered potential is always localized. In three dimensions the situation
is more subtle, there a metal-insulator transition occurs at a critical value of the disorder
strength. Two dimensions is in between these two cases, and it is in this case that the
term “weak” localization makes sense, because here the correction is small. For the two
dimensional case we have

δσWL
2D ≈ − e2

2π2
ln

(
τφ

τ0

)
. (15.85)

This result is “universal” since, apart from the logarithmic factor, it does not depend on
the details of the material or the impurity concentration. That it is a small correction to
the Drude conductivity can be seen from the ratio

δσWL
2D

σ0
= − 1

πkF `0
ln

(
τφ

τ0

)
. (15.86)

A way to measure this effect is to change the phase coherence time τφ and to look at
the change of conductivity. The phase coherence can be changed in two ways. Foremost,
one can apply a magnetic field which breaks the time-reversal symmetry giving rise to
the fundamental interference between time-reversed paths. Secondly, decreasing the tem-
perature increases the phase coherence time τ−1

φ ∝ Tα, and a logarithmic increase of the
conductivity is to be expected. Indeed δρ ∝ −δσ ∝ ln τφ ∝ − ln T as is measured and
shown in Fig. 15.2.

15.5 Combined RPA and Born approximation

This section will be added in the next edition of these notes. See also Exercise 14.4



274 CHAPTER 15. IMPURITY SCATTERING AND CONDUCTIVITY



Chapter 16

Green’s functions and phonons

In this chapter we develop and apply the Green’s function technique for free phonons and
for the electron-phonon interaction. The point of departure is the second quantization
formulation of the phonon problem presented in Chap. 3, in particular the bosonic phonon
creation and annihilation operators b†−q,λ and bq,λ introduced in Eqs. (3.10) and (3.22)
and appearing in the jellium phonon Hamiltonian Eq. (3.4) and in the lattice phonon
Hamiltonian Eq. (3.23).

We first define and study the Green’s functions for free phonons in both the jellium
model and the lattice model. Then we apply the Green’s function technique to the electron-
phonon interaction problem. We derive the one-electron Green’s function in the presence
of both the electron-electron and the electron-phonon interaction. We also show how the
high frequency Einstein phonons in the free-phonon jellium model become renormalized
and become the usual low-frequency acoustic phonons once the electron-phonon interaction
is taken into account. Finally, we prove the existence of the so-called Cooper instability of
the electron gas, the phonon-induced instability which is the origin of superconductivity.

16.1 The Green’s function for free phonons

It follows from all the Hamiltonians describing electron-phonon interactions, e.g. HINA
el−ph

in Eq. (3.41) and H jel
el−ph in Eq. (3.43), that the relevant phonon operators to consider are

not the individual phonon creation and annihilation operators, but rather the operators
Aqλ and A†qλ defined as

Aqλ ≡
(
bqλ + b†−qλ

)
, A†qλ ≡

(
b†qλ + b−qλ

)
= A−qλ. (16.1)

The phonon operator Aqλ can be interpreted as removing momentum q from the phonon
system either by annihilating a phonon with momentum q or by creating one with mo-
mentum −q. With these prerequisites the non-interacting phonons are described by Hph

and the electron-phonon interaction by Hel−ph as follows:

Hph =
∑

qλ

Ωqλ

(
b†qλbqλ +

1
2

)
, Hel−ph =

1
V

∑

kσ

∑

qλ

gqλ c†k+q,σckσ Aqλ. (16.2)

275
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Since Hph does not depend on time, we can in accordance with Eq. (10.5) define the
phonon operators Âqλ(τ) in the imaginary time interaction picture1

Âqλ(τ) ≡ eτHph Aqλ e−τHph . (16.3)

With this imaginary-time boson operator we can follow Eq. (10.17) and introduce the
bosonic Matsubara Green’s function D0

λ(q, τ) for free phonons,

D0
λ(q, τ) ≡ −〈

Tτ Âqλ(τ)Â†qλ(0)
〉
0

= −〈
Tτ Âqλ(τ)Â−qλ(0)

〉
0
, (16.4)

where Tτ is the bosonic time ordering operator defined in Eq. (10.18) with a plus-sign.
The frequency representation of the free phonon Green’s function follows by applying
Eq. (10.25),

D0
λ(q, iqn) ≡

∫ β

0
dτ eiqnτ D0

λ(q, τ), ωn = 2nπ/β. (16.5)

The specific forms forD0
λ(q, τ) andD0

λ(q, iqn) are found using the boson results of Sec. 10.3.1
with the substitutions (ν, εν , cν) → (qλ,Ωqλ, bqλ). In the imaginary time domain we find

D0
λ(q, τ) =

{ −[
nB(Ωqλ) + 1

]
e−Ωqλτ − nB(Ωqλ) eΩqλτ , for τ > 0,

−nB(Ωqλ) e−Ωqλτ − [
nB(Ωqλ) + 1

]
eΩqλτ , for τ < 0,

(16.6)

while in the frequency domain we obtain

D0
λ(q, iqn) =

1
iqn − Ωqλ

− 1
iqn + Ωqλ

=
2 Ωqλ

(iqn)2 − (Ωqλ)2
, (16.7)

where we have used that nB(Ωqλ) = 1/
[
exp(βΩqλ)− 1

]
.

16.2 Electron-phonon interaction and Feynman diagrams

We next turn to the problem of treating the electron-phonon interaction perturbatively
using the Feynman diagram technique. For clarity, in this section we do not take the
Coulomb interaction between the electrons into account. The unperturbed Hamiltonian
is the sum of the free electron and free phonon Hamiltonians, Hel and Hph,

H0 = Hel + Hph =
∑

kσ

εk c†kσckσ +
∑

qλ

Ωqλ

(
b†qλbqλ +

1
2

)
. (16.8)

When governed solely by H0 the electronic and phononic degrees of freedom are completely
decoupled, and as in Eq. (1.106) the basis states are given in terms of simple outer product
states described by the electron occupation numbers nkσ and the phonon occupation
numbers Nqλ,

|Ψbasis〉 = |nk1σ1
, nk2σ2

, . . .〉 |Nq1λ1
, Nq2λ2

, . . .〉. (16.9)

1This expression is also valid in the grand canonical ensemble governed by Hph − µN . This is because
the number of phonons can vary, and thus minimizing the free energy gives ∂F/∂N ≡ µ = 0.
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What happens then as the electron-phonon interaction Hel−ph of Eq. (16.2) is turned
on? We choose to answer this question by studying the single-electron Green’s function
Gσ(k, τ). In analogy with Eq. (12.5) we use the interaction picture representation, but
now in momentum space, and substitutes the two-particle interaction Hamiltonian Ŵ (τ)
with the electron-phonon interaction P̂ (τ)

Gσ(k, τ) = −

∞∑

m=0

(−1)m

m!

∫ β

0
dτ1 . . .

∫ β

0
dτm

〈
Tτ P̂ (τ1) . . . P̂ (τm)ĉkσ(τ) ĉ†kσ(0)

〉
0

∞∑

m=0

(−1)m

m!

∫ β

0
dτ1 . . .

∫ β

0
dτm

〈
Tτ P̂ (τ1) . . . P̂ (τm)

〉
0

, (16.10)

where the Ŵ (τ)-integral of Eq. (12.6) is changed into a P̂ (τ)-integral,

∫ β

0
dτj P̂ (τj) =

1
V

∫
dτj

∑

kσ

∑

qλ

gqλ ĉ†k+q,σ(τj)ĉkσ(τj) Âqλ(τj). (16.11)

At first sight the two single-electron Green’s functions in Eqs. (12.5) and (16.10) seems to
be quite different since Ŵ (τ) contains four electron operators and P̂ (τ) only two. However,
we shall now show that the two expressions in fact are very similar. First we note that
because the electronic and phononic degrees of freedom decouple the thermal average of
the integrand in the m’th term of say the denominator in Eq. (16.10) can be written as a
product of a phononic and an electronic thermal average,

〈
Tτ Âq1λ1

(τ1)...Âqmλm
(τm)ĉ†k+q1σ(τ1)ĉkσ(τ1)...ĉ

†
k+qmσ(τm)ĉkσ(τm)

〉
0

=
〈
Tτ Âq1λ1

(τ1)...Âqmλm
(τm)

〉
0

〈
Tτ ĉ

†
k+q1σ(τ1)ĉkσ(τ1)...ĉ

†
k+qmσ(τm)ĉkσ(τm)

〉
0
. (16.12)

It is clear from Eq. (16.1) that only an even number of phonon operators will lead to
a non-zero contribution in the equilibrium thermal average, so we now write m = 2n.
Next, we use Wick’s theorem Eq. (10.79) for boson operators to break down the n-particle
phonon Green’s function to a product of n single-particle Green’s functions of the form

gqiλi
gqjλj

〈
Tτ Âqiλi

(τi)Âqjλj
(τj)

〉
0

= |gqiλi
|2

〈
Tτ Âqiλi

(τi)Â−qiλi
(τj)

〉
0
δqj ,−qi

δλi,λj

= −|gqiλi
|2 D0

λ(qi, τi−τj)δqj ,−qi
δλi,λj

. (16.13)

Note how the thermal average forces the paired momenta to add up to zero. In the final
combinatorics the prefactor (−1)m/m! = 1/(2n)! of Eq. (16.10) is modified as follows. A
sign (−1)n appears from one minus sign in each of the n factors of the form Eq. (16.13).
Then a factor (2n)!/(n!n!) appears from choosing the n momenta qj among the 2n to be the
independent momenta. And finally, a factor n!/2n from all possible ways to combine the
remaining n momenta to the chosen ones and symmetrizing the pairs, all choices leading
to the same result. Hence we end up with the prefactor (−1/2)n/n!. For each value of n
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the 2n operators P̂ (τi) form n pairs, and we end with the following single-electron Green’s
function,

Gσ(k, τ) = −

∞∑

n=0

(−1)n

n!

∫ β

0
dτ1 . . .

∫ β

0
dτn

〈
Tτ P̂(τ1) . . . P̂(τn)ĉkσ(τ) ĉ†kσ(0)

〉
0

∞∑

n=0

(−1)n

n!

∫ β

0
dτ1 . . .

∫ β

0
dτn

〈
Tτ P̂(τ1) . . . P̂(τn)

〉
0

, (16.14)

where the P̂(τ)-integral substituting the original P̂ (τ)-integral of Eq. (16.10) is given by
the effective two-particle interaction operator

∫ β

0
dτi P̂(τi) =

∫ β

0
dτi

∫ β

0
dτj

∑

k1σ1

∑

k2σ2

∑

qλ

1
2V2

|gqλ|2 D0
λ(q , τi−τj)

× ĉ†k1+q,σ1
(τj)ĉ

†
k2−q,σ2

(τi)ĉk2σ2
(τi)ĉk1σ1

(τj). (16.15)

From this interaction operator we can identify a new type of electron-electron interaction
V ph

el−el mediated by the phonons

V ph
el−el =

1
2V

∑

k1σ1

∑

k2σ2

∑

qλ

1
V |gqλ|2 D0

λ(q , τi−τj) ĉ†k1+q,σ1
(τj)ĉ

†
k2−q,σ2

(τi)ĉk2σ2
(τi)ĉk1σ1

(τj).

(16.16)
This interaction operator resembles the basic two-particle Coulomb interaction operator
Eq. (2.34), but while the Coulomb interaction is instantaneous or local in time, the phonon-
mediated interaction is retarded, i.e. non-local in time, regarding both the operators and
the coupling strength (1/V) |gqλ|2 D0

λ(q, τi−τj). The derivation of the Feynman rules in
Fourier space, however, is the same as for the Coulomb interactions Eq. (12.24):

(1) Fermion lines with four-momentum orientation:�kσ, ikn
≡ G0

σ(k, ikn)

(2) Phonon lines with four-momentum orientation:�qλ, iqn
≡ − 1

V |gqλ|2 D0
λ(q , iqn)

(3) Conserve the spin and four-momentum at each vertex,
i.e. incoming momenta must equal the outgoing, and no spin flipping.

(4) At order n draw all topologically different connected diagrams containing n

oriented phonon lines − 1
V |gqλ|2 D0

λ(q , iqn), two external fermion lines G0
σ(k, ikn),

and 2n internal fermion lines G0
σ(pj , ipj). All vertices must contain an incoming

and an outgoing fermion line as well as a phonon line.
(5) Multiply each fermion loop by −1.
(6) Multiply by 1

βV for each internal four-momentum p̃ and perform the sum
∑

p̃σλ.

(16.17)
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16.3 Combining Coulomb and electron-phonon interactions

We now discuss the effect of the long range Coulomb interactions between electrons and
ions and between electrons themselves. For simplicity we henceforth study only longitu-
dinal phonons and hence drop all reference to the polarization index λ. In Fig. 3.1 we
have already sketched the ion plasma oscillation that occurs, if we consider the interaction
between the ions and the electron gas assuming the latter to be homogeneous and com-
pletely inert, i.e. disregarding all the dynamics of the electrons. A complete calculation is
rather tedious, but in Sec. 3.1 we studied the ion plasma oscillations in the jellium model
neglecting the electron dynamics. In the case of an ion density ρ0

ion = N/V we found the
dispersion-less jellium phonon modes in the long wave length limit,

Ωq = Ω =

√
Z2e2N

ε0MV . (16.18)

The coupling constant for the electron-electron interaction mediated by these jellium
phonons is found by combining Eqs. (3.44) and (16.18),

1
V |gq|2 =

1
V

(Ze2

qε0

)2 N~
2MΩ

=
e2

ε0q
2

~Ω
2

=
1
2

W (q) Ω, (16.19)

which not surprisingly is proportional to the Coulomb interaction W (q). Note that we have
dropped ~ in the last equality in accordance with the convention introduced in Sec. 5.1.
The resulting, bare, phonon-mediated electron-electron interaction is

1
V |gq|2 D0(q, iqn) = W (q)

Ω2

(iqn)2 − Ω2
. (16.20)

To discuss the role of the electron dynamics we now add the electron-electron Coulomb
interaction Vel−el of Eq. (2.34) and study the full Hamiltonian H for the electronic and
phononic system,

H = Hel + Vel−el + Hph + Hel−ph. (16.21)

16.3.1 Migdal’s theorem

When the electron-phonon coupling Hel−ph is added, the question naturally arises of
whether to study the influence of the electrons on the ions before that of the ions on
the electrons, or vice versa. The answer is provided by Migdal’s theorem. This theorem
is the condensed matter physics analogue to the well-known Born-Oppenheimer approxi-
mation of molecular physics. The latter states that it is a good approximation to consider
the coordinates Ri of the slowly moving, heavy ions as parameters in the Schrödinger
equation for the fast moving, light electrons, which is then solved. In the second stage the
values of Ri are then changed adiabatically. Likewise, it can be proven by phase space
arguments that renormalization of the electron-phonon vertex is suppressed at least by a
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factor
√

m/M ∼ 10−2, where m and M are the masses of the electron and ion, respec-
tively. We will just outline the proof of Migdal’s theorem here by studying the simplest
phonon correction to the electron-phonon vertex,

� ≈
√

m

M
×� . (16.22)

The proof builds on a self-consistency assumption. We assume that the high frequency
jellium phonons, Ω, get renormalized by electron screening processes to the experimentally
observed low frequency acoustic phonons, ωq = vs q. If these phonons are used we can
prove Eq. (16.22), and if, as shown in the following section, Eq. (16.22) is correct we can
prove the assumed phonon renormalization.

The important frequencies for acoustic phonons are smaller than the Debye frequency
ωD, thus we concentrate on phonon frequencies ωq < ωD. The diagram on the left hand side
in Eq. (16.22) contains one phonon interaction line and two electron propagators more than
the diagram on the right hand side. Now, according to Eq. (16.37) the typical (acoustic)
phonon interaction line for low frequencies, |iqn| ¿ ωD, is −W (q)/εRPA. Furthermore,
due to four-momentum conservation, the two internal electron propagators are confined
within ωD to the Fermi surface. Consequently, a phase space factor of the order ωD/εF

must appear in front of the usual unrestricted contribution from two such lines, the pair-
bubble of Eq. (13.21), χ0 = −d(εF). The ratio between the values of the two diagrams is
therefore roughly given by

W (q)
εRPA

× ~ωD

εF

× d(εF) =
~ωD

εF

=
vskD
1
2vFkF

= 2

√
Z

3

√
m

M

kD

kF

≈
√

m

M
, (16.23)

where we have used Eqs. (13.22) and (3.5) at the first and third equality sign, respectively.
In the following we assume that we can neglect the phonon-induced renormalization of the
electron-phonon vertex. We therefore study only the influence of the electronic degrees
of freedom on the bare phonon degrees of freedom. The result of the analysis is that the
assumption for Migdal’s theorem indeed is fulfilled.

16.3.2 Jellium phonons and the effective electron-electron interaction

In more realistic calculations involving interacting electrons we need to consider the sum of
the pure electronic Coulomb interaction and the phonon-mediated interaction. This com-
bined interaction will be the basis for our analysis of the interacting electron gas henceforth.
Combining the Feynman rules for these two interactions, Eqs. (12.24) and (16.17), yields
the following bare, effective electron-electron interaction line,

�−V 0
eff(q, iqn)

≡�−W (q)

+�− 1
V |gq|2D0(q, iqn)

. (16.24)
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Figure 16.1: (a) The real part of the bare, effective electron-electron interaction V 0
eff(q, ω)

as a function of the real frequency ω for a given momentum q. Note that the interaction is
attractive for frequencies ω less than the jellium phonon frequency Ω, and that V 0

eff(q, ω) →
W (q) for ω → ∞. (b) The same for the RPA renormalized effective electron-electron
interaction V RPA

eff (q, ω), see Sec. 16.4. Now, the interaction is attractive for frequencies ω
less than the acoustic phonon frequency ωq, and V RPA

eff (q, ω) → WRPA(q) for ω →∞.

The specific form of V 0
eff is obtained by inserting Eq. (16.20) into Eq. (16.24),

V 0
eff(q, iqn) = W (q) + W (q)

Ω2

(iqn)2 − Ω2
= W (q)

(iqn)2

(iqn)2 − Ω2
, (16.25)

or going to real frequencies, iqn → ω + iη,

V 0
eff(q, ω) = W (q)

ω2

ω2 − Ω2 + iη̃
. (16.26)

The real part of V 0
eff(q, ω) is shown in Fig. 16.1(a). It is seen that the bare, effective

electron-electron interaction becomes negative for ω < Ω, i.e. at low frequencies the
electron-phonon interaction combined with the originally fully repulsive Coulomb interac-
tion results in an attractive effective electron-electron interaction. At high frequencies the
normal Coulomb interaction is recovered.

16.4 Phonon renormalization by electron screening in RPA

The electronic Coulomb interaction renormalizes the bare, effective electron-electron in-
teraction. Migdal’s theorem leads us to disregard renormalization due to phonon processes
and only to consider the most important electron processes. Since V 0

eff(q) is proportional
to the bare Coulomb interaction, these processes, according to our main result in Chap. 13,
in the limit high electron densities are given by RPA. Before we consider how the phonon
propagator is renormalized by the electronic RPA, let us remind ourselves of the following
expressions from Chap. 13, Eqs. (13.61)–(13.66) between the dielectric function εRPA, the



282 CHAPTER 16. GREEN’S FUNCTIONS AND PHONONS

density-density correlator −χRPA =�RPA , and the simple pair-bubble −χ0 =	 ,

εRPA(q, iqn) = 1−W (q)χ0(q, iqn), (16.27a)

χRPA(q, iqn) =
χ0(q, iqn)

1−W (q)χ0(q, iqn)
=

χ0(q, iqn)
εRPA(q, iqn)

, (16.27b)

1 + W (q)χRPA(q, iqn) = 1 +
Wχ0

1−Wχ0

=
1

1−Wχ0

=
1

εRPA(q, iqn)
. (16.27c)

Returning to the electron-phonon problem, we now extend the RPA-result Eq. (13.68) for
WRPA and obtain

−V RPA
eff (q, iqn) = 
 = � +� . (16.28)

The solution for V RPA
eff (q, iqn) has the standard form

−V RPA
eff (q, iqn) =
 = �

1−� =
−V 0

eff(q)
1− V 0

eff(q) χ0(q, iqn)
. (16.29)

While this expression is correct, a physically more transparent form of V RPA
eff is obtained

by expanding the infinite series Eq. (16.28), and then collecting all the diagrams contain-
ing only Coulomb interaction lines into one sum (this simply yields the RPA screened
Coulomb interaction WRPA), while collecting the remaining diagrams containing a mix of
Coulomb and phonon interaction lines into another sum,

�−V RPA
eff (q, iqn)

=�−WRPA(q)

+�− 1
V |gRPA

q |2DRPA(q, iqn)

. (16.30)

Here the renormalized coupling gRPA
q [

(
gRPA
q

)∗],

gRPA
q ≡� =� +�RPA , (16.31)

is the sum of all diagrams between the outgoing left [incoming right] vertex and the first
[last] phonon line, while the renormalized phonon line DRPA(q, iqn),

−DRPA(q, iqn) = � = � +�RPA , (16.32)

is the sum of all diagrams between the first and the last phonon line, i.e. without contribu-
tions from the external coupling vertices. The solution for the RPA renormalized phonon
line is

−DRPA(q, iqn) = �
1−�RPA

=
−D0(q, iqn)

1− χRPA(q, iqn) 1
V |gq|2D0(q, iqn)

. (16.33)
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Using first Eqs. (16.7) and (16.20) and then Eq. (16.27c) leads to

DRPA(q, iqn) =
2 Ω[

(iqn)2 − Ω2
]− Ω2W (q)χRPA(q, iqn)

=
2 Ω

(iqn)2 − ω2
q

, (16.34)

where

ωq ≡ Ω√
εRPA(q, iqn)

=

√
Z2e2ρ0

ion

εRPAε0M
=

√
Ze2ρ0

el

εRPAε0M
, (16.35)

is the renormalized phonon frequency due to electronic RPA screening. In a moment we
shall interpret this new frequency, but before doing so we study how also the coupling
constant gq gets renormalized in RPA and acquire the value gRPA

q ,

gRPA
q ≡� =� +�RPA = (1 + WχRPA) gq =

gq

εRPA(q, iqn)
.

(16.36)
The final form of the RPA screened phonon-mediated electron-electron interaction is now
obtained by combining Eqs. (16.34) and (16.36),

1
V |g

RPA
q |2 DRPA(q, iqn) =−� =

|gq|2/V(
εRPA

)2

2 Ω
(iqn)2 − ω2

q

=
W (q)
εRPA

ω2
q

(iqn)2 − ω2
q

.

(16.37)
We now see that this renormalized propagator is identical to the free phonon propagator
Eq. (16.20) where the unscreened phonon frequency Ω and the unscreened Coulomb inter-
action W (q) have been replaced by their RPA screened counterparts ωq and W (q)/εRPA,
respectively.

A further physical interpretation of this result is obtained by evaluating the expression
Eq. (16.35) for ωq in the static, long wave length limit. We note from Eqs. (13.66)
and (13.23) that in this limit εRPA(q, iqn) → k2

s/q2 = (4kF/πa0)/q2. Inserting this into
Eq. (16.35) and using the relation kF

3 = 3π2 ρ0
el yields the following explicit form of ωq:

ωq(q→0, 0) =

√
Ze2ρ0

el

k2
sε0M

q =

√
Zm

3M
vFq. (16.38)

This we recognize as the Bohm-Staver expression Eq. (3.5) for the dispersion of acoustic
phonons in the jellium model. The significance of this result is that starting from the
microscopic Hamiltonian Eq. (16.21) for the coupled electron and phonon problem, we have
used the Feynman diagram technique to show how the phonon spectrum gets renormalized
by interacting with the electron gas. The long range Coulomb forces of the non-interacting
problem resulted in optical jellium phonons with the high frequency Ω. By introducing the
electron-electron interaction the Coulomb forces get screened, and as a result the phonon
dispersion gets renormalized to the usual low frequency acoustic dispersion ωq = vs q. In
more elementary treatments this spectrum is derived by postulating short range forces
following Hooke’s law, but now we have proven it from first principles.

We end by stating the main result of this section, namely the explicit form of the
effective electron-electron interaction due to the combination of the Coulomb and the
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electron-phonon interaction, see also Fig. 16.1(b):

�−V RPA
eff (q, iqn)

= −WRPA(q)

+!− 1
V |gRPA

q |2DRPA(q, iqn)

= −WRPA(q)
(iqn)2

(iqn)2 − ω2
q

.

(16.39)

16.5 The Cooper instability and Feynman diagrams

In 1956 Cooper discovered that the electron gas in an ordinary metal would become
unstable below a certain critical temperature Tc due to the phonon-induced attractive
nature of the effective electron-electron interaction V RPA

eff (q, ω) at low frequencies. This
discovery soon lead Bardeen, Cooper and Schrieffer (BCS) to develop the microscopic
theory explaining superconductivity.

In this section we will derive the Cooper instability using Feynman diagrams. The in-
stability arises because a certain class of electron-electron scattering processes when added
coherently yields a divergent scattering amplitude. We will first derive this divergence,
and then we will discuss its physical interpretation. The divergence is due to repeated
scattering between electron pairs occupying time-reversed states of the form |k ↑〉 and
|−k ↓〉. Using the four-momentum notation k̃ = (k, ikn) we consider the following pair
scattering vertex Λ(k̃, p̃) =" given by the infinite ladder-diagram sum over scattering
events between time-reversed electron pairs:

#−k̃↓ −p̃↓

k̃↑ p̃↑

Λ =$−k̃↓ −p̃↓

k̃↑ p̃↑

k̃−p̃ +%−k̃↓ −k̃1↓ −p̃↓

k̃↑ k̃1↑ p̃↑

k̃−̃k1 k̃1−p̃ +&−k̃↓ −k̃1↓ −k̃2↓ −p̃↓

k̃↑ k̃1↑ k̃2↑ p̃↑

k̃−̃k1 k̃2−̃k1 k̃2−p̃ + . . .

(16.40)
Suppressing all arguments and stripping away the external electron propagators we can
recast Eq. (16.40) in the form of a Dyson equation for the pair-scattering vertex Λ,

'Λ = ( + )Λ , (16.41)

which is equivalent to the following integral equation

Λ(k̃, p̃) = −V RPA
eff (k̃−p̃) +

1
Vβ

∑

q̃

[− V RPA
eff (k̃−q̃)

] G0
↑ (q̃) G0

↓ (−q̃) Λ(q̃, p̃). (16.42)

To proceed we make a simplifying assumption regarding the functional form of V RPA
eff (q, iqn).

First we note that according to our analysis of the electron gas in Chap. 13 no instabil-
ities arise due to the pure Coulomb interaction. Thus we are really only interested in
the deviations of V RPA

eff (q, iqn) from WRPA(q). According to Eq. (16.39) and Fig. 16.1(b),
V RPA

eff (q, iqn) rapidly approaches WRPA(q) for frequencies larger than the given acoustic
phonon frequency ωq, while it becomes attractive instead of repulsive for frequencies be-
low ωq. Further, according to the Debye model of acoustic phonons, Sec. 3.5, the density
of phonon states, Dion(ε), is proportional to ε2 or ω2

q for frequencies less than the De-
bye frequency ωD = vskD and zero otherwise, see Eq. (3.27). This means that most of
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the phonons encountered have a frequency of the order ωD. It is therefore a reasonable
approximation to set ωq = ωD. Finally, as a last simplification, we set the interaction
strength to be constant. Hence we arrive at the model used by Cooper and by BCS:

V RPA
eff (q, iqn) ≈

{ −V, |iqn| < ωD

0, |iqn| > ωD.
(16.43)

The integral equation for Λ(k̃, p̃) thus only involves frequencies less than ωD, and for those
it takes the form

Λ(k,p) = V +
1
β

ωD∑

iqn

1
V

∑
q

V G0
↑ (q, iqn) G0

↓ (−q,−iqn) Λ(q,p). (16.44)

The summand on the right hand side does not contain the external momentum k, whence
for the left hand side we conclude Λ(k,p) = Λ(p), and thus for Λ(q,p) in the summand
we can write Λ(p). Now it is furthermore evident that the p-dependence occurs only in
the Λ-function, hence a consistent solution is obtained by taking Λ(k,p) to be a constant,
which we naturally denote Λ. On the right hand side of Eq. (16.44) we can take Λ outside
the sum, and solve for it:

Λ =
V

1− V

β

∑

|iqn|<ωD

1
V

∑
q

G0
↑ (q, iqn) G0

↓ (−q,−iqn)
. (16.45)

We see that at high temperatures, i.e. β ¿ 1/oD, the resulting pair-interaction Λ equals
the attractive pair-interaction strength V from Eq. (16.43). As T is lowered the denom-
inator in Eq. (16.45) can approach zero from above resulting in an arbitrarily strong or
divergent pair-interaction strength Λ. In quantum mechanics an infinite scattering ampli-
tude signals a resonance, i.e. in the present case the formation of a bound state between the
time-reversed pair of electrons. But in our model this would then happen simultaneously
for all electron pairs within a shell of thickness ωD of the Fermi surface, since the effective
pair-interaction is attractive only for energy exchanges less than ωD. The conclusion is
clear: if the pair-interaction strength Λ diverge for a certain critical temperature Tc, the
entire Fermi-surface becomes unstable at that temperature, and a new ground state is
formed involving bound electron pairs in time-reversed states. This instability is called
the Cooper instability, and the on-set of it marks the transition from a normal metallic
state to a superconducting state.

The critical temperature T = Tc, or β = βc, for the on-set of the Cooper instability is
obtained by setting the denominator in Eq. (16.45) to zero using G0

σ(q, iqn) = 1/(iqn− εq)
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and qn = 2π
βc

(
n + 1

2

)
:

1 =
V

βc

∑

|iqn|<ωD

1
V

∑
q

1
iqn − εq

1
−iqn − εq

=
V

βc

∑

|iqn|<ωD

d(εF)
2

∫ ∞

−∞
dε

1
q2
n + ε2

=
V d(εF)

2βc

∑

|iqn|<ωD

π

|qn| =
1
2

V d(εF)




1
2π

βcωD∑

n=0

1
n + 1

2

− 2




≈ V d(εF)
2

ln
(
4

βcωD

2π

)
, βcωD À 1, (16.46)

where we use the density of states per spin, d(εF)/2. From this equation Tc is found to be

kBTc ≈ ~ωD e
− 2

V d(ε
F

) . (16.47)

Two important comments can be made at this stage. The first is that although the
characteristic phonon energy ~ωD is of the order 100 K, see e.g. Fig. 3.6b, the critical
temperature Tc for the Cooper instability is lowered to about 1 K by the exponential
factor. The second comment is that Tc is a non-analytic function of the pair-interaction
strength V , since Tc(V ) ∝ exp(−const/V ). Consequently, it is not possible to reach the
new ground state resulting from the Cooper instability by perturbation theory in V of
the normal metallic Fermi sea. These problems will be treated in some of the exercise of
this chapter and in much greater detail in the next chapter concerning the BCS theory of
superconductivity.
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Appendix A

Fourier transformations

Fourier transformation is useful to employ in the case of homogeneous systems or to
change linear differential equations into linear algebraic equations. The idea is to resolve
the quantity f(r, t) under study on plane wave components,

fk,ω ei(k·r−ωt), (A.1)

travelling at the speed v = ω/|k|.

A.1 Continuous functions in a finite region

Consider a rectangular box in 3D with side lengths Lx, Ly, Lz and a volume V = LxLyLz.
The central theorem in Fourier analysis states that any well-behaved function fulfilling the
periodic boundary conditions,

f(r + Lxex) = f(r + Lyey) = f(r + Lzez) = f(r) (A.2)

can be written as a Fourier series

f(r) =
1
V

∑

k

fk eik·r,
{

kx = 2πnx
Lx

, nx = 0,±1,±2, . . .

likewise for y and z,
(A.3)

where

fk =
∫

V
dr f(r) e−ik·r. (A.4)

Note the prefactor 1/V in Eq. (A.3). It is our choice to put it there. Another choice would
be to put it in Eq. (A.4), or to put 1/

√V in front of both equations. In all cases the
product of the normalization constants should be 1/V.

An extremely important and very useful theorem states
∫

dr e−ik·r = V δk,0,
1
V

∑

k

eik·r = δ(r). (A.5)
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Note the dimensions in these two expressions so that you do not forget where to put
the factors of V and 1/V. Note also that by using Eq. (A.5) you can prove that Fourier
transforming from r to k and then back brings you back to the starting point: insert fk

from Eq. (A.4) into the expression for f(r) in Eq. (A.3) an reduce by use of Eq. (A.5).

A.2 Continuous functions in an infinite region

If we let V tend to infinity the k-vectors become quasi-continuous variables, and the k-sum
in Eq. (A.3) is converted into an integral,

f(r) =
1
V

∑

k

fk eik·r −→
V→∞

1
V

V
(2π)3

∫
dk fk eik·r =

∫
dk

(2π)3
fk eik·r. (A.6)

Now you see why we choose to put 1/V in front of
∑

k. We have

f(r) =
∫

dk
(2π)3

fk eik·r, fk =
∫

dr f(r)e−ik·r, (A.7)

and also ∫
dk

(2π)3
eik·r = δ(r),

∫
dr e−ik·r = (2π)3 δ(k). (A.8)

Note that the dimensions are okay. Again it is easy to use these expression to verify that
Fourier transforming twice brings you back to the starting point.

A.3 Time and frequency Fourier transforms

The time t and frequency ω transforms can be thought of as an extension of functions
periodic with the finite period T , to the case where this period tends to infinity. Thus t
plays the role of r and ω that of k, and in complete analogy with Eq. (A.7) – but with
the opposite sign of i due to Eq. (A.1) – we have

f(t) =
∫ ∞

−∞

dω

2π
fω e−iωt, fω =

∫ ∞

−∞
dt f(t)eiωt, (A.9)

and also ∫ ∞

−∞

dω

2π
e−iωt = δ(t),

∫ ∞

−∞
dt eiωt = 2π δ(ω). (A.10)

Note again that the dimensions are okay.

A.4 Some useful rules

We can think of Eqs. (A.5), (A.8) and (A.10) as the Fourier transform of the constant
function f = 1 to delta functions (and back):

1r ←→ V δk,0, 1k ←→ δ(r), discrete k, (A.11a)

1r ←→ (2π)3 δ(k), 1k ←→ δ(r), continuous k, (A.11b)
1t ←→ 2π δ(ω), 1ω ←→ δ(t), continuous ω. (A.11c)
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Another useful rule is the rule for Fourier transforming convolution integrals. By direct
application of the definitions and Eq. (A.8) we find

f(r) =
∫

ds h(r−s) g(s) =
∫

ds
1
V2

∑

k,k′
hkeik·(r−s)gk′e

ik′·s =
1
V

∑

k

hkgk eik·r, (A.12)

or in words: a convolution integral in r-space becomes a product in k-space.
∫

ds h(r−s) g(s) ←→ hk gk. (A.13)

A related rule, the invariance of inner products going from r to k, is derived in a similar
way (and here given in three different versions):

∫
dr h(r) g∗(r) =

∫
dk

(2π)3
hkg∗k, (A.14)

∫
dr h(r) g(r) =

∫
dk

(2π)3
hkg−k, (A.15)

∫
dr h(r) g(−r) =

∫
dk

(2π)3
hkgk. (A.16)

Finally we mention the Fourier transformation of differential operators. For the gra-
dient operator we have

∇rf(r) = ∇r
1
V

∑

k

fk eik·r =
1
V

∑

k

fk ∇re
ik·r =

1
V

∑

k

ikfk eik·r. (A.17)

Similarly for ∇2, ∇×, and ∂t (remember the sign change of i in the latter):

∇r ←→ ik, ∂t ←→ −iω, (A.18)

∇2 ←→ −k2, ∇× ←→ ik× . (A.19)

A.5 Translation invariant systems

We study a translation invariant system. Any physical observable f(r, r′) of two spatial
variables r and r′ can only depend on the difference between the coordinates and not on
the absolute position of any of them,

f(r, r′) = f(r−r′). (A.20)

The consequences in k-space from this constraint are:

f(r, r′) =
∫

dk
(2π)3

∫
dk′

(2π)3
fk,k′ e

ik·reik′·r′ =
∫

dk
(2π)3

∫
dk′

(2π)3
fk,k′ e

ik·(r−r′)ei(k′+k)·r′ .

(A.21)
Since this has to be a function of r − r′, it is obvious from the factor ei(k′+k)·r′ that any
reference to the absolute value of r′ only can vanish if k′ = −k, and thus fk,k′ ∝ δ(k+k′).
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To find the proportionality constant, we can also find the Fourier transform of f by
explicitly using that f only depends on the difference r− r′

f(r, r′) = f̃(r− r′) =
∫

dk
(2π)3

f̃k eik·(r−r′), (A.22)

and by comparing the two expressions Eqs. (A.21) and (A.22) we read off that

fk,k′ = (2π)3δ(k + k′)f̃k, (A.23)

or in short
f(r, r′) ←→ fk,−k, translation−invariant systems. (A.24)

For the discrete case, we can go through the same arguments or use the formulae from
above to get

fk,k′ = Vδk,−k′ f̃k. (A.25)

This result is used several times in the main text when we consider correlation functions
of the form

g(r, r′) = 〈A(r)B(r′)〉, (A.26)

where A and B are some operators. For a translation-invariant system we now that
g(r, r′) = g(r− r′), and by using the result in Eq. (A.25) for k = −k′ we get that

g(k) =
1
V 〈A(k)B(−k)〉. (A.27)



Appendix B

Exercises

Exercises for Chapter 1

Exercise 1.1

Prove Eq. (1.63) for fermions: Ttot =
∑

νi,νj
Tνiνj c†νicνj

. Hints: write Eq. (1.60) with

fermion operators c†ν . Argue why in this case one has c†νb = c†νbcνnj
c†νnj

. Obtain the

fermion analogue of Eq. (1.62) by moving the pair c†νbcνnj
to the left. What about the

fermion anti-commutator sign?

Exercise 1.2

Find the current density operator J in terms of the arbitrary single particle basis states
ψν and the corresponding creation and annihilation operators a†ν and aν . Hint: use the
basis transformations Eq. (1.67) in the real space representation Eq. (1.99a).

Exercise 1.3

In some crystals the valence electrons are rather tightly bound to their host ions. A good
starting point for analyzing such systems is to describe the kinetic energy by hopping
processes, where with the probability amplitude t one valence electron can hop from an
ion j to one of the nearest neighbor ions j + δ (as usual {c†j , cj′} = δj,j′):

H = −t
∑

jδ

c†j+δcj ,

This Hamiltonian is known as the tight-binding Hamiltonian.
(a) Consider a 1D lattice with N sites, periodic boundary conditions, and a lattice

constant a. Here j = 1, 2, . . . , N and δ = ±1. Use the discrete Fourier transformation
cj = (1/

√
N)

∑
k eikja ck to diagonalize H in k-space and plot the eigenvalues εk as a

function of k.
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(b) In the high-temperature superconductors the conduction electrons are confined to
parallel CuO-planes, where the ions form a 2D square lattice. In this case the 2D tight-
binding model is applicable. Generalize the 1D model to a 2D square lattice also with the
lattice constant a and plot contours of constant energy εkxky

in the kxky plane.

Exercise 1.4

Consider a bosonic particle moving in 1D with the Hamiltonian

H = ~ω
(

a†a +
1
2

)
+ ~ω0

(
a† + a

)
,

where [a, a†] = 1, while ω and ω0 are positive constants. Diagonalize H by introducing the
operator α ≡ a + ω0/ω and its Hermitian conjugate α†, and determine the eigenenergies.
What might be the physical origin of the second term in H (see Sec. 1.4.1)? Compare the
result to a classical and a first quantized treatment of the problem.

Exercise 1.5

The Yukawa potential is defined as V ks(r) = e2
0
r e−ksr, with ks being some real positive

constant with the dimensions of a wavevector. Prove that the Fourier transform is V ks
q =

4πe2
0

q2+ks
2 . Relate the result to the Coulomb potential. Hints: work in polar coordinates

r = (r, θ, φ), and perform the
∫ 2π
0 dφ and

∫ +1
−1 d(cos θ) integrals first. The remaining

∫∞
0 r2dr

integral is a simple integral of the sum of two exponential functions.

Exercises for Chapter 2

Exercise 2.1

Iron (Fe) in its metallic state has valence II, and X-ray measurements have revealed that
it forms a body-centered-cubic (BCC) crystal with side length a = 0.287 nm. Calculate
the density n of the resulting gas of valence electrons, and use this value to determine the
microscopic parameters kF, εF, vF, and λF.

Exercise 2.2

Use the variational principle to argue that although the expression Eq. (2.43) is not exact
near the energy minimum density rs = r∗s = 4.83, the result E∗/N = −1.29 eV nevertheless
ensures the stability of the electron gas.

Exercise 2.3

Starting from Eqs. (2.34) and (2.45) derive the expression Eq. (2.47) for the contributions
from the direct Coulomb interaction processes to the interaction energy in second order
perturbation theory.
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Exercise 2.4

In Sec. 2.3.2 we saw an example of the existence of 2D electron gases in GaAs/Ga1−xAlxAs
heterostructures. Derive, in analogy with the 3D case, the relation between the 2D Fermi
wave vector kF and the 2D electron density: kF

2 = 2πn. Use the result to derive the 2D
density of states per area, d(ε).

Exercise 2.5

In Sec. 2.3.3 we saw an example of the existence of 1D electron gases in carbon nanotubes.
Derive, in analogy with the 3D case, the relation between the 1D Fermi wave vector kF

and the 1D density of states per length, d(ε). Use the result to derive the 1D electron
density: kF = 2n/π.

Exercises for Chapter 3

Exercise 3.1

We want to study the influence of electron-phonon scattering on a given electron state
|kσ〉 using the simple Hamiltonian HINA

el−ph of Eq. (3.41). For simplicity we restrict our
study to processes that scatter electrons out of |kσ〉.

(a) Argue that in this case we need only consider the simple phonon absorption and
emission processes given by

Hel−ph = Habs
el−ph + Hemi

el−ph =
∑
q

gq c†k+q,σckσbq +
∑
q

gq c†k+q,σckσb†−q.

(b) The scattering rate corresponding to the emission processes is denoted τ emi
k . It

can be estimated using Fermi’s Golden Rule (suppressing the unimportant spin index):

1
τ emi
k

=
2π

~
∑

f

∣∣∣〈f |Hemi
el−ph|i〉

∣∣∣
2
δ(Ef − Ei),

involving a sum over all possible final states with energy Ef = Ei, and an initial state
|i〉 having the energy Ei and being specified by the occupation numbers nkσ and Nq for
electron states |kσ〉 and phonon states |q〉 (see Eq. (1.108)). Assume that |i〉 is a simple but

unspecified product state, i.e. |i〉 =
(∏

{kσ}i
c†kσ

)(∏
{q}i

1√
Nq!

[
b†q

]Nq
)
|0〉, and show that

for a given q 6= 0 in Hemi
el−ph the only possible normalized final states is 1√

Nq+1
c†k+qckb†q|i〉.

(c) Show for the state |i〉 that

1
τ emi
k

=
2π

~
∑
q

|gq|2 (N i
q + 1) (1− ni

k+q) ni
k δ(εk+q − εk + ~ωq).

Derive the analogous expression for the scattering rate 1/τabs
k due to absorption.
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(d) Keeping nk = 1 fixed for our chosen state, argue why thermal averaging leads to

1
τ emi
k

=
2π

~
∑
q

|gq|2 [nB(ωq) + 1] [1− nF(εk+q)] δ(εk+q − εk + ~ωq).

Exercise 3.2

We now determine the temperature dependence of the scattering rate τ emi
k in the high and

low temperature limits. This immediately gives us the behavior of the total scattering
rate 1/τk = 1/τ emi

k + 1/τabs
k , since at low T , due to the lack of phonons, 1/τabs

k ≈ 0, while
at high T we have 1/τ emi

k ≈ 1/τabs
k .

(a) To obtain realistic results we need to use the screened Coulomb or Yukawa potential
for the ionic potential Vq (see Eq. (3.42) and Exercise 1.5). The electrons redistribute in
an attempt to neutralize the ionic potential. As we shall see in Chap. 13 they succeed to
do so for distances further away than 1/ks from the ion. Show by dimensional analysis
involving the Fourier component e2/(ε0k

2
s), the Fermi energy εF, and the electron density

n that k2
s ≈ kF/a0.

(b) Show how Eq. (3.42) together with k′ = k + q change 1
τemi
k

from Exercise 3.1d to

1
τ emi
k

∝ 2π

~
∑

k′
ωq [nB(ωq) + 1] [1− nF(εk′)]δ(εk′ − εk + ~ωq),

where we here and in the following do not care about the numerical prefactors.
(c) As usual, we are mainly interested in electrons moving relatively close to the

Fermi surface (why?), i.e. k′, k ≈ kF. Furthermore, we employ the Debye model of the
phonon spectrum (see Sec. 3.5): ωq = vDq. We note that since k′ and k are tied to the
Fermi surface the largest q is 2kF, and the corresponding largest phonon energy is denoted
~ωmax ≡ 2vDkF. Now use polar coordinates to obtain

∑
k′ ∝

∫
dεk′

∫ 1
−1 d(cos θ), and show

using q2 = |k′ − k|2 that d(cos θ) ∝ q dq. With this prove that

∫ 1

−1
d(cos θ)δ(εk′ − εk + ~ωq) ∝

∫ 2kF

0
q dq δ(εk′ − εk + ~ωq) ∝

{
ωq, εk − εk′ < ~ωmax

0, εk − εk′ > ~ωmax

Since dεk′ = ~ dωq show in the limit ~ωmax ¿ εk−εF ¿ εF how to obtain

1
τ emi
k

∝
∫ ωmax

0
dωq ω2

q [nB(ωq) + 1] [1− nF(εk′)] ≈
∫ ωmax

0
dωq ω2

q [nB(ωq) + 1].

(d) Show that the result in (c) leads to the following temperature dependencies:

1
τ emi
k

∝
{

T, for T À ~ωmax/kB

T 3 + const., for T ¿ ~ωmax/kB.



EXERCISES FOR CHAPTER 3 299

Exercise 3.3

In analogy with the homogeneous 1D chain of Sec. 3.3 we now want to find the eigenmodes
of the linear 1D chain with lattice constant a mentioned in Fig. 3.3(c). The ionic lattice
has a unit cell with two different ions • and ◦, respectively. All spring constants are the
same, namely K. The masses, the momenta, and the displacements of the • ions are
denoted m, pj and uj , while for the ◦ ions they are denoted M , Pj and Uj . The sites are
numbered by j as . . . , uj−1, Uj−1, uj , Uj , uj+1, Uj+1, . . ..

(a) Verify that the Hamiltonian of the two-atoms-per-unit-cell chain is

H =
∑

j

[
1

2m
p2

j +
1

2M
P 2

j +
1
2
K(uj − Uj−1)2 +

1
2
K(Uj − uj)2

]

(b) Use Hamilton’s equations u̇j = ∂H
∂pj

and ṗj = − ∂H
∂uj

(similar for U̇j and Ṗj), to

obtain the equations for üj and Üj .
(c) Assume the harmonic solutions uj ≡ uke

i(kja−ω t) and Uj ≡ Uke
i(kja−ω t) to derive

a 2× 2 matrix eigenvalue equation for (uk, Uk). Verify the dispersion curve ωk displayed
in Fig. 3.3(c) and the eigenmode displayed in Fig. 3.4.

(d) Check that in the limit M = m the dispersion ωk in Eq. (3.9) of the one-atom-
per-unit-cell is recovered.

Exercise 3.4

The task is to prove the Bohm-Staver expression Eq. (3.5). We study the situation de-
scribed in Sec. 3.2, where the light and mobile electrons always follow the motion of the
slow and heavy ions to maintain local charge neutrality. The ions are treated as the jellium
of Sec. 3.1.

(a) Multiply the continuity equation by the ion mass M to obtain

M∂tρion +∇ · π = 0,

where π is the momentum density.
(b) Take the time derivative and note that π̇ is the force density f , which on the other

hand is equal to the pressure gradient −∇P due to the compression of the electron gas
following the ionic motion:

π̇ = f = −∇P = ∇
( ∂E(0)

∂V

∣∣∣∣∣
N

)
,

where the electron gas ground state energy E(0) is given in Eq. (2.28).
(c) Combine the equations and derive the wave equation for ρion, from which the

(square of the) sound velocity vs is read off:

M∂2
t ρion −

2Z

3
εF ∇2ρion = 0.
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Exercise 3.5

Electrons and phonons in the jellium model In this exercise we quantize the jellium
model of the ion system in a solid and derive the electron phonon interaction in a way
which is somewhat different from the method used in the main text.

We take the case of a monovalent metal, i.e. each ion has charge +e. Because the
system is charge neutral as a whole, we need only take into account interactions between
deviations from equilibrium. We define

ρion(r)=ρ0
ion + δρion(r) ≡ ρ0

ion+ρ0
ion∇ · u(r),

ρ(r)=ρ0
ion + δρ(r),

where u is a displacement field describing the deviation of the ion density from equilibrium,
and ρ(r) is the electron density. The potential energy contributions which involves the
ionic system are the ion-ion interaction and the electron-ion interaction

Eion−ion
pot =

1
2

∫
drdr′ δρion(r)V (r− r′)δρion(r

′),

Eion−el
pot = −

∫
drdr′ δρ(r)V (r− r′)δρion(r

′),

with the usual definition

Eel−el
pot =

1
2

∫
drdr′ δρ(r)V (r− r′)δρ(r′).

We have not explicitly included the electron-electron interaction here. When included it
gives rise to the term in Eq. (2.34).

First we quantize the ion system and we start by looking at the isolated ion system.
The classical Lagrangian for this system is

L0
ion = Tion − Vion

T 0
ion =

1
2

∫
drMρion(r)v2(r)

Vion = Eion−ion
pot ,

where v is the velocity field of the ions. Because we are interested in the low energy
excitations we linearize the kinetic such that

T =
1
2

∫
drMρ0

ionv
2(r).

Using particle conservation show that

v(r) = −u̇(r)

and using this, derive the Lagrangian as a functional of u

L0
ion[u] =

1
2

∫
drMρ0

ion|u̇(r)|2 −
(
ρ0
ion

)2

2

∫
drdr′ [∇ · u(r)]V (r− r′)

[∇ · u(r′)
]
.
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Because the Lagrangian is quadratic in u it is equivalent to a set of harmonic oscillators
that describe sound waves of the ion system. What dispersion relation do you expect?

Next you should quantize the ion system and find the Hamiltonian. First show that
the canonical momentum corresponding to the field u is

p(r) = Mρ0
ionu̇(r),

and show, using the well known relation H =
∫

p · u̇− L, that

H0
ion =

1
2

∫
dr

p2(r)
Mρ0

ion

+

(
ρ0
ion

)2

2

∫
drdr′ [∇ · u(r)]V (r− r′)

[∇ · u(r′)
]

=
1

2V
∑
q

p(q) · p(−q)
Mρ0

ion

+

(
ρ0
ion

)2

2V
∑
q

V (q) [q · u(q)] [q · u(−q)] .

The system is quantized by the condition (canonical quantization)

[ui(r),pj(r′)] = iδijδ(r− r′).

Show that in k-space this becomes

[ui(q),pj(−q′)] = iδijV δqq′ .

Now follow the standard scheme for diagonalization of the phonons modes. Define

uq = εq

√
V

2Mρ0
ionΩ

(
bq + b†−q

)
, p−q = iεq

√
VMρ0

ionΩ
2

(
b†q − b−q

)
,

where the polarization vector has the property that εq = ε−q, i.e. one must choose a
positive polarization direction. The polarization is here parallel to q i.e. only longitudinal
modes exist in the jellium model1. Furthermore, Ω is chosen such that H is diagonal.
Verify that

H =
∑
q

Ω0

(
b†qbq +

1
2

)
; Ω0 =

√
4πe2

0ρ
0
ion

M
.

Explain the physics of this result.

Exercise 3.6

Bare electron- phonon interaction in the jellium model. Using the quantization
from the previous exercise verify that the Hamiltonian describing the electron-phonon

1In the general non-jellium case the polarization vectors are eigenvectors of the dynamical matrix D(q)
in Eq. (3.14). In the jellium case, one thus has Dαβ(q) = qaqβ V (q) which only has one eigenvector with
non-zero eigenvalue, namely εq, which you can easily check.
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interaction is given by

Hion−el =
∫

drdr′ δρ(r)V (r− r′)δρion(r
′)

=
ρ0
ion

V
∑

q

ρ(−q)V (q)(iq · u(q))

=
1√V

∑
q

g(q)ρ(−q)Aq, (B.1)

where

g(q) = iqV (q)

√
ρ0
ion

2MΩ0

, (B.2)

and
Aq = bq + b†−q. (B.3)

Exercises for Chapter 4

Exercise 4.1

(a) Consider the Hartree-Fock solution of the homogeneous electron gas in a positive
background. After the mean-field approximation the Hamiltonian can be written as

HHF =
∑

k

εHF
k c†kσckσ + constant. (1)

Argue why it is that in this case the Hartree-Fock energy follows from Eq. (4.25b) and is
given by

εHF
k = εk + VHF (k) , VHF (k) = −

∑

k′
V (k− k′)nk′σ, V (q) =

4πe2
0

q2
(2)

The occupation numbers should of course be solved self-consistently. What is the self-
consistency condition?
(b) Consider the zero temperature limit, and assume that nk′σ = θ (kF − k′), which then
gives

VHF (k) = −e2
0kF

π

(
1 +

k2
F − k2

2kF k
ln

∣∣∣∣
k + kF

k − kF

∣∣∣∣
)

. (3)

VHF (k) is increasing monotonously with k (which you might check, e.g. graphically). Use
this to argue that the guess nk′σ = θ (kF − k′) is in fact the correct solution.
(c) Now find the energy of the electron gas in the Hartree-Fock approximation. Is it given
by

EHF
?=

∑

k

εHF
k nF

(
εHF
k

)
, (4)

and why not? Hint: show that the correct energy reduces to E(1) given in Eq. (2.39).
(d) The conclusion is so far that Hartree–Fock and first order perturbation theory are in
this case identical. Is that true as well for the mean field solution of the Stoner model?



EXERCISES FOR CHAPTER 4 303

Exercise 4.2

The Hartree–Fock energies derived in the previous exercise have however some unphysical
features. Show that the density of states as derived from Eq. (2) diverge at the Fermi
level.

This conclusion contradicts both experiments and the Fermi liquid theory discussed
in Chap. 14. It also warns us that the single-particle energies derived from a mean-field
Hamiltonian are not necessary a good approximation of the excitation energies of the
system, even if the mean-field approach gives a good estimate of the groundstate energy.

Exercise 4.3

In this exercise we calculate the density of states in the superconducting state. First
go through the arguments that give the so-called coherence factors, uk and vk, and the
excitation energies, E, Eqs. (4.63) and (4.64). You can assume that ∆ is real. Secondly,
find the density of states for the excitations in energy space, d(E). Show that it diverges at
the “gap-edge”, near d(∆). Hint: start with the density of states in k space and translate
to a density in energy space. The square root singularity that you find, has been confirmed
in great detail by experiments and is one of the many successes of the BCS theory. See
also Table 4.6.

Exercise 4.4

In 1937 Landau developed a general phenomenological theory of symmetry breaking phase
transitions. The basic idea is to expand the free energy in powers of the order parameter.
Consider a transition to a state with a finite order parameter, η. For second order phase
transitions only even terms are present in the free energy expansion

F (T, η) = F0 (T ) + A (T ) η2 + C (T ) η4.

At the transition point η vanishes. Use this to argue that A also vanishes at the transition
point, T = TC , and that A < 0 for T < TC , and A > 0 for T > TC . Then write A and C
as

A (T ) = (T − TC) α, C (T ) = C,

and use the principle of minimal free energy to show that

η =

√
−A

2C
=

√
(TC − T )

TC
η (0) , η (0) =

√
Tcα

2C
.

Finally, make a sketch of the specific heat of the system and show that it is discontinuous
at the transition point. Hint: recall that

CV = −T
∂2F

∂T 2
.
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Exercises for Chapter 5

Exercise 5.1

We return to the bosonic particle described by the Hamiltonian of Exercise 1.4. Write down
the Heisenberg equations of motion for a† and a . Solve these equations by introducing
the operator α† ≡ a† + ω0/ω . Express H in terms of α†(t) and α(t). Interpret the change
of the zero point energy.

Exercise 5.2

Show that the third-order term Û3(t, t0) of Û(t, t0) in Eq. (5.18) indeed has the form

Û3(t, t0) =
1
3!

(1
i

)3
∫ t

t0

dt1

∫ t

t0

dt2

∫ t

t0

dt3 Tt

(
V̂ (t1)V̂ (t2)V̂ (t3)

)
.

Hint: study Eqs. (5.16) and (5.17) and the associated footnote.

Exercise 5.3

Use the Heisenberg picture to show that for the diagonal Hamiltonian H of Eq. (5.22) we
have

H =
∑

ν′
εν′a

†
ν′aν′ ⇒ H(t) =

∑

ν′
εν′a

†
ν′(t)aν′(t).

Exercise 5.4

Due to the equation of motion for operators Eq. (5.6) we will often need to calculate com-
mutators of the form [AB, C], for some operators A, B, and C. Show the very important
relations

[AB, C] = A[B ,C] + [A , C]B, useful for boson operators,
[AB, C] = A{B,C} − {A,C}B, useful for fermion operators.

Exercise 5.5

In the jellium model of metals the kinetic energy of the electrons is described by the Hamil-
tonian Hjel of Eq. (2.19), while the interaction energy is given by V ′

el−el of Eq. (2.34). In
the Heisenberg picture the time evolution of the electron creation and annihilation opera-
tors c†kσ and ckσ is governed by the total Hamiltonian H = Hjel + V ′

el−el. In analogy with
Eq. (5.31) derive the equation of motion for ckσ(t). Apply the Hartree–Fock approximation
to the result.
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Exercises for Chapter 6

Exercise 6.1

As in Exercise 5.1 we consider a harmonic oscillator influenced by an external force f(t),
but now we treat this force as a time-dependent perturbation

H ′ = f(t) x.

Express x in terms of a and a† and calculate the linear response result for the expectation
value 〈x(t)〉. Argue that this result is in fact exact, for example by considering the equation
of motion for 〈x(t)〉.

Exercise 6.2

The spin susceptibility measures the response to a magnetic field. Suppose that a piece
of some material is perturbed by external magnetic moments. These moments could for
example be in the form of a neutron beam in a neutron scattering experiment. The
perturbation is in this case given by

H ′ = −gµB

∫
dr Bext(r, t) · S(r),

where S is the spin density operator S(r) = Ψ†(r)sΨ(r), see Sec. 1.4.3. Find the response
to linear order in B for the induced spin density in the material, 〈S(r, t)〉. Express your
result in both real space and momentum space.

Neutron scattering experiments are the main source for obtaining experimental infor-
mation about the distribution of spins in condensed matter systems.

Exercise 6.3

We study integrals of the form
∫∞
−∞dx 1

x+iη f(x), where f(x) is any function with a well
behaved Taylor expansion around x = 0, and η = 0+ is a positive infinitesimal. Show that
in this context 1

x+iη can be decomposed as the following real and imaginary parts

1
x + iη

= P 1
x
− iπ δ(x).

Here P means Cauchy principle part:

P
∫ ∞

−∞
dx

1
x

f(x) ≡
∫ −η

−∞
dx

1
x

f(x) +
∫ ∞

η
dx

1
x

f(x).

Exercise 6.4

In this exercise we consider the conductivity of a translation- and rotational-invariant
system. This means that the conductivity σ(r, r′) is a function of r− r′ only and that
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the conductivity tensor is diagonal with identical diagonal components. Show that in the
Fourier domain

Je(q, ω) = σ(q, ω)E(q, ω).

Find the relation between the conductivity, i.e. σ(q, ω) and the correlation function

〈[Jα(q, t), Jα(−q, 0)]〉 ,

where J(q) is the particle current operator in momentum space.

Exercise 6.5

Consider again the conductivity of a translation-invariant and rotational-invariant system.
First consider the conductivity of a non-interacting electron gas at long wave lengths,

q → 0. Derive the expression for the particle current operator in this limit,

J(0, t) =
1
m

∑

kσ

k c†kσ(t) ckσ(t),

and show that it is time-independent in the Heisenberg picture. From this you can derive
obtain the long wavelength conductivity

σαβ(0, ω) = iδαβ
ne2

ωm
.

How does this fit with the Drude result (13.42) in the clean limit, where the impurity
induced scattering time τ tends to infinity (i.e. ωτ → ∞)? How does the conclusions
change for an interacting translation-invariant system?

Exercises for Chapter 7

Exercise 7.1

Verify that the self-consistent equations in Eqs. (8.16) and (8.17) both are solution to the
Schrödinger equation in Eq. (8.13).

Exercise 7.2

In this exercise we prove that the propagator in Eq. (8.22) in fact is identical to the Green’s
function by showing that it obey the same differential equation, namely Eq. (8.14b). Hint:
differentiate (8.22) with respect to time using that the derivative of the theta function is
a delta function, and that

〈r|H|φ〉 = H(r)〈r|φ〉
Which you can see for example by inserting a complete set of eigenstates of H.
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Exercise 7.3

Find the greater propagator, G>(r, r′; ω) similar to Eq. (8.42), but now in one- and two
dimensions. Can you suggest an experiment (at least in principle) that measures this
propagator.

Exercise 7.4

Eqs. (8.50) are valid for fermions. Show that the corresponding results for bosons are

iG>(ν, ω) = A(ν, ω) [1 + nB(ω)] ,
iG<(ν, ω) = A(ν, ω) nB(ω).

Exercise 7.5

The tunneling density of states for a superconductor has a characteristic shape which you
find in this exercise. First find the retarded Green’s function

GR(k ↑, t) = −iθ(t)〈{ck↑(t), c†k↑}〉

by expressing the c and c† operators in terms of the diagonal γ-operators called bogoliubons
given in Eq. (4.65). Once you have done that the problem is reduced to finding the Green’s
function of a free particle, which you see from the Hamiltonian Eq. (4.66). Now calculate
the tunneling current-voltage characteristics, assuming the tunneling matrix element to
be approximately constant. Plot the results of I and dI/dV versus V .

Exercise 7.6

In this exercise we shall calculate the dc conductance of a perfect one-dimensional wire.
From Sec. 6.3 we have that the conductance is given by

G =
ie2

ω
ΠR(ω), ΠR(x− x′; t− t′) = −iθ(t− t′)

〈[
Ip(xt), Ip(x′t′)

]〉

where Ip is the operator for the particle current through the wire. Hints: use the one-
dimensional version of the particle current operator

Ip(x) =
~

mL

∑

kqσ

(
k +

q

2

)
c†kσck+qσ eiqx.

The result for the dc conductance does not depend on where the current is evaluated
(why?). Now you can use the method in Sec. 8.5 to find that

ΠR(x− x′; t− t′) =− iθ(t− t′)
(
~

mL

)2 ∑

kqσ

(
nF (εk)− nF (εk+q)

)

×
(
k +

q

2

)2
ei(εk−εk+q)(t−t′) eiq(x−x′).
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Setting x = x′ find ΠR(0, ω) and study it in the low frequency limit. Show that

lim
ω→0

ImΠR(ω) = ~ωπ

(
~

mL

)2 ∑

kqσ

[
−∂nF (∂εk)

εk

]
δ(εk − εk+q)

(
k +

q

2

)2
.

Do the q-integral first and find

lim
ω→0

ImΠR(ω) = ~ωπ

(
~
m

)2 (m

~2

) 1
2πL

∑

kσ

(
− ∂

∂εk

nF (εk)
)

k2

|k|

=
ω

~π
1

e−βµ + 1
.

In the limit µ À kT , you find the famous result for the conductance G of a perfect 1D
channel

G =
2e2

h
.

Exercise 7.7

Consider a 2D electron gas in the xy plane confined to the strip 0 < x < L. What is the
electron density as a function of the distance x from the left edge? Take for simplicity
T = 0. What will change at larger temperatures? The oscillations that you will find are
called Friedel oscillations.

Hints: Use standing waves in the x-direction fulfilling the proper boundary conditions,
and assume quasi-continuous states with periodic boundary conditions in the y direc-
tion. Find the x-dependent density as n(x) =

∫
dy

∑
ν〈c†νcν〉|〈xy|ν〉|2, where the ν-sum

runs over the appropriately normalized states |ν〉. You may need to know the integral∫
ds
√

1− s2 sin2(xs) = π
8x [x− J1(2x)].

Exercises for Chapter 8

Exercise 8.1

Consider a physical system consisting of fermions allowed to occupy two orbitals. The
Hamiltonian is given by

H = E1c
†
1c1 + E2c

†
2c2 + tc†1c2 + t∗c†2c1.

Find the Green’s function GR(ij, ω), where i and j can be both be either 1 or 2 and where
GR(ij, t − t′) = −iθ(t − t′)〈{ci(t), c†j(t

′)}〉. Use the equation of motion method. Don’t
forget to interpret the result.

Exercise 8.2

Derive Eqs. (9.22) and (9.23) by differentiating the Green’s functions in (9.20) and (9.21).
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Exercise 8.3

Consider an atom on a metal surface. The electronic states of the atom will hybridize with
the conduction electrons in the metal. If we assume that only a single orbital couples to
the metal states, then the atom and the metal can be described by the Anderson model
Hamiltonian Eq. (9.18).

When a scanning tunneling microscope (STM) is placed near the atom current will
flow from the STM tip through the atom to the metal. Since the atom is strongly coupled
to the metal surface the bottleneck for the current is the tunneling from STM to atom,
which we can describe by a tunneling Hamiltonian as in Eq. (8.60), and not the tunneling
between atom and metal, described by Eq. (9.17). It is therefore a good approximation
to assume that the atom is in equilibrium with the metal, and to use tunneling theory for
the current between tip and atom.

Sketch the resulting dI/dV using the expression derived in Chap. 8 for the tunnel
current and the mean field expression for the d electron Green’s function, derived in
Sec. 9.2.

Exercise 8.4

In this exercise we improve the solution of the Anderson model presented in Secs. 9.2.2
and 9.2.3. Start by combining Eqs. (9.22), (9.23), and (9.30b) to obtain the following
equation of motion for GR(d ↑, ω):

[
ω + iη − εd + µ− ΣR(ω)

]
GR(d ↑, ω) = 1 + IUDR(d ↑, ω).

The two-particle Green’s function DR(d ↑, t) is defined in Eq. (9.26). In Eq. (9.28) it was
approximated by a product of two single-particle Green’s functions, and the model was
then solved at the level of single-particle Green’s functions.

Here we go one step further and derive an equation of motion for DR(d ↑, t) and
truncate it at the two-particle Green’s function level. Thus we get a better approximation
which takes pair correlations into account. First find the differential equation for DR by
differentiation with respect to t. When you do that the difficult commutator is

[Hhyb, nd↓d↑] = nd↓ [Hhyb, d↑] + [Hhyb, nd↓] d↑

= nd↓[Hhyb, d↑] +
∑

kσ

(
t∗kc†k↓d↓ − tkd†↓ck↓

)
d↑,

The last term contains a new type of processes giving rise to higher order correlations
(corresponding to spin flips), and it is therefore omitted. This constitutes our new and
improved approximation. The first term generates a two-particle Green’s function denoted
FR given by

FR(kd ↑, t− t′) = −iθ(t− t′)〈{(nd↓ck↑)(t), d†↑(t
′)}〉.

Note the similarity between FR and the single-particle function GR
kd(kdσ) of Eq. (9.21).

Derive the equation of motion for FR, and show that if you again neglect the term
[Hhyb, nd↓] no new Green’s functions are generated. Instead FR is coupled back to DR.
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Inset this result into the equation of motion you derived for DR above, and show that the
resulting equation for DR is

[
ω + iη − εd + µ− U − Σ(ω)

]
DR(d ↑) = 〈nd↓〉.

Finally, solve for GR and show that the result is

GR(d ↑) =
1− 〈nd↓〉

ω + iη − εd + µ− ΣR(ω)
+

〈nd↓〉
ω + iη − εd − U + µ− ΣR(ω)

.

Interpret this result physically, for example by considering how the result of Exercise 8.3
is changed.

Exercises for Chapter 9

Exercise 9.1

Find the Fermi-Dirac distribution by starting from the Matsubara Green’s function and
setting τ = 0−. Then show that

〈c†νcν〉 = G0
σ(ν, τ = 0−) =

1
β

∑

ikn

e−ikn0− G0
σ(ν, ikn) = nF (εν)

How would you calculate 〈cνc
†
ν〉?

Exercise 9.2

Repeat Exercise 7.6 but this time using the imaginary time formalism. Use the procedure
going from Eq. (10.80) to Eq. (10.85).

Exercise 9.3

According to Eq. (10.63) the equation of motion for the Matsubara Green’s function of a
free particle is

(
−∂τ − p2

2m
+ µ

)
G0

σ(r− r′, τ − τ ′) = δ(r− r′) δ(τ − τ ′).

Show (10.39) by Fourier transforming this equation. Note that both τ and τ ′ are greater
than zero.

Exercises for Chapter 10

Exercise 10.1

Single impurity scattering. The Dyson equation for otherwise free electrons scattering
against an external potential is written in Eqs. (11.5) and (11.9). Suppose now that the
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electrons are confined to move in one dimension and that the external potential can be
represented by a delta-function impurity potential, U(x) = U0δ(x). Show that in this case
the solution of the Dyson equation becomes

Gσ(xx′, ikn) = G0
σ(xx′, ikn) + G0

σ(x0, ikn)
U0

1− G0
σ(00, ikn) U0

G0
σ(0x′, ikn).

Hint: solve for G(0x′, ikn) first and insert that in the Dyson equation for G(xx′, ikn). To
find the retarded Green’s we thus need the unperturbed Green’s function, which is

G0R
σ (xx′, ω) = G0

σ(xx′, ω + iη) =
1
L

∑

k

eik(x−x′)

ω − εk + µ + iη
=

1
ivω

eikω |x−x′|,

(do you agree?) where kω =
√

2m(ω + µ) and v =ω ∂εk/∂k|k=kω . Since the retarded
Green’s function tells us about the amplitude for propagation from point x′ to point x,
we can in fact extract the transmission and reflection amplitudes t and r. For x′ < 0 we
have

GR
σ (xx′, ω) = t G0R

σ (xx′, ω) θ(x) +
[
1 + reiφ(x,x′)

]
G0R

σ (xx′, ω) θ(−x),

where eiφ(x,x′) is a phase factor, which is determined by the calculation. Find r and t and
discuss the phase shifts that the electrons acquire when they are scattered.

Exercise 10.2

Resonant tunneling. In for example semiconductor heterostructures one can make
quantum-well systems which to a good approximation can be described by a one-dimen-
sional model of free electrons with two tunneling barriers. Here we simplify it somewhat
further by representing the tunneling barriers by delta-function potentials situated at a1

and a2. The Hamiltonian is then given by

H = H0 +
∫ ∞

−∞
dx ρ(x) U0

[
δ(x− a1) + δ(x− a2)

]
,

where H0 is the Hamiltonian for free electrons in one dimension. Write H in x−space
and find a formal expression for the Matsubara Green’s function using Dyson’s equation.
From the Dyson equation find the retarded Green’s function for x′ < a1 < a2 < x:

GR
σ (xx′, ω) =

eik(x−x′)

ivω

[
1 + α

(
e−ika1 , e−ika2

) ·
(

1− α −αeiθ

−αeiθ 1− α

)−1

·
(

eika1

eika2

)]
,

where k = kω (see previous exercise) and where α = U0/iv and θ = k(a2 − a1). Use this
to show that the transmission is unity for the particular values of θ satisfying

α = i cot θ.

Derive the same result using the following simple argument involving two paths for an
electron to go from x′ to x: (1) x′ → a1 → a2 → x, and (2) x′ → a1 → a2 → a1 → a2 → x.
The transmission is unity when these two paths interfere constructively – as does paths
with any number of trips back and forth in the “cavity”.
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Exercises for Chapter 11

Exercise 11.1

Matsubara frequency summation. Use the rule Eq. (10.54) for summing over func-
tions with simple poles to perform the Matsubara frequency summation appearing in the
following diagrams of Eqs. (12.30) and (12.34):

ΣF
σ (k, ikn) ≡� Π0(q, iqn) ≡ �

Exercise 11.2

The cancellation of disconnected diagrams in G(b, a). We study the one-particle
Green’s function, which in the interaction picture in the presence of the particle-particle
interaction W (r− r′) becomes:

G(b, a) = −

〈
Tτ

[
Û(β, 0) Ψ̂(b) Ψ̂†(a)

]〉
0〈

Û(β, 0)
〉

0

, with Û(β, 0) = Tτ exp
(
−

∫ β

0
dτ Ŵ (τ)

)
.

As in Eq. (12.14) use the Feynman rules to expand the denominator and the numerator,
but now to second order in W , and show explicitly the cancellation of the disconnected
diagrams. Hints. (1) Start with the simpler denominator (how many terms?). (2) Draw
topologically identical diagrams only once and multiply with the number of them. (3) Get
most of the diagrams in the numerator by cutting open and stretching out a Fermion line
in the diagrams from the denominator (how many terms?).

Exercise 11.3

Feynman diagrams and Dyson’s equation for the Anderson model. We return to
Anderson’s model for localized magnetic moments in metals, see Sec. 9.2. We wish to derive
the Dyson equation Eq. (9.29) using Feynman diagrams. The unperturbed Hamiltonian
is given by H0 =

∑
σ(εd − µ) d†σdσ +

∑
kσ(εk − µ) c†kσckσ, while the interaction part is

given by Hint = Hhyb+HMF
U , the sum of the hybridization Eq. (9.17) and on-site repulsion

Eq. (9.27). We employ the mean-field approximation given by Eq. (9.27) where the σ spins
only interact with the average density 〈ndσ̄〉 of the opposite σ̄ spins.

We introduce the following rather obvious diagrammatic notation for the Matsubara
Green’s functions and interactions:

� ≡ G0(dσ) �tk ≡
∑

k

tk� ≡ G (dσ)� ≡ G0(kσ) �U ≡ U
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We write the diagrammatic expansion (here shown up to second order in |tk|2 and U)
for the full d-orbital spin up Green function G (dσ) as:

�
G (dσ)

=	
G0(dσ)

+

G0(dσ)

tk

G0(kσ)

t∗k

G0(dσ)
+�

G0(dσ)

U

G0(dσ)

G(dσ̄)

+�
G0(dσ)

tk

G0(kσ)

t∗k

G0(dσ)

tk

G0(kσ)

t∗k

G0(dσ)
+


G0(dσ)

U

G0(dσ)

U

G0(dσ)

G(dσ̄) G(dσ̄)

+�
G0(dσ)

tk

G0(kσ)

t∗k

G0(dσ)

U

G0(dσ)

G(dσ̄)

+�
G0(dσ)

U

G0(dσ)

tk

G0(kσ)

t∗k

G0(dσ)

G(dσ̄)

+ . . .

Express the self-energy as a sum of diagrams using a definition analogous to Eq. (12.18),
and derive in analogy with Eq. (12.19) Dyson’s equation graphically. Use the obtained
Dyson equation to verify the solution Eqs. (9.30a) and (9.30b). The tedious work with
the equation of motion has been reduced to simple manipulations with diagrams.

Exercises for Chapter 12

Exercise 12.1

A classical treatment of the plasma oscillation. The electronic plasma frequency
ωp ≡ √

ne2/mε0 introduced in Eq. (13.76) does not contain Planck’s constant and is
therefore not a quantum object. Derive ωp from the following purely classical argument.

Consider an electron gas of density n confined in a rectangular box of length Lx in the
x direction and having a large surface area LyLz in the yz plane (Lx ¿ Ly, Lz). Treat the
ions as an inert, charge compensating jellium background. Imagine now the electron gas
being translated a tiny distance ξ in the x direction (ξ ¿ Lx), leaving the ion jellium fixed.
The resulting system resembles a plate capacitor. The electron gas is then released. Find
the equation of motion for the coordinate ξ using Newtons law and classical electrostatics.
Give a physical interpretation of the resulting motion of the electron gas.

Exercise 12.2

Interactions in two dimensions. In the following exercises we consider a translation-
invariant electron gas in two dimensions fabricated in a GaAs heterostructure (see Sec. 2.3.2).
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The electron mass for this material is m∗ = 0.067 m, the relative permittivity is εr = 13,
while the electron density ranges from n2D = 1× 1015 m−2 to 5×1015 m−2.

The electron wave function for the two dimensional electron gas is restricted to be

ψk(r, z) =
1√

LxLy

eik·rζ0(z),

where k = (kx, ky) and r = (x, y), while ζ0(z) is the lowest eigenstate in the z direction,
i.e. n = 0 in Eq. (2.50). Write down the interaction part of the Hamiltonian and show
that it is of the form

H2D =
1

2A
∑

kk′q

∑

σσ′
W 2D(q) c†k+q,σc†k′−q,σ′ck′,σ′ck,σ

where q = (qx, qy). For a strictly 2D system, i.e. |ζ0(z)|2 = δ(z), show that

W 2D(q) =
e2

2εrε0 q
.

Hint: use
∫ π
0 dθ cos (α cos θ) = πJ0(α), where J0 is the Bessel function of the first kind of

order zero.

Exercise 12.3

Plasmons in two dimensions. Consider a translation-invariant electron gas in two
dimensions fabricated in a GaAs heterostructure. The electron mass for this material is
m∗ = 0.067 m, the relative permittivity is εr = 13, while the electron density ranges from
n2D = 1× 1015 m−2 to 5×1015 m−2.

For such a system the RPA dielectric function is given by

ε2D
RPA(q, iqn) = 1−W 2D(q) χ2D

0 (q, iqn),

with q = (qx, qy) and where χ2D
0 (q, iqn) is the 2D version of the 3D pair bubble χ0

given in Eq. (13.20). Show that at low temperatures, kBT ¿ εF, and long wave lengths,
q ¿ ω/vF , the plasmon dispersion relation is ω = vF

√
k2D

s q/2, where k2D
s is the Thomas-

Fermi screening wavenumber in 2D. Find the relation between kF and the electron density,
n2D. Express k2D

s in terms of the parameters of the electron gas. Is it larger or smaller
than kF for n2D = 2× 1015 m−2?

Exercise 12.4

Static screening in two dimensions. Show that in 2D the static RPA screened inter-
action at small wavevectors, q ¿ kF, and low temperatures, kBT ¿ εF, is given by

W 2D
RPA(q, 0) ≡ W 2D(q)

ε2D
RPA(q, 0)

=
e2

2εrε0 (q + k2D
s )

.



EXERCISES FOR CHAPTER 13. 315

Exercise 12.5

Damping of two dimensional plasmons. The electron-hole pair continuum is the
region in q − ω space where Im χ2D

0 6= 0. Find the condition for the plasmons not to be
damped by single-particle excitations for q < kF. In the estimate you can use the small-q
expressions for the plasmon frequency and the polarization, that you found above. Are
the plasmons damped in the region q < kF in GaAs with the parameters given above?

Exercise 12.6

Deriving the Feynman diagrams for χ(q̃). The task is to understand the arguments
leading to the diagrammatic expansion for χ(q̃) given in Eq. (13.58). We are not asking
for detailed calculations.

In the real space formulation χ(b, a)≡−〈
Tτ ρ(b)ρ(a)

〉
eq

=−〈
Tτ Ψ†(b)Ψ(b)Ψ†(a)Ψ(a)

〉
eq

.
Write down the expression for χ(b, a) analogous to Eq. (12.8) for G(b, a). Then apply
Wick’s theorem to obtain the analogue of Eq. (12.9). Following arguments similar to
those of Eq. (12.16) it can be shown that the numerator also cancels in the case of χ(b, a)
(you do not have to show that). Finally, argue with the help of Appendix A that for a
translation-invariant system χ(q, τ) = − 1

V
〈
Tτ ρ(q, τ) ρ(−q, 0)

〉
eq

as stated in Eq. (13.53),
see also the form of σ(q, ω ) in Exercise 6.4. Please note that

〈
ρ
〉
eq

= 0 due to charge
neutrality.

Alternatively, you may start with χ(q, τ) for a translation-invariant system, and write
this in a form analogous to Eq. (12.8). Then apply Wick’s theorem in this situation to
obtain the starting point for the diagrammatic expansion directly in q-space.

Exercises for Chapter 13

Exercise 13.1

Semi-classical motion. We study Eqs. (14.17), (14.18), and (14.19). If the quasiparticles
behaves like non-interacting particles why is then the number of quasiparticles conserved
on the semi-classical level?

To answer this question we introduce the concept of a wave packet, i.e. a wave function
fairly localized in both space and momentum space:

ψ(r, t) =
∫

dk f(k−k0) ei[k·r−ω (k)t], e.g. with f(k−k0) = exp

(
−(k−k0)

2

2 (∆k)2

)
.

Taylor expand ω (k) to first order and show that the wave packet can be written as

ψ(r, t) ≈ ei[k0·r−ω (k0)t] F (r− ∂kω (k0) t),

where F is some envelope function. What is the physical interpretation of ∂kω (k0)? In
conclusion, the wave packet has the energy εk and the velocity vk given by

εk = ~ ωk, vk = ∂kωk =
1
~

∂kεk.
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For external forces F(r, t) = −∇V (r, t) varying slowly in space and time, we can
through the power Pk absorbed by the wave packet centered around k deduce the time
evolution of k as follows. Combine the two classical expressions for the power, Pk = F ·vk

and Pk = ε̇k, to show

k̇ =
1
~

F.

Exercise 13.2

Measuring the discontinuity of the distribution function. For an interacting elec-
tron gas discuss the spectral function A(k, ω ) in Eq. (14.58) and use it to calculate the
distribution function 〈nk〉. Demonstrate the existence of a Fermi surface characterized by
the renormalization parameter Z. The value of Z can be inferred from X-ray Compton
scattering on the electron gas, see Fig. (a).
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In the so-called impulse approximation for Compton scattering, the intensity I(ω1, ω ,q)
of incoming photons of energy ω1 being scattered with the energy and momentum loss ω
and q, respectively, is proportional to the number of scattering events on all electrons
fulfilling the simple kinematic constraint: conservation of energy and momentum,

I(ω1, ω ,q) = N (ω1, ω )
∫

dk 〈nk〉 δ(ω + εk − εk+q) ∝
∫

dk 〈nk〉 δ

(
ω− 1

2m
q2− 1

m
q·k

)
.

We omit the explicit reference to the fixed ω1 and work with I(q, q̃) ≡ I(ω1, ω ,q). Show
that

I(q, q̃) ∝ 1
q

∫ ∞

q̃2

2m

dεk 〈nk〉 =
1
q

∫ ∞

q̃2

2m

dεk

∫ ∞

−∞

dω

2π
A(k, ω ) nF(ω ).

where A(k, ω) is the spectral function and q̃ ≡ mω/q − q/2. Fig. (b) contains an experi-
mental determination of I(q, q̃) from X-ray scattering on sodium. The experimental result
is compared to theory based on RPA calculations of A(k, ω ).

Instead of using RPA, discuss the following simple model for A(k, ω ) containing the
essential features. At low energies, εk < 4εF, a renormalized quasiparticle pole of weight
Z coexists with a broad background of weight 1− Z, while at higher energies, εk > 4εF,
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no renormalization occurs, and the quasiparticle is in fact the bare electron:

A(k, ω ) = Zk 2πδ(ω−ξk) + (1−Zk)
π

W
θ(W−|ω |), Zk =

{
Z, for k < 2kF

1, for k > 2kF.

Here W is the large but unspecified band width of the conduction band. Explain Fig. (c).

Exercise 13.3

Detailed balance. The scattering life time in Eq. (14.45) expresses the time between
scatterings assuming some unknown distribution function n(k). The Boltzmann equation
with inclusion of e-e scattering therefore reads

∂t(nk) + k̇ · ∇knk + vk · ∇rnk = −
(

1
τk

)

collisions

.

In the homogenous and static case, i.e. absence of external forces, the left hand side is
expected to be zero. Show that the usual Fermi-Dirac equation solves the Boltzmann
equation in this case, i.e. that the right hand side is also zero if we use n = nF . Hint:
show and use that nF (ε) [1− nF (ε′)] exp (β(ε− ε′)) = [1− nF (ε)]nF (ε′).

Exercise 13.4

Why are metals shiny? According to Eq. (13.75) we have in the semiclassical high
frequency, long wave limit that ε(0, ω) = 1 − ω2

p/ω2. Consider a monochromatic electro-
magnetic wave with E = E(x)e−iωtêz incident on a metal occupying the half-space x > 0.
Use the high-frequency limit of Maxwell’s equations in matter. Set D = ε0ε(0, ω)E and

prove that ∇2E(x) = ω2
p−ω2

c2
E(x). Hint: you may need ∇×∇×E = −∇2E. For which

frequencies does the wave propagate through the metal, and for which is it reflected?
From X-ray diffraction we know that the unit-cell of Na is body-centered cubic (i.e.

one atom in each corner and one in the center of the cube) with a side-length of 4.23 Å.
It is observed that Na is transparent for UV-light with a wavelength shorter than 206 nm.
Explain this, and explain why (polished) metals appear shiny. Hint: Each Na atom donates
one electron to the conduction band.

Exercises for Chapter 14

Exercise 14.1

The integral equation for the vertex function in the Born approximation. This
exercise deals with the Kubo formula method applied to impurity scattering in metals.
The conductivity is in the weak scattering limit given by

σxx =
e2

π

1
V

∑

k

(
kx

m

)
GR(k, 0)GA(k, 0)ΓRA

x (k,k; 0, 0).
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In the Born approximation the Dyson equation for the vertex function is

ΓRA
x (k,k; 0, 0) =

kx

m
+

1
V

∑

k′
nimp|u(k− k′)|2GR(k′, 0)GA(k′, 0)ΓRA

x (k′,k′; 0, 0).

1. If the impurity potential is short ranged argue that we can approximate it by a
constant |u(k− k′)|2 ≈ |u0|2. Prove that in this case

ΓRA
x =

kx

m
,

and use this to find that

σ =
e2nτ0

m
,

where τ0 is the Born approximation life time

τ−1
0 = 2πd(εF )nimp|u0|2.

2. Now relax the assumption of short range scatterers but assume instead that u(k− k′)
is slowly varying on the scale given by the width of the spectral function, i.e. τ−1

0 .
In this more realistic case, you will find for |k| = kF that

~ΓRA(k) =
k
m

+
d(εF )

2

∫
dΩ′ |u(k− k′)|2~ΓRA(k′),

with |k′| = kF and
∫

dΩ′ =
∫

dφ′dθ′ sin θ′ is an integration over the angle of k′. Now
show that

σ =
e2nτ tr

m
,

where
(
τ tr

)−1 = 2πd(εF )nimp

∫
dΩ′

4π
|u(k− k′)|2

(
1− k · k′

k2
F

)
.

Hint: use the ansatz ~ΓRA(k) = (k/m)γ.

Explain the physical meaning of the last term and why it does not appear in the result
for point-like impurities.

Exercise 14.2

Life time of the Green’s function in the Born approximation. Show that the
retarded impurity averaged Green’s function in the Born approximation decays exponen-
tially in time and given a physical interpretation of this result.
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Exercise 14.3

Weak localization at finite frequency. Here we consider the weak localization cor-
rection at finite frequency. The only change in the formula for the weak localization is
through the Cooperon which becomes instead

CRA(Q, ω) =
W0ζ(Q, ω)
1− ζ(Q, ω)

,

ζ(Q, ω) =
1
V

∑
p

|u0|2GR(p−Q, ω)GA(p, 0).

Show that in this case, the low frequency ωτ0 ¿ 1 and long wavelength QvF τ0 ¿ 1 limit
of ζ(Q, ω) is

ζ(Q, ω) ≈ 1 + iωτ0 −Dτ0Q
2.

Show that the frequency provide a small Q cut-off in the conductivity correction and try
to explain why.

Exercise 14.4

Mass renormalization in Drude formula? The mass that appears in the Drude for-
mula is the bare electron mass (possibly including bandstructure effects). The impurities
only enter in the scattering time. The Drude formula can be derived from e.g. the Boltz-
mann equation, where the mass enters through the velocity, vk = ~k/m and the impurity
potential in the collision term.

If we think about impurity scattering from a microscopic point of view the self energy
has both a real and an imaginary part. Let us for instance consider the lowest order
self-consistent Born approximation. In this case the self-energy reads

∑1SCBA
(k, ikn) = nimp

∑

k′
|uk−k′ |2G

(
k′, ikn

)
. (B.4)

Note that it is G and not G0 that enters in the self-consistent approximation. The real
part leads to a renormalization of the mass and to a renormalization of the spectral weight
at the Fermi surface, i.e. when expanding the Green’s function near the Fermi surface we
can write

GR(k, ε) ≈ Z

ω − ξ∗k + i 2
τ∗

. (B.5)

If we include the real part in this way (contrary to Sec. 14.3 and Exercise 5, where it is
neglected) does it lead to a renormalization of the Drude formula?
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Exercises for Chapter 15

Exercise 15.1

Conductance of a delta function barrierAs a model system of a mesoscopic 1D
channel take the following Hamiltonian

H = − ~
2

2m

∂2

∂x2
+ V0δ (x) .

Consider a scattering state

ψ+
k (x) =

{
1√
L

(
eikx + re−ikx

)
, x < 0,

1√
L
teikx, x > 0,

and likewise for ψ−. Show that

ψ′(0+)− ψ′(0−) =
2m

~2
V0ψ(0)

and use it to find r and t. Suppose now that the two ends of the wire have different
chemical potential, so that the distribution function for electrons in the states ψ+

k is given
by nF (εk − µL), while the distribution function for electrons in states ψ−k is nF (εk − µR).
Show that the current at low temperature becomes

I = 2e
∑

k>0

(
v+
k nF (εk − µL)− v−k nF (εk − µR)

)
=

2e2

h

1
1 + (V0/~vF )2

V,

where V = µR−µL
e ¿ εF .

Hints: v+
k = ~

2mi(
(
ψ+

k

)∗
∂xψ+

k − c.c.) = |t|2 = 1− |r|2 with t = (1 + iz)−1, z = mV0/~k.

Exercise 15.2

Landauer-Büttiker formula at finite temperatures. For a general mesoscopic system
show that the linear conductance at finite temperature is generalized to

G =
2e2

h

∑
n

∫ ∞

0
dE

(
−∂nF (E − µ)

∂E

)
Tn(E),

where Tn(E) is the transmission probability of a given mode Tn(E) =
∑

n′ t
∗
nn′tn′n.

Using a model electron waveguide, where the potential in the transverse direction is a
parabolic confinement, the transmission coefficient is supposed to be

Tn(E) = Θ(E −En) = Θ(E − (n +
1
2
)~ωT ),

where ωT is the frequency of transverse oscillation. Find an expression for the conductance
G and plot the G as a function of µ. Plot for example G(h/2e2) versus µ/~ωT for two
different temperatures: kT = (0.05, 0.15)~ωT . How would the result look if the transverse
confinement was given by a square well?
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Exercises for Chapter 16

Exercise 16.1

Phonon Green’s function Prove Eq. (16.7).

Exercise 16.2

Cooper’s instability In this exercise we shall see that an attractive electron-electron
interaction leads to an instability of the Fermi surface.

BCS model Hamiltonian. In Chap. 16 it is shown that the electron-phonon interaction
leads to an effective electron-electron interaction. It is attractive for small frequencies, i.e.
for energies smaller than qvs, where q is the exchanged momentum and vs is the sound
velocity. The scale of this energy is given by the Debye energy. This observation lead
Cooper to study the following model Hamiltonian, which is also the starting point used
by BCS,

H = H0 + H ′ (1a)

H0 =
∑

kσ

(εk − µ) c†kσckσ, (1b)

H ′ = −V0

2

∑ ′c†k+qσc†k′−qσ′ck′σ′ckσ. (1c)

Here the sum is restricted such that all initial and final states lie in an interval given
by [µ − ωD, µ + ωD], i.e. in a shell around the Fermi surface. Anticipating the physical
idea that the electrons due to the attractive interaction will form pairs with zero total
momentum and spin, we look specifically at the interaction between such pairs. The pairs
are thus supposed to consist of electrons with opposite momentum, which means that we
choose k′ = −k and σ = −σ′. After relabelling we have

H ′ = −V0

∑ ′c†k′↑c
†
−k′↓c−k↓ck↑. (2)

Variational calculation of FS with an added pair of electrons. We wish to find the
energy of a pair of electrons added to a filled Fermi sea state, and with interactions
according to (2). In order to separate the effect of the interaction on the Fermi sea and on
the extra pair of electrons, the

∑′ sum is further restricted to involve only states outside
the Fermi sea. Thus Eq. (2) becomes

H ′ = −V0

∑

k,k′>kF .

′
c†k′↑c

†
−k′↓c−k↓ck↑. (3)

We look at the difference between the two situations: 1) The electron pair is added to
the Fermi surface, i.e. with |k|, |k′| = kF and energy equal to zero. 2) The electron pair
forms a coherent superposition of pairs not necessary at the Fermi surface. According to
the variational principle the lowest energy of the two is closest to the groundstate energy.



322 EXERCISES FOR CHAPTER 17

For situation 2 we start by an Ansatz wavefunction, which is a superposition of so-
called Cooper pairs

|ψ〉 =
∑

k

αkc†k↑c
†
−k↓|FS〉. (4)

Show that αk satisfies the following equation.

αk(2εk −EF )− V0

∑

k′>kF

′αk′ = Eαk, (5)

and that this leads to a condition for E given by

1 = V0

∑

k′>kF

′ 1
(2εk −EF )− E

. (6)

In order to find the energy E you should make use of the following hierarchy of energy
scales

E ¿ ωD ¿ EF , (7)

where the validity of the first one of course must be checked at the of the calculation. Find
that (reinserting ~)

E = −2~ωD exp (−1/V0d(EF )) . (8)

Discuss the following two important issues:

• Why does this result indicate an instability of the Fermi surface

• Could this result have been reached by perturbation theory in V0?

Exercises for Chapter 17

Exercise 17.1

The Josephson effect. This exercise deals with the supercurrent across a tunnel junc-
tion, the so-called Josephson effect. We apply the relations to study the current-voltage
characteristic of a tunnel junction in the so-called resistively shunted Josephson junction
model.

Supercurrent in the equilibrium state. Consider a tunnel junction between two super-
conductors, i.e. two superconductors separated by an insulator. The tunnel Hamiltonian
is

HT =
∑

kp

(
tkpc†kσfpσ + t∗kpf †pσckσ

)
, (1)

where the electron operators for the two sides are called c and f , respectively. In the
following we assume for simplicity that in the energy range of interest the tunnel matrix
element depends weakly on the states k and p, therefore

tkp ≈ t (2)
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The Hamiltonian for the two sides are the usual BCS Hamiltonians

Hc =
∑

kσ

ξkc
†
kσckσ −∆eiφc

∑

k

c†k↑c
†
−k↓ −∆e−iφc

∑

k

c−k↓ck↑, (3a)

Hf =
∑

kσ

ξkf
†
kσfkσ −∆eiφf

∑

k

f †k↑f
†
−k↓ −∆e−iφf

∑

k

f−k↓fk↑, (3b)

where the two superconductors are assumed to be equal. The order parameter of each
side of the junction have different phases, φc and φf , and ∆ is here taking to be real.
The phase difference between the two side can be absorbed as a phase shift of the tunnel
matrix

t → e−i(φc−φf)/2t, (4)

by the transformation
c → eiφc/2c, f → eiφf /2f. (5)

Show that the equilibrium current running between the two superconductors is

IJ = 〈I〉 = (−2e) 〈 ∂

∂φ
HT 〉 = (−2e)

∂F

∂φ
, (6)

where I is the operator for the electrical current I = (−e) Ṅc, F is the free energy and
φ = φc − φf is the phase difference.

This is a current which runs in thermodynamical equilibrium and hence is dissipation-
less in the sense that it runs without an applied bias (the chemical potential of the two
sides is per definition identical in equilibrium). In the following we calculate this so-called
supercurrent to second order in the tunneling amplitude.

Show that to second order in HT

〈 ∂

∂φ
HT 〉 ≈ −

∫ β

0
dτ〈TτHT (τ)

∂

∂φ
HT 〉0 = −1

2
∂

∂φ

∫ β

0
dτ〈TτHT (τ)HT 〉0, (7)

where the expectation value 〈〉0 means taken with respect to Eqs. (2). Then show that

1
2

∂

∂φ

∫ β

0
dτ〈TτHT (τ)HT 〉0 =

∂

∂φ




∫ β

0
dτ

∑

kp

t2eiφG21(k, τ)G12(p,−τ) + c.c.




=
∂

∂φ


 1

β

∑

ikn

∑

kp

t2eiφG21(k, ikn)G12(p, ikn) + c.c.


 (8)

where G12 and G21 are the off-diagonal Nambu Green’s functions defined in Exercise 3.
Verify the following steps

∑

k

G21(k, ikn) =
∑
p

G12(p, ikn)

=
∆d(εF )

2

∫ ∞

−∞
dξ

(
1

(ikn)2 − E2

)

= −∆d(εF )
2

π√
k2

n + ∆2
, (9)
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and use it to find that

IJ = −
(

π∆d(εF )t
2

)2 1
β

∑

ikn

1
k2

n + ∆2

= sin φ
e (πd(εF )t)2

2
∆ tanh

(
∆β

2

)

= sin φ
∆π

2eRN
tanh

(
∆β

2

)
, (10)

where the normal state tunnel resistance is given by R−1
N = πe2d2t2/~.

Exercise 17.2

RSJ model of a Josephson junction. With a finite bias voltage across the junction,
one can still have a supercurrent running, i.e. a current carried by Cooper pairs and the
relation

IJ = IC sinφ, (1)

is still valid. This is known as the first Josephson relation. The finite voltage changes the
energy of electrons of the two sides and hence their phase. We can simply include this
phase change in the time dependence of by the following substitution

c(t) → c(t)eiV t/2, f(t) → f(t)e−iV t/2, (2)

which corresponds to
φ → φ + 2eV t, (3)

or
φ̇ =

2e

~
V, (4)

which is called the second Josephson relations.
The second Josephson relation adds interesting dynamics to the Josephson junction

because of the intrinsic frequency 2eV/~. One can measure this frequency by applying
external RF radiation to the junction. The Josephson junction thus acts as a voltage to
frequency converter, which has many applications.

Now we look at the current-voltage characteristic of a Josephson junction in the RSJ
model. The current is carried by two kinds of electrons: those that are paired and those
that are not. The pair current is described by the Josephson relations while the normal
current is supposed to be given by Ohm’s law.

Consider a current biased setup, i.e. a junction with a fixed current, I. This current
is made up by the sum of the supercurrent and the normal current. Thus

I = IN + IJ =
1
R

V + IC sinφ =
~

2eR
φ̇ + IC sinφ. (5)

Write this equation in the dimensionless form

η =
I

IC

=
dφ

dτ
+ sin φ, τ =

2eIcR

~
t. (6)
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The voltage is time dependent, but in a dc measurement one measures the average voltage.
Integrate Eq. (6) and show that the average voltage becomes

〈V 〉 =
{

0, I < IC

RIc

√
(I/IC)2 − 1. I > IC

(7)

Hint: first find solutions for φ̇ = 0 and then a “running” solution where φ̇ 6= 0. For the
last situation the average voltage is 〈V 〉 = 1

T

∫ T
0 dtdφ

dt = 2π
T . Here T is the period of the

voltage or the time it takes to increase φ by 2π.
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acoustic phonons
Debye phonons, 52
graphical representation, 51, 56
in second quantization, 55

adiabatic continuity, 233
advanced function, 163
Aharonov-Bohm effect, 120
analytic continuation, 162
analytic function, 161
Anderson’s model for magnetic impurities, 147
annihilation operators

1D phonons, 55
bosons, 10
fermions, 13
time dependence, 91
time-derivative, 145

anti-commutator, 13
anti-symmetrization operator, 7
antiferromagnetism, 73
art, the art of mean field theory, 68
atom

artificial, 153
Bohr radius a0, 40
electron orbitals, 3
ground state energy E0, 40
in metal, 31

attractive pair-interaction, 281

bandstructure diagram
extended zone scheme, 35
metal, semiconductor, insulator, 45

Bardeen-Cooper-Schrieffer (see BCS), 78
basis states

change in second quantization, 16
complete basis set, 3
Green’s function, 130
many-particle boson systems, 12
many-particle fermion systems, 14
orthonormal basis set, 2
systems with different particles, 24

BCS theory
effective Hamiltonian, 81
interaction potential model, 285
mean field Hamiltonian, 82
self-consistent gap equation, 83
tunneling spectroscopy, 140

Bloch
Bloch theory of lattice electrons, 33
bandstructure, 35
Bloch’s equation, density matrix, 158
Bloch’s theorem, 34

Bogoliubov transformation, 82
Bohm-Staver sound velocity

from RPA-screened phonons, 283
semi-classical, 53

Bohr radius a0, 40
Boltzmann distribution, 26
Boltzmann equation

collision free, 239
introduction, 233
with impurity scattering, 241

Born approximation
first Born approximation, 190, 259
full Born approximation, 193
in conductivity, 261
self-consistent Born approximation, 194
spectral function, 1st order, 192

Born-Oppenheimer approximation, 279
Bose-Einstein distribution, 29, 51
boson

creation/annihilation operators, 10
defining commutators, 11
definition, 5
frequency, 161, 165
many-particle basis, 12

bra state, 2
Brillouin zone

bandstructure diagram, 35
definition, 34
for 1D phonons, 54
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broadening of the spectral function, 136
broken symmetry, 71

canonical
ensemble, 27
momentum, 21
partition function, 26

carbon nanotubes, 48
charge-charge correlation function, 103
chemical potential

definition, 27
temperature dependence, 39

collapse of wavefunction, 2
commutator

[AB, C] = A[B, C] + [A, C]B, 92
[AB, C] = A{B, C} − {A,C}B, 92
defining bosons, 11
defining fermions, 13
general definition, 11

complete
basis states, 3
set of quantum numbers ν, 3

conductance
conductance fluctuations, 186
Kubo formalism, 100
mesoscopic system, 113
universal fluctuations, 121

conductance quantization, 116
conductivity

cooperons, 269
introduction, 253
Kubo formalism, 98
relation to dielectric function, 104
semi-classical approach, 240

connected Feynman diagrams, 203
conservation of four-momentum, 208
conserving approximation, 259
continuity equation

for ions in the jellium model, 52
for quasiparticles, 238

contour integral, 166
convergence of Matsubara functions, 160
Cooper

Cooper pairs, 81
instability of the Fermi surface, 81
instability, Feynman diagrams, 284

cooperons in conductivity, 269
core electron, 31
correlation function

charge-charge correlation, 103
current-current correlation, 100, 254
general Kubo formalism, 97

correlation hole around electrons, 65
Coulomb blockade, 153
Coulomb interaction

combined with phonons, 279
direct process, 43
divergence, 44, 213
exchange process, 44
in conductivity, 256
RPA renormalization, 217, 227
screened impurity scattering, 181
second quantization, 23
Yukawa potential, RPA-screening, 218

coupling constant
electron interaction strength e2

0 , 23
electron-phonon, general, 62
electron-phonon, jellium model, 64
electron-phonon, lattice model, 63
electron-phonon, RPA-renormalized, 283
integration over, 220

creation operators
1D phonons, 55
bosons, 10
fermions, 13
time dependence, 91

critical temperature
Cooper instability, 285
ferromagnetism, 74
superconductivity, 84

crossed diagram
definition, 267
maximally crossed, 268

crossing diagrams
definition, 264
suppressed in the Born approx., 196

current density operator
dia- and paramagnetic terms, 99
second quantization, 22

current-current correlation function, Π
definition, 100
diagrammatics, 254

d-shell, 148
Debye

acoustical Debye phonons, 52
Debye energy or frequency ωD, 59
Debye model, 52, 59, 284
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Debye temperature TD, 59
Debye wave number kD, 59
density of states, Debye model, 59
frequency cut-off, BCS, 285

delta function δ(r), 4
density in second quantization, 22
density matrix operator, 27
density of states

measured by tunneling, 140
non-interacting electrons, 38
phonons, Debye model, 59
spectral function, 136

density waves, 72
density-density correlation function

the pair-bubble χ0 ≡ −Π0 , 216
the RPA-bubble χRPA, 226
the RPA-bubble and phonons, 282

dephasing, 108, 264, 272
determinant

first quantization, 7
in Wick’s theorem, 172
Slater, 7

diagonal Hamiltonian, 133
diamagnetic term in current density, 99
dielectric function ε

equation of motion derivation, 155
irreducible polarization function χirr, 226
Kubo formalism, 102
relation to polarization function χ, 223
relation to conductivity, 104

differential conductance, 140
differential equation

classical Green’s function, 127
many-body Green’s function, 131
single-particle Green’s function, 146

Dirac
bra(c)ket notation for quantum states, 2
delta function δ(r), 4

disconnected Feynman diagrams, 203
disorder, mesoscopic systems, 121
dissipation

due to electron-hole pairs, 144, 231
of electron gas, 143

distribution function
Boltzmann, 26
non-interacting bosons, 29
non-interacting fermions, 28
Boltzmann, Gibbs, 26
Bose-Einstein, 29

electron reservoir, 113
Fermi-Dirac, 28
Maxwell-Boltzmann, 45

donor atoms, 46
Drude formula, 240, 251, 264
Dulong-Petit value for specific heat, 60
dynamical matrix D(k), 57
Dyson equation

Feynman diag., external potential, 179
first Born approximation, 190
for Πxx, 257
for cooperon, 269
full Born approximation, 193
impurity and interaction, 256
impurity averaged electrons, 189
pair interactions in Fourier space, 208
pair interactions in real space, 205
pair-scattering vertex Λ, 284
polarization function χ, 226
self-consistent Born approximation, 194
single-particle in external potential, 178

effective electron-electron interaction
Coulomb and phonons, jellium, 280
Coulomb and phonons, RPA, 283
phonon mediated, RPA, 283

effective mass approximation, 35
effective mass, renormalization, 246, 251
eigenmodes

electromagnetic field, 19
lattice vibrations, 58

eigenstate
definition, 1
superposition, 1

eigenvalue, definition of, 1
Einstein model of specific heat, 60
Einstein phonons

in the jellium model, 52
optical phonons, 52

elastic scattering
Matsubara Green’s function, 179

electric potential
classical theory, 127
external and induced, 237

electron
core electrons, 31
density of states, 38
phase coherence, 184
valence electrons, 31
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electron gas, in general
0D: quantum dots, 49
1D: carbon nanotubes, 48
2D: GaAs heterostructures, 46
3D: metals and semiconductors, 45
introduction, 31

electron gas, interacting
attractive interaction, 281
dielectric properties and screening, 223
first order perturbation, 41, 43
full self-energy diagram, 214
full theory, 213
general considerations, 39
ground state energy, 220, 222
Hartree–Fock mean field Hamiltonian, 70
infinite perturbation series, 214, 222
Landau damping, 230
plasma oscillations, 228
second order perturbation, 43
thermodynamic potential Ω, 220

electron gas, non-interacting
Bloch theory, 33
density of states, 38
Feynman diagrams, 177
finite temperature, 38
ground state energy, 38
jellium model, 35
motion in external potentials, 177
static ion lattice, 33

electron interaction strength e2
0 , 23

electron wave guides, 116
electron-electron scattering

attractive interaction, 281
Cooper instability, 284
dephasing, 264, 272
life-time, 243

electron-hole pairs
excitations, 144, 155
interpretation of RPA, 220
Landau damping, 231

electron-phonon interaction
adiabatic electron motion, 53
basis states, 276
combined with Coulomb interaction, 279
Feynman diagrams, 276
general introduction, 51
graphical representation, 63
the jellium model, 63, 275
the lattice model, 61, 275

the sound velocity, 53
umklapp process, 63

electronic plasma oscillations
graphical representation, 51

equation of motion
Anderson’s model, 149
derivation of RPA, 153
for ions, 57
frequency domain, 147
Heisenberg operators, 88
in proof of Wick’s theorem, 171
introduction, 145
Matsubara Green’s function, 169
non-interacting particles, 147
single-particle Green’s function, 145

ergodic, 121
ergodicity assumption, 25
extended zone scheme, 35

Fermi
Fermi energy εF, 36
Fermi sea diagrams, 37
Fermi sea with interactions, 42
Fermi sea, Cooper instability, 286
Fermi sea, definition, 36
Fermi sea, excitations, 144
Fermi velocity vF, 36
Fermi wave length λF, 36
Fermi wavenumber kF , 36
Fermi’s golden rule, 240, 244, 250
Thomas-Fermi screening, 218, 219

Fermi liquid theory
introduction, 233
microscopic basis, 245

Fermi-Dirac distribution, 28, 237
fermion

definition, 5
creation/annihilation operators, 13
defining commutators, 13
frequency, 161, 165
many-particle basis, 14

fermion loop, 202
ferromagnetism

critical temperature, 74
introduction, 73
order parameter, 72
Stoner model, 75

Feynman diagrams
cancellation of disconnected diagrams, 203
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Cooper instability, 284
electron-impurity scattering, 182
electron-phonon interaction, 276
external potential scattering, 179
first Born approximation, 190
full Born approximation, 193
impurity averaged single-particle, 188
interaction line in Fourier space, 208
interaction line in real space, 204
irreducible diagrams, imp. scattering, 189
irreducible diagrams, pair interaction, 205
pair interactions, 199
polarization function χ, 225
self-consistent Born approximation, 194
single-particle, external potential, 177
topologically different diagrams, 204

Feynman rules
electron-impurity scattering, 184
external potential scattering, 179
impurity averaged Green’s function, 188
pair interactions in Fourier space, 208
pair interactions in real space, 204
pair interactions, G denominator, 201
pair interactions, G numerator, 202
phonon mediated pair interaction, 278

first quantization
many-particle systems, 4
name, 1
single-particle systems, 2

Fock
approximation for interactions, 70
Fock self-energy for pair interactions, 209
Fock space, 10, 27
Hartree–Fock approximation, 69

four-vector/four-momentum notation, 207, 255
Fourier transformation

1D ion vibrations, 54
basic theory, 291
Coulomb interaction, Matsubara, 206
equation of motion, 147
Matsubara functions, 161

free energy
definiton, 27
in mean field theory, 67

GaAs/Ga1−xAlxAs heterostructures, 46
gauge

breaking of gauge symmetry, 78
Landau gauge, 3

radiation field, 19
transversality condition, 19

Gauss box, 47
Gibbs distribution, 26
grand canonical

density matrix, 27
ensemble, 27
partition function, 27

gravitation, 1
Greek letters, 158
Green’s function

n-particle, 170
classical, 127
dressed, 254
free electrons, 132
free phonons, 275
greater and lesser, 131
imaginary time, 160
introduction, 127
Lehmann representation, 134
Poisson’s equation, 127
renormalization, 245
retarded, equation of motion, 145
retarded, many-body system, 131
retarded, one-body system, 130
RPA-screened phonons, 282
Schrödinger equation, 128
single-particle, many-body system, 131
translation-invariant system, 132
two particle, 141

Hamiltonian
diagonal, 133
non-interacting particles, 135
quadratic, 135, 146, 150, 170

harmonic oscillator
length, 18
second quantization, 18

Hartree
approximation for interactions, 70
Hartree self-energy, pair interactions, 209
Hartree–Fock approximation, 69

Hartree–Fock approximation
introduction, 69
mean field Hamiltonian, 70
the interacting electron gas, 70

heat capacity
for electrons, 39
for ions, 52
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Heaviside’s step function θ(x), 4
Heisenberg

Heisenberg picture, 88
model of ferromagnetism, 73

helium, Hamiltonian, 9
heterostructures, GaAs/Ga1−xAlxAs, 46
Hilbert space, 1
hopping, 149
Hubbard model, 75
hybridization, 148
hydrogen atom

Bohr radius a0, 40
electron orbitals, 3
ground state energy E0, 40

imaginary time
discussion, 158
Greek letters, 158
Green’s function, 160

impurities, magnetic, 148
impurity scattering, conductivity, 253
impurity self-average, 184
impurity-scattering line

Feynman rules, 188
in conductivity, 255
renormalization by RPA-screening, 227

inelastic light scattering, 144
infinite perturbation series

breakdown at phase transistions, 85
electron gas ground state energy, 222
self-energy for interacting electrons, 214
single-particle Green’s function, 178
time-evolution operator Û(t, t0), 90

infinitesimal shift η, 162
integration over the coupling constant, 220
interaction line

general pair interaction in real space, 204
pair interaction in Fourier space, 208
RPA screened Coulomb line, 217, 227
RPA screened impurity line, 227

interaction picture
imaginary time, 159
introduction, 88
real space Matsubara Green’s fct., 200

interference, 264, 265
ions

ionic plasma oscillations, 51
forming a static lattice, 33
Heisenberg model, ionic ferromagnets, 73

in a metal, 31
irreducible Feynman diagrams

impurity scattering, 189
pair interaction, 205
polarization function χirr, 225

iterative solution, integral eqs., 90, 128

jellium model
effective electron-electron interaction, 280
Einstein phonons, 52
electron-phonon interaction, 63
full electronic self-energy, 214
oscillating background, 52
static case, 35

ket state, 2
kinetic energy operator

including a vector potential, 21
second quantization, 21

kinetic momentum, 21
Kronecker’s delta function δk,n, 4
Kubo formalism

conductance, 100
conductivity, 98, 254
correlation function, 97
dielectric function, 102
general introduction, 95
Landauer-Büttiker formula, 115
RPA-screening in the electron gas, 223
time evolution, 97
tunnel current, 139

ladder diagram, 259
Landau

and Fermi liquid theory, 233
damping and plasma oscillations, 230
eigenstates, 3
gauge, 3

Landauer-Büttiker formula
heuristic derivation, 113
linear response derivation, 115

lattice model
basis in real space, 33
basis in reciprocal space, 33
Hamiltonian, 33

lattice vibrations
1D phonon Hamiltonian, 53
electron-phonon interaction, 61

Lehmann representation
definition, 134
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for G>, G<, and GR, 134
Matsubara function, 162

life-time, 150, 236, 243, 262
Lindhard function, 143, 155
linear response theory

introduction, 95
Landauer-Büttiker formula, 115
mesoscopic system, 113
time evolution, 91
tunnel current, 139

magnetic impurities, 148
magnetic length, 3
magnetic moment, 74, 147, 149
magnetization, 72, 149
many-body system

single-particle Green’s function, 131
first quantization, 2
second quantization, 9

mass renormalization, 254
Matsubara

function, equation of motion, 169
convergence of, 160
Fourier transformation, 161
frequency, 161
Green’s function, 160
relation to retarded function, 161
sums, evaluation of, 165
sums, simple poles, 167
sums, with branch cuts, 168

Matsubara Green’s function
elastic scattering, 179
electron-impurity scattering, 182
first Born approximation, 190
free phonons, 275
full Born approximation, 193
impurity averaged single-particle, 188
interacting elec. in Fourier space, 208
interacting electrons in Fourier space, 206
interacting electrons in real space, 199
RPA-screened phonons, 282
self-consistent Born approximation, 194
two-particle polarization function χ, 224

maximally crossed diagrams, 268
MBE, molecular beam epitaxy, 46
mean field theory

Anderson’s model, 150
BCS mean field Hamiltonian, 82
broken symmetry, phase transistions, 71

general Hamiltonian HMF, 66
Hartree–Fock mean field Hamiltonian, 70
introduction, 65
mean field approximation, 67
partition function ZMF, 67
the art of mean field theory, 68

mean free path, 107
measuring the spectral function, 137
Meissner effect, 78
mesoscopic

disordered systems, 121
physics, 253
regime, 265
systems, introduction, 107

metal
disordering and random impurities, 181
electrical resistivity, 181
general description, 31
Hamiltonian, 32
observation of plasmons, 229
Thomas-Fermi screening in metals, 219

Migdal’s theorem, 279
molecular beam epitaxy, MBE, 46
momentum

canonical, 21
kinetic, 21
relaxation, 240, 243

MOSFET, 46

Newton’s second law
for ions in the jellium model, 52

non-interacting particles
distribution functions, 28
equation of motion, 147
Green’s functions, 132
Hamiltonian, 135
in conductivity, 261
Matsubara Green’s function, 164
quasiparticles, 233
retarded Green’s function GR(kσ, ω), 135
spectral function A0(kσ, ω), 135

normalization of quantum states, 3
normalization, scattering state, 108
nucleus, 31

occupation number operator
bosons, 12
fermions, 14
introduction, 10
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occupation number representation, 10
operator

adjoint, 2
boson creation/annihilation, 10
electromagnetic field, 19
expansion of e−iHt, 87
fermion creation/annihilation, 13
first quantization, 7
Heisenberg equation of motion, 88
Hermitian, 1
real time ordering Tt, 90
second quantization, 14
time evolution operator Û(t, t0), 89
trace Tr, 27

optical phonons
Einstein phonons, 52
graphical representation, 56

optical spectroscopy, 141
optical theorem, scattering theory, 194
order parameter

definition, 72
list of order parameters, 72

overlap of wavefunctions
localized/extended states, 148
particle propagation, 133
tunneling, 138

pair condensate, 72
pair interactions

Dyson equation in Fourier space, 208
Dyson equation in real space, 205
Feynman diagrams, 199
Feynman rules in Fourier space, 208
Feynman rules in real space, 204
self-energy in Fourier space, 208
self-energy in real space, 205

pair-bubble
calculation of the pair-bubble, 218
Feynman diagram Π0(q, iqn), 211
in the RPA self-energy, 216
self-energy diagram, 210
the correlation function χ0 ≡ −Π0 , 216

paramagnetic term in current density, 99
particle-particle scattering

in the collision term, 251
life-time, 243

partition function
canonical ensemble, 26
grand canonical ensemble, 27

in mean field theory, 67
Pauli

exclusion principle, 5, 40
spin matrices, 21

periodic boundary conditions
1D phonons, 53
electrons, 36
photons, 19

permanent
for bosons, 7
in first quantization, 7
in Wick’s theorem, 172

permutation, 171
permutation group SN , 7, 90
perturbation theory

first order, electron gas, 41
infinite order, Green’s function, 178
infinite order, ground state energy, 222
infinite order, interacting electrons, 214
linear response, Kubo formula, 95
second order, electron gas, 43
single particle wavefunction, 128
time-evolution operator Û(t, t0), 90

phase coherence, 264
phase coherence for electrons, 184
phase coherence length lϕ, 186
phase space, 244, 245
phase transition

breakdown of perturbation theory, 85
broken symmetry, 71
order parameters, 72

phonons
1D annihilation/creation operators, 55
1D lattice vibrations, 53
density of states, Debye model, 59
dephasing, 264, 272
eigenmodes in 3D, 58
Einstein model of specific heat, 60
free Green’s function, 275
general introduction, 51
Hamiltonian for jellium phonons, 52
phonon branches, 55
relevant operator Aqλ, 275
RPA renormalization, 281
RPA-renormalized Green’s function, 282
second quantization, 55, 58

plasma frequency
for electron gases in a metals, 228
ionic plasma frequency, 52
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plasma oscillations
electronic plasma oscillations, 51
interacting electron gas in RPA, 228
ionic plasma oscillations, 51
Landau damping, 230
plasmons, 228

plasmons
dynamical screening, 238
experimental observation in metals, 229
plasma oscillations, 228
semi-classical treatment, 237

Poisson’s equation
GaAs heterostructures, 47
Green’s function, 127

polarization function χ
Dyson equation, 226
Feynman diagrams, 225
free electrons, 143, 173
irreducible Feynman diagrams, 225
Kubo formalism, 103
momentum space, 142
relation to dielectric function ε, 223
two-particle Matsubara Green’s fct., 224

polarization vectors
phonons, 57
photons, 19

probability current conservation, 111
probability distribution, 136
propagator

Green’s function, 130
single-particle in external potential, 178

quadratic Hamiltonian, 135, 146, 150, 170
quantum coherence

macroscopic in superconductivity, 79
single electrons, 184

quantum correction, 253, 264, 273
quantum dots

introduction, 49
tunneling spectroscopy, 140

quantum effects, 107
quantum field operator

definition, 17
Fourier transform, 17

quantum fluctuations
in conductance, 186

quantum number ν
Feynman rules, Dyson equation, 181
general introduction, 3

sum over, 4
quantum point contact, 116
quantum state

bra and ket state, 2
free particle, 2
hydrogen, 3
Landau states, 3
orthogonal, 2
time evolution, 2

quasiparticle
definition, 236
discussion, 235
introduction, 233
life-time, 243

quasiparticle-quasiparticle scattering, 243

radiation field, 19
Raman scattering, 144
random impurities, 181
random matrix theory, 121
random phase approximation (see RPA), 213
rational function, 163
reciprocal lattice basis, 33
reciprocal space, 33
reduced zone scheme, 35
reflection amplitude, 110
reflectionless contact, 108, 113
relaxation time approximation, 243
renormalization

constant Z, 247
effective mass, 246, 251
Green’s function, 245
of phonons by RPA-screening, 281

reservoir, 25, 108
resistivity (see conductivity), 240
resummation of diagrams

current-current correlation, 256
impurity scattering, 188
the RPA self-energy, 215

retarded function
convergence factor, 147
Green’s function, 131, 132
relation to Matsubara function, 161

Roman letters, 158
RPA for the electron gas

Coulomb and impurity lines, 257
deriving the equation of motion, 153
electron-hole pair interpretation, 220
Fermi liquid theory, 238, 246
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plasmons and Landay damping, 227
renormalized Coulomb interaction, 217
resummation of the self-energy, 215
the dielectric function εRPA, 226
the polarization function χRPA, 226
vertex corrections, 259

Rydberg, unit of energy (Ry), 40

scattering length, 193
scattering matrix, S, 108
scattering state, 108
scattering theory

optical theorem, 194
Schrödinger equation, 128
transition matrix, 193

Schrödinger equation
Green’s function, 128
quantum point contact, 117
scattering theory, 128
time reversal symmetry, 112
time-dependent, 2

Schrödinger picture, 87
screening

dieelectric properties of the elec. gas, 223
RPA-screened Coulomb interaction, 218
semiclassical, dynamical, 238
semiclassical, static, 238
Thomas-Fermi screening, 218

second quantization
basic concepts, 9
basis for different particles, 24
change of basis, 16
Coulomb interaction, 23
electromagnetic field, 19
electron-phonon interaction, 61
free phonons in 1D, 55
free phonons in 3D, 58
harmonic oscillator, 18
kinetic energy, 21
name, 1
operators, 14
particle current density, 22
particle density, 22
spin, 21
statistical mechanics, 25
thermal average, 27

self-average for impurity scattering
basic concepts, 184
weak localization, 265

self-consistent equation
Anderson’s model, 151
general mean-field theory, 67

self-energy
due to hybridization, 150
first Born approximation, 190
Fock diagram for pair interactions, 209
full Born approximation, 193
Hartree diagram for pair interactions, 209
impurity averaged electrons, 189
interacting electrons, jellium model, 214
irreducible, 257
pair interactions in Fourier space, 208
pair interactions in real space, 205
pair-bubble diag., pair interactions, 210
RPA self-energy, interacting electrons, 216
self-consistent Born approximation, 194

semi-classical
approximation, 261
screening, 237
transport equation, 240

single-particle states
as N -particle basis, 6
free particle state, 2
hydrogen orbital, 3
Landau state, 3

Slater determinant, fermions, 7
Sommerfeld expansion, 39
sound velocity

Bohm-Staver formula, RPA, 283
Bohm-Staver formula, semi-classical, 53
Debye model, 52

sounds waves, 51
space-time, points and integrals, 177
spectral function

Anderson’s model, 151
broadening, 136
definition, 135
first Born approximation, 192
in sums with branch cuts, 169
measurement, 137
non-interacting particles, 135
physical interpretation, 135

spectroscopy
optical, 141
tunneling, 137

spin
Pauli matrices, 21
second quantization, 21
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spontaneous symmetry breaking
breaking of gauge symmetry, 78
introduction, 72

statistical mechanics
second quantization, 25

step function θ(x), 4
STM, 138
Stoner model of metallic ferromagnetism, 75
superconductivity

critical temperature, 84
introduction, 78
Meissner effect, 78
microscopic BCS theory, 81
order parameter, 72

symmetrization operator, 7

thermal average, 27
thermodynamic potential Ω

definition, 28
for the interacting electron gas, 220

Thomas-Fermi screening, 218, 219, 222
time dependent Hamiltonian, 95
time evolution

creation/annihilation operators, 91
Heisenberg picture, 88
in linear response, 91
interaction picture, 88
linear response, Kubo, 97
operator, imaginary time, 159
Schrödinger picture, 87
unitary operator Û(t, t0), 89

time-ordering operator
imaginary time Tτ , 160
real time Tt, 90

time-reversal symmetry, 112
time-reversed paths, 266, 268, 272
topologically different diagrams, 204
trace of operators, 27
transition matrix, scattering theory, 193
translation-invariant system

conductivity, 254
Green’s function, 132

transmission amplitude, 110, 130, 267
transmission coefficients, 113
transport equation, 233
transport time, 242
transversality condition, 19
triangular potential well, 47
truncation

Anderson’s model, 150, 153
derivation of RPA, 154
discussion, 145

tunneling
scanning microscope, 138
BCS superconductor, 140
current, 138
spectroscopy, 137

umklapp process, 63
unit cell, 55
unitarity, S-matrix, 111
universal conductance fluctuations, 121, 124

valence
electrons, 31

vector potential
electromagnetic field, 19
kinetic energy, 21
Kubo formalism, 99

vertex
current vertex, 255
dressed vertex function, 258
electron-phonon vertex, 280
pair-scattering vertex Λ, 284
vertex correction, 254, 257
vertex function, 268

Ward identity, 258, 262
wavefunction collapse, 2
weak localization

and conductivity, 264
introduction, 253
mesoscopic systems, 121, 123

Wick’s theorem
derivation, 170
interacting electrons, 201
phonon Green’s function, 277

WKB approximation, 119

Yukawa potential
definition, 24, 213
RPA-screened Coulomb interaction, 218


