Phys4125 Formula sheet Exam 1

- Ideal gas law $P V=N k T=n R T$
- Gas pressure from kinetic theory $P V=N m \overline{v_{x}^{2}}$.
- Equipartition

$$
\frac{m v_{x}^{2}}{2}=\frac{1}{2} k T, \quad U_{\text {thermal }}=\frac{f}{2} N k T, \quad f=\text { number of degrees of freedom }
$$

- $v_{r m s}=\overline{v^{2}}=\sqrt{\frac{3 k T}{m}}$
- Heat and work

$$
\Delta U=Q+W, \text { for quasistatic processes } W=-\int_{V_{i}}^{V_{f}} P d V
$$

- Adiabatic process $V T^{f / 2}=$ const.
- Heat capacities $C=Q / \Delta T$, so that

$$
C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V, N}, \text { and } C_{P}=\left(\frac{\partial U}{\partial T}\right)_{P, N}+P\left(\frac{\partial V}{\partial T}\right)_{P, N}
$$

- Ideal gas $C_{P}=C_{V}+N k$
- Latent heat $L=Q / m$
- Enthalpy $\Delta H=\Delta U+P \Delta V$.
- Heat conduction

$$
\frac{Q}{\Delta t}=-k_{t} A \frac{d T}{d x}, \quad \frac{\partial T}{\partial t}=K \frac{\partial^{2} T}{\partial x^{2}} \text { with } K=k_{t} / c \rho
$$

- Diffusion

$$
J_{x}=-D \frac{\partial n}{\partial x}
$$

- Mean free path $l=\left(4 \pi r^{2}\right)^{-1} V / N$, time between collisions $\overline{\Delta t}=l / \bar{v}$.
- Transport coefficients of gases

$$
k_{t}=\frac{1}{2} \frac{C_{V}}{V} l \bar{v}, \quad \eta=\frac{1}{2} \rho \bar{v} l, \quad D=\frac{1}{2} l \bar{v} .
$$

- Multplicity of a coin toss: n heads out of N coins

$$
\Omega=\frac{N!}{n!(N-n)!} \equiv\binom{N}{n}
$$

- Multiplicity of an Einstein solid: N oscillators, q quanta of energy

$$
\Omega=\frac{(q+N-1)!}{q!(N-1)!} \equiv\binom{q+N-1}{q}
$$

- Stirling's approximation

$$
N!\approx N^{N} e^{-N} \sqrt{2 \pi N} \quad \text { or } \quad \ln N!\approx N \ln N-N .
$$

- Multiplicity of a large Einstein solid

$$
\ln \Omega \approx(q+N) \ln (q+N)-q \ln q-N \ln N, \quad \Omega \approx\left(\frac{e q}{N}\right)^{N}, \text { if } q \gg N .
$$

- Multiplicity of a paramagnet

$$
\Omega=\frac{N!}{N_{\uparrow}!N_{\downarrow}!} \equiv\binom{N}{N_{\uparrow}}
$$

- Surface area of a d-dimensional sphere of radius r

$$
\text { Area }=\frac{2 \pi^{d / 2} r^{d-1}}{(d / 2-1)!}
$$

- Multiplicity of an ideal gas in three dimensions

$$
\Omega_{N} \approx \frac{1}{N!} \frac{V^{N}}{h^{3 N}} \frac{\pi^{3 N / 2}}{(3 N / 2)!}(2 m U)^{3 N / 2} .
$$

- Entropy $S=k \ln \Omega$
- Sackur-Tetrode equation

$$
S=k N\left[\ln \left(\frac{V}{N}\left(\frac{4 \pi m U}{3 N h^{2}}\right)\right)+\frac{5}{2}\right]
$$

- Temperature

$$
\frac{1}{T}=\left(\frac{\partial S}{\partial U}\right)_{V, N}
$$

- Measuring entropies

$$
d S=\frac{Q}{T} \text { (const volume), } \quad \Delta S=\int_{T_{i}}^{T_{f}} \frac{C_{V}}{T} d T .
$$

- Spin- $1 / 2$ paramagnet in a field

$$
M=N \mu \tanh \frac{\mu B}{k T}
$$

- Curie's law

$$
M \approx \frac{N \mu^{2} B}{k T} \text { for } \mu B \ll k T
$$

Physical constants

$$
\begin{gathered}
k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}, \quad N_{A}=6.02 \times 10^{23}, \quad R=8.31 \mathrm{~J} / \mathrm{K} \\
T\left({ }^{\circ} \mathrm{C}\right)=T\left({ }^{\circ} \mathrm{K}\right)-273.15, \quad 1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}
\end{gathered}
$$

