Clinical Aspects of Medical Radiation Physics

Rebecca Guidry, M.S., DABR
Clinical Medical Physicist
Mary Bird Perkins Cancer Center

What is Medical Physics?

- A medical physicist is a professional who specializes in the application of the concepts and methods of physics to the diagnosis and treatment of human disease.
- Therapeutic Physics
- Diagnostic Physics
- Nuclear Physics
- Medical Health Physics

Therapeutic Radiological Physics

- The therapeutic applications of x-ray, gamma ray, neutron, electron, and charged particle beams, and radiation from sealed radionuclide sources.
- The equipment associated with their production, use, measurement and evaluation. The quality of images resulting from their production and use.
- Medical Health Physics

Cell Killing By Ionizing Radiation

Diagnostic Radiological Physics

- The diagnostic applications of x-rays, gamma rays from sealed sources, ultrasonic radiation, and radio frequency radiation and magnetic fields.
- The equipment association with their production, use, measurement and evaluation.
- The quality of images resulting from their production and use.
- Medical Health Physics

Discovery of X-rays

• On 8 Nov 1895, Wilhelm Conrad Röntgen (accidentally) discovered an

image cast from his cathode ray genera

Diagnostics

- X-ray Machines
- Fluoroscopy
- Computerized Tomography-CT Scanner
- Magnetic Resonance Imager- MRI
- MR Spectroscopy
- Positron Emission-PET Scanner
- CT-PET Scanner

Medical Nuclear Physics

- The therapeutic and diagnostic applications of radionuclides in unsealed sources
- The equipment association with their production, use, measurement, and evaluation.
- The quality of images resulting from their production and use.
- Medical Health Physics

Nuclear Medicine

- Radioactive Materials injected or ingested
- Radioactivity yields images of function

Gamma Camera Scan

Medical Health Physics

- The safe use of x-ray, gamma ray, neutron, electron and other charged particle beams or radionuclides in medicine (for diagnostic or therapeutic purposes).
- The instrumentation required to perform appropriate radiation surveys.
- Radiation Safety Officer

Emergency Management of Radiation Casualties

Radiation Exposure/Contamination

- Accidents
- Nuclear reactor
- Industrial irradiator
- Lost/stolen sources
- Transportation
- Medical radiation
- Terrorist Event

Radiation Doses and Dose Limits

Flights—LA to London
 5 mrem

Annual Public dose limit 100 mrem

Natural Background annual 300 mrem

- Heart Catherization, Barium enema, Chest Xray, fetal dose limit, radiation worker limit...
- Governs worker safety, patient safety, staff safety, general public safety

Primary Discipline

Primary Responsibility

Clinical Responsibilities

- Daily clinical support
- Equipment acquisitions
- Site planning
- Quality assurance-d-w-m-a
- Dose calculations
- Liaison between other medical professionals, manufacturers, regulatory agencies
- Development, investigate, scientific research

Professional Training

- MS or PhD in Medical Physics
- MS or PhD in physics or related discipline with post-graduate academic training in medical physics

CLINICAL TRAINING

- Residency in clinical medical physics-CAMPEP BOARD ELIGIBILITY 2014
- Must have CAMPEP approved residency

LSU Medical Physics Program

- Phys.lsu.edu
 - Medical Physics & Health Physics Program
 - Graduate Program
 - CAMPEP Accredited
 - Curriculum-Health Physics or Medical Physics
- Marybird.org- Medical Physics Program
 - Graduate Training Program
 - Residency Training Program

Total AAPM Membership

$$ICF_{bone} = ICF_{meas, \ bone} \frac{\left(\frac{L}{\rho}\right)_{gas}^{bone}}{\left(\frac{L}{\rho}\right)_{gas}^{water}} \frac{P_{reple,bone}P_{wall,bone}}{P_{repl,water}P_{wall,water}}$$

$$ICF_{lung} = ICF_{meas,lung} \frac{\left(\frac{L}{\rho}\right)_{gas}^{lung}}{\left(\frac{L}{\rho}\right)_{gas}^{water}} \frac{P_{repl,lung}P_{wall,lung}}{P_{repl,water}P_{wall,water}}$$

$$D_{w}^{Q} = MP_{gr}^{Q} k_{R_{50}}' k_{ecal} N_{D,w}^{60}$$
 (Gy)

$$\dot{D}(r,\theta) = \Lambda S_K \frac{G(r,\theta)}{G(1,\pi/2)} F(r,\theta) g(r)$$

$$K_{\text{ref}} = \sum_{i=1}^{N} S_{K,i} \cdot t_i$$

$$P_{\text{ion}}(V_H) = \frac{1 - V_H/V_L}{M_{\text{raw}}^H/M_{\text{raw}}^L - V_H/V_L}.$$

$$D_{w}^{Q} = MN_{D,w}^{Q}$$
 (Gy)

$$k_{\mathcal{Q}} = P_{\text{gr}}^{\mathcal{Q}} k_{R_{50}}$$

$$M = P_{\text{ion}} P_{\text{TP}} P_{\text{elec}} P_{\text{pol}} M_{\text{raw}}$$
 (C or rdg)

FIG. 3. Schematic of the SSD or SAD setups which may be used for photon beam reference dosimetry. In both cases the ion chamber is at a water equivalent depth of 10 cm in the water phantom. The actual value of SSD or SAD is that most useful in the clinic (expected to be about 100 cm).