

The Explosive Lives of Stars: Producing Elements in the Cauldrons of the Cosmos

Catherine M. Deibel Department of Physics & Astronomy Louisiana State University

13.7 Billion (13,700,000,000) years ago the universe began with

THE BIG BANG

The first atoms

The first atoms

 One millionth of a second (.000001 seconds) after the BIG BANG protons and neutrons are formed

The first atoms

• 3 minutes after the BIG BANG the first atoms form

After the Big Bang

Ce	59	60	61	62	Eu	64	⁶⁵	66	67	68	69	70	71
	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

6

Where does the rest of the Periodic Table come from?

Ce	59	60	⁶¹	62	Eu	64	⁶⁵	66	67	68	69	70	71
	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- Adding or subtracting neutrons makes different *isotopes*
- A hydrogen nucleus is one proton
 - Adding one neutron to hydrogen makes the isotope deuterium
 - Then adding one proton makes the isotope ³He
 - Then adding one neutron makes the isotope ⁴He
- Total number of protons ("atomic number") = Z
- Total number of neutrons = N
- N + Z = A, "atomic mass number" or number of nucleons

Ή

- Adding or subtracting neutrons makes different *isotopes*
- A hydrogen nucleus is one proton
 - Adding one neutron to hydrogen makes the isotope deuterium
 - Then adding one proton makes the isotope ³He
 - Then adding one neutron makes the isotope ⁴He
- Total number of protons ("atomic number") = Z
- Total number of neutrons = N
- N + Z = A, "atomic mass number" or number of nucleons

- Adding or subtracting neutrons makes different *isotopes*
- A hydrogen nucleus is one proton
 - Adding one neutron to hydrogen makes the isotope deuterium
 - Then adding one proton makes the isotope ³He
 - Then adding one neutron makes the isotope ⁴He
- Total number of protons ("atomic number") = Z
- Total number of neutrons = N
- N + Z = A, "atomic mass number" or number of nucleons

	³ He	
¹ H	² H	

- Adding or subtracting neutrons makes different *isotopes*
- A hydrogen nucleus is one proton
 - Adding one neutron to hydrogen makes the isotope deuterium
 - Then adding one proton makes the isotope ³He
 - Then adding one neutron makes the isotope ⁴He
- Total number of protons ("atomic number") = Z
- Total number of neutrons = N
- N + Z = A, "atomic mass number" or number of nucleons

9

 Keep adding protons and neutrons to make thousands of *isotopes*

Where does the rest of the Periodic

REVIEWS OF MODERN PHYSICS

VOLUME 29, NUMBER 4

October, 1957

Synthesis of the Elements in Stars*

E. MARGARET BURBIDGE, G. R. BURBIDGE, WILLIAM A. FOWLER, AND F. HOYLE

Kellogg Radiation Laboratory, California Institute of Technology, and Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California

> "It is the stars, The stars above us, govern our conditions"; (King Lear, Act IV, Scene 3)

> > but perhaps

"The fault, dear Brutus, is not in our stars, But in ourselves," (Julius Caesar, Act I, Scene 2)

Z=:

N, number of neutrons

11

Different Nuclei are produced in different stars Red Giant Stars

Type I X-Ray Bursts (XRBs)

Neutron stars: 1.4 M_o, 10 km radius

Normal star

Accretion rate ~ $10^{-8}/10^{-10}$ M_o/year Peak x-ray burst temperature ~ 1.5 GK Recurrence rate ~ hours to days Burst duration of 10 - 100 s Observed x-ray outburst ~ $10^{39} - 10^{40}$ ergs

Neutron Stars

• Neutron stars are extremely compact, dense objects ($\rho \sim 10^{14} \text{ g/cm}^2$)

Neutron Stars

• Neutron stars are extremely compact, dense objects ($\rho \sim 10^{14} \text{ g/cm}^2$)

Conference for Women in Undergraduate Physics

Type I X-Ray Bursts (XRBs)

Neutron stars: 1.4 M_o, 10 km radius

Normal star

Accretion rate ~ $10^{-8}/10^{-10}$ M_o/year Peak x-ray burst temperature ~ 1.5 GK Recurrence rate ~ hours to days Burst duration of 10 - 100 s Observed x-ray outburst ~ $10^{39} - 10^{40}$ ergs

Conference for Women in Undergraduate Physics

X-Ray Burst Nucleosynthesis

How do nuclei react?

- What is a reaction rate?
 (i.e. What is the probability of two nuclei reacting in the stellar plasma?)
- Thermal distribution of nuclei in stellar plasma: Maxwell-Boltzmann distribution
- The probability of the interaction between two nuclei: nuclear cross section
- Temperature dependent different temperatures in stars probe different energies in nucleus

Reaction Rates

- Folding the Maxwell-Boltzmann distribution in with the nuclear cross section gives the reaction rate
- For resonant reaction rates:
 - $-\propto exp(-E)$
 - \propto nuclear spin, J
 - \propto nuclear widths, Γ
- Two ways to study reactions rates and cross sections:
 - Directly- measuring the reaction rate itself
 - Indirectly- determining different components of the reaction rate

• e.g. ³⁰S (α,p)³³Cl

g.s.

21

Studying Nuclear Reactions in the Laboratory

- Using accelerators with different types of detectors we can measure what nuclear reactions happen in stars
- A particle beam is accelerated and impinges on a target **DETECTOR**
- Outgoing particles are detected

beam \rightarrow

Studying Nuclear Reactions in the Laboratory

- Charged particles can be manipulated by magnetic fields and separated by
 - charge
 - mass
 - energy
- Detected using
 - ionization chambers
 - silicon detectors
 - CsI detectors
 - gamma detectors

HELIcal Orbit Spectrometer

- Beam of radioactive nuclei directed
 through center of solenoid
- Impinges on a target of light nuclei (e.g. hydrogen, helium, etc.)
- Reaction products measured by detectors
- Reaction products tell us:
 - excitation energy levels
 - spins of levels
 - reaction rate information

States in ¹⁸O from ¹⁴O(⁶Li,*d*)¹⁸O

25

LSU

(α ,p)-process waiting points: ³⁰S(α ,p)³³Cl Measurement

- (α,p) reactions on waiting points
 (²²Mg, ²⁶Si, ³⁰S, and ³⁴Ar) may have significant effects on type I X-ray bursts
 - final elemental abundances
 - energy generation
 - double-peaked luminosity profiles

- Measured cross sections (probability of reacting) larger than theoretical predictions:
 - reaction rate is bigger!

1.50+38

1e+38

5e+37

Experiments for X-ray bursts

Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN)

Embarrassing truths about NA a.k.a. why we stay employed

Conference for Women in Undergraduate Physics

Embarrassing truths about NA a.k.a. why we stay employed

- Supernova models don't explode
- We don't know where all the heavy elements are made
- Most reactions that happen in stars have not been studied
- But the future is bright . . .

Embarrassing truths about NA a.k.a. why we stay employed

Layout of the accelerator and experimental systems and the experimental areas of the Facility for Rare Isotope Beams. Image 2 of 3

Thanks!

