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/What We Do... \ ( How We Do It... )\ ( What We Have Found...So Far
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Why We Do It...
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interest in exploiting their immense potential for oxide electronic o R S ' ' y |
devices with novel functionalities.

RuQ, octahedra rotated by ~ 9°

Bulk Sr,RuO, has a bulk phonon which
freezes into a structural distortion as
temperature is lowered. Creation of surface
freezes the soft phonon resulting in surface
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Low Energy Electron Diffraction (LEED) reveals the surface structure of the crystals. By tracking diffraction s t?;mpjfgturjfﬁ) 0 P
spots as a function of incident electron beam energy (LEED-IV), surface reconstruction can be calculated to Tc at surface is ~20K lower than bulk

RuO, J weAREING determine the rotation and tilt of the RuO, octahedra.
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