

The Explosive Lives of Stars: Producing Elements in the Cauldrons of the Cosmos

Catherine M. Deibel
Department of Physics \& Astronomy
Louisiana State University

13.7 Billion $(13,700,000,000)$ year's ago the * universe began with

The first atoms

- A fraction (1/10,000,000,000,000,000,000,000,000,000,000) of a second after the BIG BANG electrons are created
-
- \quad -

0

The first atoms

- One millionth of a second (. 000001 seconds) after the BIG BANG protons and neutrons are formed

The first atoms

- 3 minutes after the BIG BANG the first atoms form

After the Big Bang

Ce^{58}	Pr	Nd	Pm	Sm^{69}	Eu^{63}	Gd^{64}	$\mathrm{~Tb}^{65}$	Dy^{66}	Ho^{67}	Er^{68}	Tm^{69}	Yb^{70}	Lu^{71}
Th^{90}	Pa	U^{92}	$\mathrm{~Np}^{93}$	Pu	Am^{94}	Cm^{96}	Bk^{97}	Cf^{98}	Es	Fm^{99}	Md^{100}	No^{102}	Lr^{103}

What about everything else?

Oxygen (O) in water $\left(\mathrm{H}_{2} \mathrm{O}\right)$
Calcium (Ca)

Aluminum (Al)

Where does the rest of the Periodic Table come from?

Ce^{58}	Pr^{59}	Nd^{60}	Pm1	Sm^{62}	Eu ${ }^{63}$	Gd ${ }^{64}$	Tb ${ }^{65}$	Dy ${ }^{66}$	Ho^{67}	$E r^{68}$	Tm ${ }^{69}$	Yb ${ }^{70}$	L^{71}
Th ${ }^{90}$	Pa^{91}	U^{92}	Np ${ }^{93}$	Pu^{94}	Am ${ }^{95}$	Cm^{96}	Bk^{97}	C^{98}	$E s^{99}$	Fm ${ }_{\text {100 }}$	$\begin{gathered} 101 \\ \mathrm{Md} \end{gathered}$	No^{102}	L^{103}

Beyond the Periodic Table . . .

- Adding or subtracting neutrons makes different isotopes
- A hydrogen nucleus is one proton
- Adding one neutron to hydrogen makes the isotope deuterium
- Then adding one proton makes the isotope ${ }^{3} \mathrm{He}$
- Then adding one neutron makes the isotope ${ }^{4} \mathrm{He}$
- Total number of protons ("atomic number") $=Z$
- Total number of neutrons $=\mathrm{N}$
- $N+Z=A$, "atomic mass number" or number of nucleons

Beyond the Periodic Table . . .

- Adding or subtracting neutrons makes different isotopes
- A hydrogen nucleus is one proton
- Adding one neutron to hydrogen makes the isotope deuterium
- Then adding one proton makes the isotope ${ }^{3} \mathrm{He}$
- Then adding one neutron makes the isotope ${ }^{4} \mathrm{He}$
- Total number of protons ("atomic number") $=Z$
- Total number of neutrons $=\mathrm{N}$
- $N+Z=A$, "atomic mass number" or number of nucleons

Beyond the Periodic Table . . .

- Adding or subtracting neutrons makes different isotopes
- A hydrogen nucleus is one proton
- Adding one neutron to hydrogen makes the isotope deuterium
- Then adding one proton makes the isotope ${ }^{3} \mathrm{He}$
- Then adding one neutron makes the isotope ${ }^{4} \mathrm{He}$
- Total number of protons ("atomic number") $=\mathbf{Z}$
- Total number of neutrons $=\mathrm{N}$
- $N+Z=A$, "atomic mass number" or number of nucleons

Beyond the Periodic Table . . .

- Adding or subtracting neutrons makes different isotopes
- A hydrogen nucleus is one proton
- Adding one neutron to hydrogen makes the isotope deuterium
- Then adding one proton makes the isotope ${ }^{3} \mathrm{He}$
- Then adding one neutron makes the isotope ${ }^{4} \mathrm{He}$
- Total number of protons ("atomic number") $=\mathbf{Z}$
- Total number of neutrons $=\mathrm{N}$
- $N+Z=A$, "atomic mass number" or number of nucleons

${ }^{A} X$ or ${ }_{Z}^{A} X$

Beyond the Periodic Table . . .

- Keep adding protons and neutrons to make thousands of isotopes

H^{1}		Periodic Table of the Elements © www.elementsdatabase.com															He^{2}					
Li^{3}	Be^{4}	- hydrogenalkali metalsalkali earth metalstransition metals					- poor metals - nonmetals ■ noble gases - rare earth metals					B^{5}	C^{6}	N^{7}	0^{8}	F^{9}	Ne^{10}					
Na^{11}	$\begin{array}{r} 12 \\ M g \end{array}$						Al^{13}	Si^{14}	P^{15}	S^{16}	Cl^{17}	Ar^{18}										
K^{19}	Ca^{20}	Sc ${ }^{21}$	Ti^{22}	V^{23}	Cr^{24}	Mn^{25}						Fe^{26}	Co^{27}	Ni^{28}	Cu^{29}	Zn^{30}	Ga^{31}	Ge^{32}	As^{33}	Se^{34}	Br^{35}	Kr^{36}
$R b^{37}$	Sr^{38}	Y^{39}	Zr^{40}	Nb^{41}	$\begin{gathered} \mathrm{Mo}^{42} \\ \hline \end{gathered}$	Tc ${ }^{43}$	Ru^{44}	Rh^{45}	Pd^{46}	Ag^{47}	Cd^{48}	$1 \mathrm{In}^{49}$	$\begin{gathered} 50 \\ S_{n} \end{gathered}$	S^{51}	$T e^{52}$	1^{53}	Xe^{54}					
$\begin{gathered} 55 \\ C_{5}^{5} \end{gathered}$	Ba^{56}	La ${ }^{57}$	Hf^{72}	Ta^{73}	W^{74}	Re^{75}	$\begin{gathered} 76 \\ \mathrm{Os}^{76} \end{gathered}$	Ir^{77}	Pt^{78}	$\begin{array}{r} 79 \\ \mathrm{Au} \end{array}$	Hg^{80}	${ }_{T 1}^{81}$	Pb^{82}	Bi^{83}	Po^{84}	$\begin{aligned} & \mathrm{At}^{85} \end{aligned}$	Rn^{86}					
$\begin{array}{\|c\|} \hline 87 \\ F r \end{array}$	$\begin{array}{r} 88 \\ R a \end{array}$	$\begin{array}{r} 89 \\ A C \end{array}$	$\begin{array}{\|c\|} \hline 104 \\ \hline \text { Unq } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 105 \\ \hline \text { Unp } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 106 \\ \hline \text { Unh } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 107 \\ \hline \text { Uns } \end{array}$	$\begin{array}{\|c\|} \hline 108 \\ \hline \text { Uno } \\ \hline \end{array}$	$\begin{gathered} 109 \\ \text { Une } \end{gathered}$	Unn													

C

Where does the rest of the Periodic

Where does the rest of the Periodic

REVIEWS OF Modern Physics

Остовев, 1957

Synthesis of the Elements in Stars*

E. Margaret Burbidge, G. R. Burbidge, William A. Fowler, and F. Hoyle

Kellogg Radiation' Laboratory, California Inslitute of Technology, and
Mount Wilson and Palomar Observatories, Carnegie Institution of Washington, California Institute of Technology, Pasadena, California
"It is the stars, The stars above us, govern our conditions";
(King Lear, Act IV, Scene 3)
but perhaps
"The fault, dear Brutus, is not in our stars, But in ourselves,"
(Julius Caesar, Act I, Scene 2)
N, number of neutrons

Different Nuclei are produced in different stars Red Giart Siars

Type I.X-Ray Bursts (XRBs) .

Neutron stars:

$1.4 \mathrm{M}_{\mathbf{0}}, 10 \mathrm{~km}$ radius

Accretion rate $\sim 10^{-8} / 10^{-10} \mathrm{M}_{0}$ year Peak x-ray burst temperature $\sim 1.5 \mathrm{GK}$ Recurrence rate \sim hours to days Burst duration of $10-100$ s Observed x-ray outburst $\sim 10^{39}-10^{40}$ ergs

Normal star

Neutron Stars

- Neutron stars are extremely compact, dense objects ($\rho \sim 10^{14} \mathrm{~g} / \mathrm{cm}^{2}$)

Neutron Stars

- Neutron stars are extremely compact, dense objects ($\rho \sim 10^{14} \mathrm{~g} / \mathrm{cm}^{2}$)

Type I.X-Ray Bursts (XRBs) .

Neutron stars:

$1.4 \mathrm{M}_{\mathbf{0}}, 10 \mathrm{~km}$ radius

Accretion rate $\sim 10^{-8} / 10^{-10} \mathrm{M}_{0}$ year Peak x-ray burst temperature $\sim 1.5 \mathrm{GK}$ Recurrence rate \sim hours to days Burst duration of $10-100$ s Observed x-ray outburst $\sim 10^{39}-10^{40}$ ergs

Normal star

X-Ray Burst Nucleosynthesis

How do nuclei react?

- What is a reaction rate?
(i.e. What is the probability of two nuclei reacting in the stellar plasma?)
- Thermal distribution of nuclei in stellar plasma: Maxwell-Boltzmann distribution
- The probability of the interaction between two nuclei: nuclear cross section

- Temperature dependent - different temperatures in stars probe different energies in nucleus

Reaction Rates

- Folding the Maxwell-Boltzmann distribution in with the nuclear cross section gives the reaction rate
- For resonant reaction rates:
$-\propto \exp (-E)$
$-\propto$ nuclear spin, J
$-\propto$ nuclear widths, Γ
- Two ways to study reactions rates and cross sections:
- Directly- measuring the reaction rate itself
- Indirectly- determining different components of the reaction rate
- e.g. ${ }^{30} \mathrm{~S}(\alpha, \mathrm{p})^{33} \mathrm{Cl}$

Studying Nuclear Reactions in the Laboratory

- Using accelerators with different types of detectors we can measure what nuclear reactions happen in stars
- A particle beam is accelerated and impinges on a target

DETECTOR

- Outgoing particles are detected

target

Studying Nuclear Reactions in the Laboratory

- Charged particles can be manipulated by magnetic fields and separated by
- charge
- mass
- energy
- Detected using
- ionization chambers
- silicon detectors
- CsI detectors
- gamma detectors

HELIcal Orbit Spectrometer

- Beam of radioactive nuclei directed through center of solenoid
- Impinges on a target of light nuclei (e.g. hydrogen, helium, etc.)
- Reaction products measured by detectors
- Reaction products tell us:
- excitation energy levels
- spins of levels
- reaction rate information

States in ${ }^{18} \mathrm{O}$ from ${ }^{14} \mathrm{O}\left({ }^{6} \mathrm{Li}, d\right)^{18} \mathrm{O}$

${ }^{33} \mathrm{Cl}(p, \alpha){ }^{30} \mathrm{~S}$ Measurement

(α, p)-process waiting points: ${ }^{30} \mathrm{~S}(\alpha, p){ }^{33} \mathrm{Cl}$ Measurement

- (α, p) reactions on waiting points $\left({ }^{22} \mathrm{Mg},{ }^{26} \mathrm{Si},{ }^{30} \mathrm{~S}\right.$, and $\left.{ }^{34} \mathrm{Ar}\right)$ may have significant effects on type I X-ray bursts
- final elemental abundances
- energy generation
- double-peaked luminosity profiles
- Measured cross sections (probability of reacting) larger than theoretical predictions:
- reaction rate is bigger!

C.M. Deibel ett al, submitted (2011).

Experiments for X-ray bursts

Array for Nuclear Astrophysics Studies with Exotic Nuclei (ANASEN)

ANASEN

Embarrassing truths about NA a.k.a. why we stay employed

Embarrassing truths about NA a.k.a. why we stay employed

- Supernova models don't explode
- We don't know where all the heavy elements are made
- Most reactions that happen in stars have not been studied
- But the future is bright . . .

Embarrassing truths about NA a.k.a. why we stay employed

Layout of the accelerator and experimental systems and the experimental areas of the Facility for Rare Isotope Beams. Image 2 of 3

FACILITY FOR RARE ISOTOPE BEAMS

Thanks!

