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1 Introduction

Gravitational radiation is produced by changing gravitational fields. An ob-
ject placed in this field will experience mechanical strains due to waves
with a magnitude of the order of the dimensionless wave amplitude A (K.D.
Kokkotas)'. In this report, the expressions for strain are derived from the
second time derivatives of the trace free or reduced quadrupole moment ten-
sor of different objects. In general, the trace free quadrupole moment tensor
is given by

1
Sij = Lij — 30Tl (1)
1 3
Lj = 30 3 I (2)
k=1

where I;; is the component of the moment of inertia tensor. For discrete
masses, the moment of inertia tensor can be found by using the expression
(http://scienceworld.wolfram.com/physics/ MomentofInertia.html)

Ly = % M; (T?(Sjk - ﬂvzymzk) (3)
For continuous mass distribution
L = /p(r) (TQ(Sjk - :I:j:z:k)d'u (4)
v

where dv is the volume element. In the following sections, the moment of
inertia for different objects is derived from the observer’s point of view. In all
the cases, initially, the moment of inertia in a rotating co-ordinate system
is found by using the above formula and later Euler angle’s are applied
to obtain the I tensor in the observer’s frame. Then the expression’s for
strain are written in terms of the second time derivative of the trace free
quadrupole moment tensor components. Also, Energy radiated per unit time
(Luminosity) is calculated for each object.

2 Strain and Luminosity

The gravitational waves are calculated by using the following strain formulae
(Misner et al. 1973; see also New et al. 1995, and Schutz 1990, p. 229):
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The luminosity is (cf., Schutz 1990, p. 240, eq. 9.123),

1G <d3%ij d?’%ij> '

L=Fer=55\"gp ap

(7)

3 For two different point masses rotating about
Z-axis

Consider two point objects of masses m; and my rotating about z-axis. In
the center of mass frame, we can get the moment of inertia tensor as follows.
Let’s assume that center of mass frame is denoted by S’. For a single mass,

d=r =0 #%=0 (8
where 7 is the distance of mass m; from the origin.
Now, we can derive the components of the moment of inertia tensor using
equation 1.
w1 = malyf + 2771 =0

o 2 21 2
I, = milzf + 21°] = mar

! _ 2 121 2
I, = milzy + 9] = marg

All cross terms are zero

I:Icyl =m[-ziy] =0

I =mi[—y121] =0
Ip1 = mi[-217] =0
Similarly, for the other mass
Iwy = malyf + 28] =0
Tyyo = ma [ + 28] = mor3
I,y = mo[zf +y5] = mor}
I:Icy2 = ma[—zhys] =0
yz2 = M2[—yp2] = 0

Lyp = mao[—275] = 0

Here o is the distance of the second mass from the origin.



So, the total moment of inertia tensor in center of mass frame is

0 0 0
0 mlr% + mgrg 0

0 0 mir? + mors

In the observers frame of reference, the components of moment of inertia
tensor can be obtained by using Euler angle’s.

cos¢p sing 0 0 0 0 cos¢p —sing
—sing cos¢ 0 0 myr? + mor 0 sing cos¢
0 0 1 0 0 mir? + mors 0 0

(m1r? 4 mar3) sin? ¢ (m17? + mor3) sin ¢ cos ¢ 0
= [ (m1r? + mar3) sin ¢ cos mir? + mgr% cos? o) 0
1 2 1
0 0 (m1r? + mar3)

Here ¢ is the angle between the rotating frame and the observer’s frame and
is defined as
¢ = wit1 = waty

where w1 and wy are the angular velocities of the two point masses.
Now, let 71 — ro = 2R and Myr1 = —Myry. Therefore,

2M5R
= 2 9
" M + M, ( )
—2MiR
= — 10
"2 M + M, ( )

Since, we already have expressions for I, I, and I, from the above
matrix, it is easy to calculate the trace free quadrupole moment tensor com-
ponents and their double derivatives. If we take double time derivatives of
Q;; from equation (1) and substitute that in the strain expressions of (5)
and (6), we see that the trace part of the quadrupole tensor cancels out for
h4 and vanishes for hy becuase of §;;. So, the strain expressions can simply
be written in terms of the moment of inertia tensor.
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Now, Substituting

GM,

w% = T:l), (13)



w2 = GX (14)

and writing in terms of R

By — 2M12M22(M1 + MQ)G2 (COS 2w1t1 COS 2w2t2) (15)
t Rrct M3 M}

he = —2M12M22(M1 + M2)G2 (sin2w1t1 sin2w2t2) (16)
T Rrct M3 M3

The luminosity can be calculated from equation (7). The triple time deriva-
tives of the trace free quadrupole moment tensor is

3
dts% = —4(m1r%wi’ sin 2wty + marjws sin 2w2t2) (1)
d3C\ . 1
dj?»yy = 4<m1r%wi’ sin 2w t1 + marjw} sin 2w2t2) (18)
d3c\
d;sszz =0 1)
d3(\
% = _4(m1r%w:{’ cos 2wy ty + marjws cos 2w2t2) (20)
dsc\}yw B d3%my (21)
a3 dt3

Substituting for r1, r, wi and wy and plugging in the triple time derivatives
of 3jj, the luminosity is given by
G* (M + MyN\57/Mi\5 (M5
L= ? (T) [(E) + (E) + 2 cos 2(w1t1 — thQ)] (22)

But w1ty = waty = ¢. Therefore, the luminosity is

= SRR IGE) )+
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4 For equal mass objects rotating about z-axis

In this case m; = mg = M. Hence the expression for strain reduces to

2G2 M2

h+ = % COS 2wt (24.)
—2G°M? .

h>< = W Sin Z(Ut (25)

And the luminosity is
128G* ; M5
L= — 2
5 <Rc) (26)

5 For Uniform density ellipsoid rotating about z-
axis

Consider a non-axisymmetric ellipsoid with semi-major and semi-minor axes
a,b,c. Let’s assume that the ellipsoid is rotating about the 'c-axis’. Now we
fix our rotating co-ordinate system in such a way that the z-axis is along
the rotating axis. First we find the time derivatives of the moment of inertia
inorder to derive the strain equations. The expression for moment of inertia
is for continuous mass distribution is given in eq(4).

[Correction: I have corrected the expression’s for moment of inertia in all
the places. Actually, i have the correct expressions in my notes. Also, during
our discussion meetings we have used the correct expressions, including the
factor:. It was my mistake not to write it.]

For rotating coordinate system, let x,y and z axes be along the a,b and
¢ axes of the ellipsoid. So ' = a,y’ = b, 2’ = ¢. The moment of Inertia in
the rotating frame is

1 4
I, = gp(b2 + 02)§7rabc (27)

But p = %ﬁ Therefore,

IL,=itM@®+c?), I,=iM@*+c), I,,=3iM(a®+??)



All the cross terms are zero?

I, = p/ —z'y'dv =0 (28)

So the Moment of inertia matrix in the rotating frame is

TM(% + c?) 0 0
0 M (a® + ?) 0

0 0 LM (a2 +1?)

To get the Inertia matrix in observer’s frame we apply Euler angle’s
similar to the one used in the previous section. Here, the angle ¢ is the angle
between long axis ’a’ and x-axis. Then, the components of the moment of
inertia tensor are

Ly = %M[(a2+c2)sin2¢+(b2+02)cos2¢], (29)
Iy, — %M[(aQ+02)cos2¢+M(b2+02)sin2¢], (30)
L. = %M(a2+b2), (31)
Iy, = Iyz:%M(GQ—bZ)sinqﬁcosqﬁ. (32)

b2

€y — 1-— E (33)
c2

€c = 1-— ﬁ (34)

Substituting these expressions in the above matrix and taking second time
derivatives of I 4, I, and I, gives

. -2
I, = ?MaQwQe,% cos 2wt (35)
7 2,09 22

I, = gMa w-ej cos 2wt (36)
7 —2,: 922 2.
Iy = ?Ma ejw” sin 2wt (37)

’If we change the ellipsoid into unit sphere by writing dimensionless units
! ! ’
z = %,y =%, z= % then the integral becomes,

I, = —pa’b’c f rcos @ sin ¢ rsin @ sin ¢ 72 sin drddde = 0
The integration of the angle 6 gives zero and hence the integral is zero.



We saw in the last section that when calculating the strain from trace free
quadrupole tensor, taking double derivatives of inertia tensor is equivalent
to taking double derivatives of J;;. Hence

~AGMa? 2>
hy = # cos 2wt (38)
—4GMa? >
ho = =2 S0 sin2ut (39)
rc

The above expressions of strain are derived basing on the definition of the
ellipticity as shown in equations (31) and (32). We can also write the strain
equations in terms of eccentricity e. It is defined as (New.K ,Tohline.J, 1995
AplJ),

a—>b

Vab

We can derive a relation between e, and €. Equation (38) can be re-arranged
to get a quadratic equation.

(40)

€p =

i b(2+ +1=0 (41)
_ 6 =
a’> a
Defining n = %, the quadratic equation reduces to
”-2+)M+1=0 (42)

and has the roots
2+e)+/(2+e2)2 -4

n= 5 (43)
_ 2+€2 4
= 5214 1 - oy
Assuming b < a,
_ 2+ 1 2+
n= 1+, /1~ (1+%e2)2] = [1+¢] (44)
Therefore,
n=1=xe¢ (45)
But 7% = Z—i Then,
nQZﬁz(lie)Zzli% (46)
CI,2
So,
el ~ 2 (47)



As we now know the relation between, e, and ¢,, we can write the strain
equations in terms of € as follows.

_ M 2,2

hy = %e cos 2wt (48)
—8GMda*w? .

h)( = TE Sln2wt (49)

Also, the luminosity can be calculated using equation (7). Therefore

128 GM?2a*wbe?
125¢°

Ley=— (50)

The above strain equations and luminosity agree with the relations given in
New et al.(ApJ 1995), if we define I3 = Z2Ma?. Then

—4Gw?
hy = TMI3 cos 2wt (51)
—4Guw?e . .
hx = 7[3 sin 2wt (52)
32Gwbe?
L= -5 (53)

6 Collapsing, Axisymmetric Spheroid

From the moment of inertia matrix that follows eq. (26), for a uniform-
density, oblate spheroid (a = b),

1 1

Iy = gM(b2 +c?) = gM(a2 +¢?), (54)
1

I, = gM(a2 +c?), (55)
1 2

I, = gM(a2 +b%) = gMa?, (56)

and all off-diagonal components are zero. Hence,
2 2, 2
Trl = gM(2a +c%), (57)

and the nonzero components of the reduced moment of inertia tensor are,

1

Spe = pM("—d?), (58)
2

S, = EM(a2 - ). (60)
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So, if we “square” this matrix — that is, evaluate J;;3 — we derive,

S = 9L, +9%,+97, (61)
2
= 7—5M2(a2 - ?)2%. (62)

Finally, then, the luminosity is,

. 1G d&®
L= EGR ~ 5 05 dt3 [C\Z]%Z‘]] (63)
2 GM? g3
= 35 & s Py (64)

The two polarizations of the strain, as viewed by an observer looking down
the z-axis:

he = (8-S (65)
3GM1
_ 2 M h g
15 c4 r @’] (66)
G 1
h)( = 04 (67)
-0 (68)

7 Summary

In the previous sections the expressions for strain are derived for various
objects. Let’s summarize the results now.

Strain. (h4)

. . M2 M2 (M +M>)G?
For two different point masses : L M (M M) (COS Zuty 4 cos 2‘?”)

Rrct M, M;
. 2M2G?
For equal mass : SRret €08 2wt
. . . _ 2 2
For rotating ellipsoid Mgfc G ¢ cos 2wt

For collapsing, axisymmetric 3 GM1r2 2]

15 ¢t r
spheroid.
Luminosity.
For t diff t int . G* ( Mi+M> 5 My 5 Mo 5 9
or two ditierent point masses : T(T) [(m) +(m) + ]
5
For equal mass : % (%)
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32Gwbe? 12
— 32Guce 12

For rotating ellipsoid 5

2 GM? d3( 2_02)2

For collapsing, axisymmetric 3755 a®

spheroid.
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