ASTR7741 (Fall, 2007)

1. Spherical Free-Fall Problem

Determine exactly how long it takes a (massless) particle to "free-fall" from rest onto a point mass of mass M if the particle is initially at a distance r_{0} from the point mass. To answer this question, you need to integrate (twice) the following equation of motion (eq. 3.11, p. 120 in Vol. II of Padmanabhan):

$$
\begin{equation*}
\frac{d^{2} r}{d t^{2}}=-\frac{G M}{r^{2}} \tag{1}
\end{equation*}
$$

More specifically, you should set $v_{r}=0$ and $r=r_{0}$ at time $t=0$, then determine a precise, analytical expression for the time $\tau_{f f}$ at which $r \rightarrow 0$.

- Hint \#1: Multiply through by $2 v$ (on the left-hand-side) and by $2 d r / d t$ (on the right-hand-side), and integrate once to determine v^{2} as a function of r, M, and r_{0}.
- Hint \#2: To set up the second integral, replace v by $d r / d t$, and remember that the velocity must be negative.

ANSWER: Padmanabhan actually provides the answer to this problem, beginning with Eq. (3.11), p. 120 of Vol. II. First note that Eq. (1), above, can be rewritten in the form,

$$
\begin{equation*}
\frac{d v_{r}}{d t}=-\frac{G M}{r^{2}} \tag{2}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
2 v_{r} \frac{d v_{r}}{d t} & =-\frac{2 G M}{r^{2}} \frac{d r}{d t} \tag{3}\\
\Rightarrow d\left(v_{r}^{2}\right) & =2 G M d\left(r^{-1}\right) \tag{4}\\
\Rightarrow \text { At any } r<r_{0}, \quad v_{r}^{2} & =2 G M\left(\frac{1}{r}-\frac{1}{r_{0}}\right) \tag{5}
\end{align*}
$$

Since $v_{r}=d r / d t$, this also means,

$$
\begin{align*}
\frac{d r}{d t} & =-\left[2 G M\left(\frac{1}{r}-\frac{1}{r_{0}}\right)\right]^{1 / 2} \tag{6}\\
\Rightarrow\left[2 G M\left(\frac{1}{r}-\frac{1}{r_{0}}\right)\right]^{-1 / 2} d r & =-d t \tag{7}
\end{align*}
$$

To integrate this, it is convenient to adopt the substitution,

$$
\begin{equation*}
\cos ^{2} \zeta \equiv \frac{r}{r_{0}} ; \text { hence } \quad d r=-r_{0}(2 \cos \zeta \sin \zeta) d \zeta \tag{8}
\end{equation*}
$$

in which case $\zeta=0$ when $t=0\left(r=r_{0}\right)$ and when $r \rightarrow 0, \zeta \rightarrow \pi / 2$. With this substitution, the equation to be integrated takes the form,

$$
\begin{align*}
(2 G M)^{1 / 2} d t & =\left[\frac{1}{r_{0} \cos ^{2} \zeta}-\frac{1}{r_{0}}\right]^{-1 / 2} r_{0}(2 \cos \zeta \sin \zeta) d \zeta \tag{9}\\
\Rightarrow\left[\frac{G M}{2 r_{0}^{3}}\right]^{1 / 2} d t & =\left[\frac{1}{\cos ^{2} \zeta}-1\right]^{-1 / 2}(\cos \zeta \sin \zeta) d \zeta \tag{10}\\
& =\cos ^{2} \zeta d \zeta \tag{11}\\
\Rightarrow\left[\frac{G M}{2 r_{0}^{3}}\right]^{1 / 2} t & =\int_{0}^{\zeta} \cos ^{2} \zeta d \zeta \tag{12}\\
& =\left[\frac{1}{2} \zeta+\frac{1}{4} \sin (2 \zeta)\right]_{0}^{\zeta} \tag{13}\\
& =\frac{1}{2} \zeta+\frac{1}{4} \sin (2 \zeta) \tag{14}
\end{align*}
$$

Hence, when $\zeta=\pi / 2$,

$$
\begin{equation*}
t=\tau_{\mathrm{ff}}=\frac{\pi}{4}\left[\frac{2 r_{0}^{3}}{G M}\right]^{1 / 2}=\left[\frac{\pi^{2} r_{0}^{3}}{8 G M}\right]^{1 / 2} \tag{15}
\end{equation*}
$$

But also note that $\bar{\rho}_{0} \equiv 3 M /\left(4 \pi r_{0}^{3}\right)$, hence, $\left(r_{0}^{3} / M\right)=3 /\left(4 \pi \bar{\rho}_{0}\right)$, which means,

$$
\begin{equation*}
\tau_{\mathrm{ff}}=\left[\frac{3 \pi}{32 G \bar{\rho}_{0}}\right]^{1 / 2} \tag{16}
\end{equation*}
$$

