New Worlds, Baby!

Debra Fischer

founding fathors Father's Day. Virginia Slims reminds you that founding fathers couldn't have been
founding fathers without founding mothers.

You can smoke like a man. You can act like a man.
You can think like a man.

Is that really the best we can be?

1995

first planet detected

Our Solar System

- Eight planets
- Lots of rocky "debris" (terrestrial planets and asteroids)
- Most planets have moons
-
- Nearly circular orbits
- Only one inhabited planet

Venus

Mars

Jupiter $=317$ earth masses

Saturn = 95 earth masses

Uranus = 14 earth masses

-
Neptune $=17$ earth masses

Pulsar timing: uses the Doppler effect need to collect data over the entire obit to del.

Radial Velocity technique: uses the Doppler effect - need one full orbit

Simulated Doppler Velocity of the Sun

Artist: Lynette Cook
1999

RV PLANET CロUNT: 515

Many scientists were skeptical about the interpretation of the RV data. However, we knew that the orbit of some of these planets should be oriented so that the planet would transit in front of it's host star.

Transit Technique: the planet passes in front of the star, dimming the starlight for a few hours. The bigger the planet, the greater the light decrement.

Artistic license: star and planet are not resolved!

BRIGHTNESS

TIME IN HOURS

1999

Transiting planets: models allow us to determine interior structure of planets orbiting stars hundreds of light years away

Image credit: Greg Laughlin, UCSC

HD 149026 b

PLANET CロUNT: 3ロE

Kepler Mission: transits from space

z009

Tatooine

A Saturn mass planet orbiting a double star system!
2011

Kepler Transit Candidates: many are multi-systems

Dan Fabrycky, U Chicago

Kepler'S
 Planet candidates
 2,740 AS OF JANUARY, 2013

"Practically all Sun-like stars have planets"

- 17\% have planets $0.8-1.25$ with $P<85$ days
- $\sim 50 \%$ have planets $1.25-4$ times the mass of the Earth
-10\% have larger (up to Neptune-size) planets with P < 400d
CANDIDATE CGUNT: 2740

Microlensing: the star with a planet passes in front of a distant and gravitationally distorts space so that the source light is lensed, and brightens (for a few hours or days).

Direct Imaging: challenging and exciting work on the horizon with Keck Adaptive Optics Imaging.

```
                                HR 8799
```


$$
\frac{0.5^{\prime \prime}}{20 \mathrm{AU}}
$$

PLANET CIUNT: $\mathbf{3} 1$

Of the various observational techniques, how many will find "Earths"?

Microlensing (21)?
Transits with Kepler (2740)?

Transits with ground-based telescopes (308)?
Doppler observations (515)?
Imaging (31)

How will we find $\boldsymbol{M} \mathbf{\Omega} \boldsymbol{\Pi} \boldsymbol{y}$ "Earths"?

Why Earths?

Best chance of detecting life we can recognize.

Why look?

What are the practical applications?

I. Consider our place in space

I. Consider our place in space

Our Sun appears to be an unremarkable star, like billions of others in our galaxy. Billions of galaxies in the Universe.

1. Considet our place in space

The Universe Contains Billions of Galaxies

2. Consider the rareness of our composition

Fair sample of the Universe: a representative volume, large enough to show the average structure.
2. Consider the rareness of our composition

2. Consider the rareness of our composition

2. Consider the rareness of our composition

$Z=27.36$

2. Consider the rareness of our composition

$Z=28.62$

Something else in this Fair Sample that we can barely sense. It does not reflect or absorb light. The only sign of it's presence is the gravitational pull of its mass.
........Dark Matter.
Drifts through solid matter but moves slowly and outweighs normal matter by a factor of 5 .

2. Consider the rareness of our composition

$\mathrm{Z}=28.62$

In 1995, we learned that there was something else in this Fair Sample.
........Dark Energy.
We can compare energy and mass: $\mathrm{E}=\mathrm{mc}^{2}$ and as far as we can tell, dark energy makes up $\sim 75 \%$ of the stuff in our Fair Sample.

2. Consider the rareness of our composition

Dark Energy Dark Matter Baryonic Matter

3. Consider our place in time

January	February	March	April	May	June	July	August	September	October	November	December
	\% *			5icle			?				

3. Consider our place in time

December

1	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17 Animal fossils	18 Trilobites	19	20 Land plants	21 Insects
22 Amphibians	23	24 Reptiles	25 Dinosaurs	26 Mammals	27 Pangaea splits	28 Birds, flowers
29 Dinosaurs at top of food chain	30 Dinosaurs go extinct, mammals diversify and return to the sea					

3. Consider our place in time

3. Consider our place in time

We do not dominate the Universe in any sense - our place in space is small.

We are rare stuff in the Periodic Table
We are newcomers to this planet.

1995

1996

1997

1998

1999

2004

2005

2007

2008

2009

2011

2012

