\qquad

ASTRONOMY 1102-Section 1

Instructor: Juhan Frank
Spring 1998
Homework \# 4 due Fri. Feb. 26
Main Sequence and Variable Stars

1) A B3V star has a mass of approximately $10 \mathrm{M} \odot$. Estimate its luminosity in solar luminosities $\mathrm{L} \odot$, using the approximate mass-luminosity relationship discussed in class: $\mathrm{L} \propto \mathrm{M}^{3}$. Then use Fig.25-7 to get an estimate for the luminosity using absolute magnitudes. Compare.

According to $L \propto M^{3}$, the L of a $10 M \odot$ star is $L=(10)^{3} L \odot=1,000 L \odot$. According to Fig. 25-7, the absolute magnitude of a $10 \mathrm{M} \mathrm{\odot}$ star is approximately $M=-5$, which is 10 magnitudes brighter than the sun and therfore corresponds to $L=10,000 L \odot$.
2) Using the Mass-Radius relationship discussed in class $R \propto M$, estimate the radii of a $5 \mathrm{M} \odot$ and of a $0.5 \mathrm{M} \odot$ star. Which is densest on average?
In other words, if I take a cubic inch of material from the center of each star, which is likely to contain more mass? HINT: average density = mass/volume.

The density is $\propto M / R^{3}$. Since $R \propto M$, that means that the density is $\propto M / R^{3}$ $\propto M / M^{3} \propto 1 / M^{2}$. So, the smaller the mass, the higher the density of main sequence stars. The average density of a $5 \mathrm{M} \mathrm{\odot}$ star is 25 times less dense than the sun, while a $0.5 \mathrm{M} \mathrm{\odot}$ star is 4 time more dense than the sun.
3) A cepheid of period 50 days is observed by the Hubble Space Telescope to oscillate around an apparent magnitude of 24 in a distant spiral galaxy.
How far is that galaxy approximately? HINT: use Fig. 25-11.
According to Fig. 25-11, a Cepheid with a period of 50 days has an absolute magnitude of about - 6. Consequently the distance modulus is $m-M=30$.
Since $m-M=0$ for 10 pc, and the distance increases by a factor of 10 for every 5 magnitudes, the distance to the galaxy must be about $10^{6} \times 10 p c=10 \mathrm{Mpc}$.
NOTE: $30 / 5=6$, so a factor of 10 every 5 magnitudes yields 10^{6}.

