More Green Functions (Chap 10)

So far we have figured out how to calculate

\[G(k, \omega) \quad D(k, \omega) \]

and their Fourier transforms. We have shown that the time-ordered quantities contain some physical information such as the electron density, kinetic energy, etc. There are many other quantities related to

- neutron scattering \(S(k, \omega) \)
- conductivity \(\sigma(k, \omega) \)
- magnetic susceptibility \(\chi_m(k, \omega) \)
- charge susceptibility \(\chi_c(k, \omega) \)

Fortunately each of these may also be expressed as Green functions describing the linear response to a small applied force.

Suppose the system described by a Hamiltonian \(H_0 \) is perturbed by \(f(t) A \)

\[H = H_0 - f(t) A \]

Where \(f \) is a small field coupling to an operator \(A \), then in the Heisenberg representation...
\[A^H(t) = U^+(t) A^z(t) U(t) \]

where, as usual

\[U(t) = T \exp \left\{ i \int_{-\infty}^{+} dt' A^z(t') f(t') \right\} \]

Now, since \(f(t) \) is "small",

\[U(t) \approx I + i \int_{-\infty}^{+} dt' A^z(t') f(t') \]

\[U^+(t) \approx I - i \int_{-\infty}^{+} dt' A^+_z(t') f(t') \]

Then

\[A^H(t) \approx A^z(t) + i \int_{-\infty}^{+} dt' [A^z(t), A^z(t')] f(t') \]

Let's drop the \(f \) suffix and assume \(\langle A(t) \rangle = 0 \) (i.e., suppose \(A = S^z \) and \(f = H^z \) and the system is non-magnetic), then

\[A^H(t) = \int_{-\infty}^{+} dt' \chi_A(t-t') f(t') \]

\[\chi_A(t-t') = i \langle [A(t), A(t')] \rangle \Theta(t-t') \]

The function \(\chi_A \) describes the linear response of the system to a small applied perturbation.
which couples to A and contributes a term $-t A$ to H. The "R" refers to "retarded".

The retarded Green function X_R describes the physics of the system quite well but it

does not look much like either G or D

we have described thus far. These time

ordered or causal Green functions

$$X_c (t, t') = -i \langle T A(t) A(t') \rangle$$

may be calculated using FDT. We need to know the relation to X_R!

Relationship between Green Functions.

We may define many different Green functions.

Consider (t, t') here.

retarded

$$G_R (t, t') = -i \langle \sum A(t), B(t') \rangle \Delta \Theta (t-t')$$

advanced

$$G_A (t, t') = +i \langle \sum A(t), B(t') \rangle \Delta \Theta (t'-t)$$

causal

$$G_c (t, t') = -i \langle T A(t) B(t') \rangle$$

$$= -i \langle A(t) B(t') \Theta (t-t') - C B(t') A(t) \Theta (t'-t) \rangle$$

Matsubara

$$G_{M} (\beta , \beta') = - \langle T A(-i\beta) B(-i\beta') \rangle$$

$$= - \langle A(-i\beta) B(-i\beta') \Theta (-\beta - \beta') - C B(-i\beta) A(-i\beta) \Theta (-\beta') \rangle$$
we will discuss the Matsubara G_m at length next chapter (T≠0 FP PT) along with the associated formalism.

These Green functions are related to each other via the Feynman representation. Remember this choice of basis employed the full set of states of H. First let's prove some preliminaries. All 4 of these Green functions are functions of $t-t'$ so long as H is time independent. Consider the common building block

$$C(t-t') = \langle A(t) B(t') \rangle$$

$$= \frac{1}{Z} \text{Tr}\{e^{-\beta H} e^{i H t} A e^{-i H t} e^{i H t'} B e^{-i H t'} \}$$

then as $[e^{-\beta H}, e^{i H t}] = 0$, this is

$$= \frac{1}{Z} \text{Tr} e^{-\beta H} A e^{i H (t-t')} B e^{-i H (t-t')}$$

$$= \langle A(0) B(t-t') \rangle$$

Since all 4 of G_A, G_B, G_c, G_m are made of these components, all only depend on $t-t'$ (or $2\pi-t'$)
The Advanced and Retarded Green Functions

G_R and G_A differ in that G_R is analytic in the upper half complex plane and G_A is analytic in the lower. Consider for example

\[G_\text{analytic} (w) = \int_{-\infty}^{\infty} dt \ e^{i(w(t-t'))} G_R (t-t') \]

\[G_\text{analytic} = -i \int_{-\infty}^{\infty} dt \ e^{i\omega(t-t')} \langle [A(t), B(t')]_e \rangle \times \Theta(t-t') \]

\[\approx -i \int_{+\infty}^{\infty} dt \ e^{i\omega(t-t')} \langle [A(t), B(t')]_e \rangle \]

It is reasonable, for a stable system, to assume that the part in $\langle \rangle$ does not grow exponentially with time. Let $\omega = \omega_0 + i\omega_c$ so we may explore the properties of $G(\omega)$ in ω. If $\omega_c > 0$, then the integral is convergent so that $G(\omega > 0)$ is analytic since its derivatives also exist since they just add factors of t to the integrand of

\[G(\omega) = -i \int_{-\infty}^{\infty} dt \ e^{i\omega t} e^{-i\omega_c t} \langle [A(t), B(0)]_e \rangle \]

which would converge for any $\omega_c > 0$ and finite $\langle \rangle$.
Then $G_R(w)$, the proper Fourier transform of $G(t-t')$ is then

$$G_R(w) = \lim_{w_i \to 0^+} G(w_i + iw)$$

Then as we have seen, $G_R(t)$ gives the response of the system to a force $f(t)$, it means that $G_R(w)$ is the linear response of a system to one Fourier component, i.e., the response of a system to a sinusoidal force $F(w)$ of frequency w.

A very similar argument applied to $G_A(w)$ shows that it is analytic in the lower half plane.

Let's investigate $G(w)$ further in the Lagrangian representation, i.e., we introduce a complete set $\{|n>\}$ of states of H with eigenvalues E_n

$$H|n> = E_n|n>$$

Then

$$G(w) = -\frac{i}{\pi} \int_0^\infty dt \exp(-it) \sum_m e^{-iE_m t} \langle H(t), \phi(0) | m \rangle |n>$$
\[\frac{1}{2} \sum_n H e^{i\omega t} \sum e^{-BE_n} \langle n | A(4) B(0) + eB(0) A(4) | n \rangle \]

Now insert \(I = \sum_n \ln x_n \)

\[\frac{1}{2} \int_0^\infty dt e^{i\omega t} \sum_{nn} e^{-BE_n} \left\{ A_{nn} B_{nn} e^{i(E_n - E_n)t} + e^{B_{nn} A_{nn} e^{i(E_n - E_n)t}} \right\} \]

let \(n \rightarrow m \) in the second term

\[\frac{1}{2} \int_0^\infty dt e^{i\omega t} \sum_{nm} (e^{-BE_m} + e^{-BE_n}) A_{nm} B_{nm} e^{i(E_n - E_m)t} \]

Now integrating over time, we obtain

\[G(\omega) = \frac{1}{2} \sum_{nm} \frac{e^{-BE_n} + e^{-BE_m}}{E_n - E_m - \omega} A_{nm} B_{mn} \]

Note \(E_n, \omega, e \) are real, so let

\[G(\omega) = \frac{1}{2} \int_0^\infty dx \sum_{nm} \frac{e^{-BE_n} + e^{-BE_m}}{w - x} A_{nm} B_{mn} \delta(x - E_n + E_m) \]

\[= \int_0^\infty dx \frac{A(x)}{w - x} \]

where

\[A(x) = \frac{1}{2} \sum_{nm} e^{-BE_m} A_{nm} B_{nm} \delta(x - E_n + E_m) \]

is the spectral function of \(A \) and \(B \) operators with the properties
\[\sum_{m} \int_{0}^{\infty} \frac{A(x)}{1 + e^{-\beta x}} = \frac{1}{2} \sum_{mn} e^{-\beta E_n} A_{mn} B_{mn} = \langle A, B \rangle \]

\[\int_{-\infty}^{\infty} dx \ A(x) = \langle [A, B]_e \rangle \]

more significantly

\[G(w) = \int \frac{A(x)}{w-x} \sim \frac{1}{w} \int dx \ A(x) = \frac{\langle [A, B]_e \rangle}{w} \]

That is, if \(A = G_x \) and \(B = G^+ \) and \(e = -1 \) for all

\[G_x(w) \sim \frac{1}{w} \]

Now suppose we repeat this, starting with

\[G'(w) = \int_{-\infty}^{\infty} dt \ e^{i \omega(t-t')} G_A(t-t') \]

then since \(G_A(t-t') \propto \theta(t'-t) \), we would find that the integral converges provided that \(\omega < 0 \), so \(G_A(w) \) is analytic in the lower half plane, we would also find that

\[G'(w) = \int_{-\infty}^{\infty} dx \ \frac{A(x)}{w-x} \]

with the same A!
I.e., \(G'(w) = G(w) \) and

Note that:

\[
\begin{align*}
G_R(w) &= G(w + i\delta) \\
G_A(w) &= G(w - i\delta)
\end{align*}
\]

\(\delta = \epsilon^+ \)

So that \(G(w) \) is analytic in the upper half plane and equal to \(G_R \); and also analytic in the lower plane and equal to \(G_A \)

\[
G = G_R \quad \text{analytic}
\]

\[
G = G_A \quad \text{analytic}
\]

The branch cut separating the two regions is

\[
G_R(w) - G_A(w) = \lim_{\delta \to 0} \left\{ G(w + i\delta) - G(w - i\delta) \right\}
\]

\[
= \lim_{\delta \to 0} \int_{-\infty}^{\infty} dx \, A(x) \left\{ \frac{1}{w + i\delta - x} - \frac{1}{w - i\delta - x} \right\}
\]

\[
= -2\pi i \int_{-\infty}^{\infty} dx \, A(x) \delta(w - x)
\]

\[
= -2\pi i \, A(x)
\]
Now what about the time ordered $G_c(w)$ that we can calculate using FDPT. If we repeat the same steps, in introduce $1/n < h$... then we find

$$G_c(w) = \int_{-\infty}^{\infty} dx \, A(x) \left\{ \frac{P}{w-x} - \frac{1-\mathrm{e}^{-\beta x}}{1+\mathrm{e}^{-\beta x}} \delta(x-w) \right\}$$

the term

$$I = \int_{-2}^{2} f(x) \, e^x \, \frac{1}{1+\mathrm{e}^{-\beta x}}$$

I.e from A we can get G_R, G_c and G_R. Thus is significant, since we may calculate G_c using FDPT, take its imaginary part & extract G_R which describes the physics, the linear response of the system.

What about G_m? Matsubara introduced $G_m(\tau)$ as a convenient way to generalize the $T=0$ formalism to finite T. If we can write it in terms of A, then we can calculate the finite T linear response physics! Generally let $0 < \varepsilon < \beta$ then
\[G(\tau - \beta) = -\langle T e^{-i(\tau - \beta)} A(\tau - \beta) B(0) \rangle \]
\[= \epsilon \langle B(0) A(-i(\tau - \beta)) \rangle \]
\[= \epsilon \frac{\text{Tr} e^{-\beta H} B e^{(\tau - \beta) H} A e^{-(\tau - \beta) H}}{\text{Tr} e^{-\beta H} A e^{\tau H} B e^{-\tau H}} \]
\[= \epsilon \langle A(0) B(\tau) \rangle = \epsilon \langle A(-i\tau) B(0) \rangle \]
\[= -\epsilon G(\tau) \]

That is that \(G_n(\tau) \) is a periodic function of \(\tau \), with period \(\beta \).

\begin{align*}
\text{Fermions} & \quad e = -1 \\
\text{G}(\tau) & \quad \begin{array}{c}
\text{G}(\tau - \beta) = -\text{G}(\tau)
\end{array}
\end{align*}

Since \(G \) is an (anti)periodic function, it
has a discrete Fourier transform.

\[\text{Fermion} \]
\[G(\omega) = T \sum_n e^{-i\omega n \beta} G(i\omega_n) \]
\[\text{Since} \quad G(\tau) = -G(\tau + \beta) \quad \omega_n = (2n+1)\pi T \]
\[G(i\omega_n) = \frac{1}{\sqrt{\beta}} \int_0^\beta e^{i\omega_n \tau} G(\tau) \]

\[\text{Bosons} \]

Similarly if \(e = -1 \), Bosons

\begin{align*}
\text{Boson} & \quad e = -1 \\
\text{G}(\tau) & \quad \begin{array}{c}
\text{G}(\tau) = \text{G}(\tau)
\end{array}
\end{align*}
Then
\[G(\tau) = T \sum_{n} e^{-i\kappa_{n}\tau} G(\kappa_{n}) \quad \kappa_{n} = 2\pi nT \]
\[G(\kappa_{n}) = \int_{0}^{\beta} d\tau e^{i\kappa_{n}\tau} G(\tau) \]

Now, can we write \(G_{m} \) in terms of \(A \)?

\[G_{m}(\kappa_{n}) = -\frac{1}{2} \int_{0}^{\beta} d\tau e^{i\kappa_{n}\tau} \text{Tr} e^{-\beta H} e^{\tau H} A e^{-\tau H} \]

Insert \(\sum_{\kappa} \text{Im} \kappa = i\pi \)

\[G(\kappa_{n}) = -\frac{1}{2} \int_{0}^{\beta} d\tau e^{i\kappa_{n}\tau} \sum_{nm} e^{-\beta E_{n}} A_{mn} B_{nm} c_{n}^{\dagger} e_{m}^{\dagger} \]

\[= -\frac{1}{2} \sum_{nm} A_{mn} B_{nm} \frac{e^{-\beta E_{n}} + e^{-\beta E_{m}}}{E_{n} - E_{m} - i\kappa_{n}} \]

\[= \int dx \frac{A(x)}{i\kappa_{n} - x} \]

Thus, knowledge of \(A \)

\[A(x) \rightleftharpoons \begin{cases} G_{0}(w) \\ G_{R}(w) \\ G_{I}(w) \\ G_{m}(w) \end{cases} \]

Furthermore, given any \(G \), we may calculate \(A \) and hence any other \(G \). Note that

\[G_{R}(w) = \int G_{m}(i\kappa_{n} \rightarrow w + i\epsilon) \]
Fluctuation-Dissipation theorem relates fluctuations of A to the linear response to a force which couples to A

\[\langle A^2 \rangle \leftrightarrow \langle A(t) \rangle \]

Remember, we assumed \(\langle A \rangle = 0 \)

This intuitively makes sense. The more fluctuations a system experiences, the larger the response to an external force.

If \(X(w) \) is the response function, so that

\[\langle A(t) \rangle = \int_0^\infty dt' X(t+t') \langle f(t') \rangle = \langle A(w) \rangle = X(w) f(w) \]

and \(C(t-t') \) describes the fluctuations about equilibrium

\[C(t-t') = \frac{1}{2} \langle \{ A(t), A(t') \} \rangle = \int_0^\infty \frac{dw}{2\pi} e^{-i\omega(t-t')} C(w) \]

according to the FDT

\[C(w) = \frac{\gamma}{\hbar} \left[1 + 2N(w) \right] X^2(w) \]

Fluctuations quantum thermal dissipation \((\hbar \omega_0 = \hbar \omega) \)

When \(\omega \ll k_B T / \hbar \), \(\hbar \omega \approx k_B T / \hbar \omega \), then we recover the classical result.
\[C(\omega) = \frac{2kT}{\omega} X''(\omega) \]

Let's prove this, starting with the classical result. Imagine we have a classical oscillator.

\[\mathcal{A} \text{ssuming} \]
\[\langle X(\omega) X(\omega') \rangle = 2kT \int \frac{d\omega}{2\pi} \omega e^{-i\omega t} \]
\[X(\omega) = X'(\omega) + iX''(\omega) \]

\[\text{E.O.M. } m(\ddot{x} + \omega^2 x) + \eta \dot{x} = f(t) \]
\[\text{spring force } \frac{m}{\eta} \text{ applied force} \]

After we Fourier transform
\[X(\omega) = \mathcal{F}(x(t)) \quad \mathcal{F}(\omega) = \frac{1}{m(\omega^2 - \omega_0^2) - i\eta \omega} \]
\[X''(\omega) = \frac{\eta \omega}{(m(\omega^2 - \omega_0^2))^2 + \eta^2 \omega^2} = |X(\omega)|^2 \eta \omega \]

According to the equipartition theorem
\[\frac{1}{2} \omega_0^2 \langle x^2 \rangle = \frac{kT}{2} \]
\[\langle x^2 \rangle = \int \frac{d\omega}{2\pi} (X(\omega))^2 |\mathcal{F}(\omega)|^2 = \frac{kT}{\hbar \omega_0} \]
If the damping is weak, \(n \ll \omega_0 \) then

\[
\frac{\vert X'(\omega) \vert^2}{\vert X(\omega) \vert^2} = \frac{H(\omega)}{H(\omega_0)}
\]

An adiabatic approximation to the integral is possible. Let \(\vert X(\omega) \vert^2 = \frac{1}{\omega_0} X''(\omega) \)

\[
K_0 T/(m\omega_0^2) = \frac{H(\omega_0)}{2\pi} \int_0^{\omega_0} d\omega \frac{X''(\omega)}{\omega} = \frac{H(\omega_0)^2}{2m\omega_0^2 n}
\]

That is \(\vert f(\omega_0) \vert^2 = 2nK_0 T \). Since \(\omega_0 \) is arbitrary, this must apply for all \(\omega_0 \).

\[
\vert f(\omega) \vert^2 = 2nK_0 T
\]

Thus

\[
C(\omega) = \langle X(\omega)X(-\omega) \rangle = \vert X(\omega) \vert^2 \vert f(\omega) \vert^2
\]

\[
C(\omega) = \left(\frac{\vert f(\omega) \vert^2}{\omega} \frac{X''(\omega)}{\omega_n} \right) = \frac{2K_0 T}{\omega} X''(\omega)
\]

\[
C(\omega) = \frac{2K_0 T}{\omega} X''(\omega) \quad \text{Classical Fluctuation}
\]

\[
\text{Dissipation Theorem}
\]
We will now prove the Quantum FDP again using the Lehmann representation. I.e. we employ the complete set of states of H

$$H |n\rangle = E_n |n\rangle \quad \mathbb{1} = \sum_n |n\rangle \langle n|$$

and

$$\langle n| A(t) |m\rangle = \langle n| e^{iHt} A e^{-iHt} |m\rangle$$

$$= e^{i(E_n - E_m)t} A_{nm}$$

We apply this to $\chi(t-t')$, $\chi(t)$ and $C(t-t')$

$$\chi(t-t') = i \langle A(t) A(t') - A(t') A(t) \rangle \Theta(t-t')$$

$$= i \sum_{nm} e^{-BE_n} \left\{ \langle n| A(t) |m\rangle \langle m| A(t') |n\rangle - \langle n| A(t') |m\rangle \langle m| A(t) |n\rangle \right\} \Theta(t-t')$$

$$= i \sum_{nm} (e^{-BE_n} - e^{-BE_m}) |n\rangle \langle m| A |n\rangle \langle m| \chi(t-t')$$

We now introduce the spectral function $A(\omega) = -\frac{i}{\pi} \text{Im} C(\omega)$ or in this case $A(\omega) = -\frac{i}{\pi} \chi^\prime(\omega)$

$$\chi'(\omega) = \frac{1}{\pi} \sum_{nm} |n\rangle \langle m| A |n\rangle \langle m| e^{-BE_n} \delta(\omega - (E_n - E_m))$$

$$= \frac{1}{\pi} \sum_{nm} (e^{-BE_n} - e^{-BE_m}) |n\rangle \langle m| A |n\rangle \langle m| \delta(\omega - (E_n - E_m))$$

This is very close in form to $\chi(t-t')$
In fact we may write

\[X(t) = i \int_0^\infty \Theta(t) \sum n \left[e^{-i(En-Em)t} \left(e^{-BEn} - e^{-EBm} \right) \right] \left| \langle m \mid A(t) \rangle \right|^2 \]

by its definition

\[= \int_0^\infty \Theta(t) dw \ e^{-i\omega t} X''(w) \]

Then we use i \int_0^\infty e^{-i\omega t} dw = \frac{1}{\omega+i\delta} \text{ and we get}

\[X(\omega) = \int \frac{dw}{\pi} \frac{1}{\omega+i\delta-\omega} X''(\omega) \]

We may do roughly the same thing with the fluctuation function.

\[C(t-t') = \frac{1}{2} \left\langle \left[A(t), A(t') \right]^2 \right\rangle \quad \text{no } \Theta(t-t') \]

\[= \frac{1}{2} \sum_{nm} e^{-BEn} \left\{ \langle n \mid A(t) \mid m \rangle^* \langle m \mid A(t') \mid n \rangle + \langle n \mid A(t') \mid m \rangle^* \langle m \mid A(t) \mid n \rangle \right\} e^{-i(En-Em)(t-t')} \]

\[= \frac{1}{2} \sum_{nm} \left(e^{-BEn} + e^{-BEm} \right) \left| \langle n \mid A(t) \rangle \right|^2 \left(e^{-i(En-Em)(t-t')} \right) \]

\[= \frac{1}{2} \sum_{nm} e^{-BEn} \left(1 + e^{-B(E_{m}-E_n)} \right) \left| \langle n \mid A(t) \rangle \right|^2 e^{-i(En-Em)(t-t')} \]

Again note the similarity to the definition of \(X'' \). They only differ by the sign so that (by inspection)

\[C(t) = \frac{1}{2\pi} \int \frac{dw}{1-e^{-i\omega t}} \left(\frac{1+e^{-B\omega}}{1-e^{-B\omega}} \right) X''(w) \]
\[C(t) = \int \frac{d\omega}{2\pi} \ e^{-i\omega t} \ (1 + 2n(\omega)) \ \chi''(\omega) \]

\[n(\omega) = \frac{1}{e^{\omega/kT} - 1} \]

Hence

\[C(\omega) = 2\hbar \left\{ \frac{\chi''(\omega)}{1 + n(\omega)} \right\} \chi''(\omega) \]

Quantum
Fluctuation
Dissipation
Theorem