• Please be sure to write your name and class instructor above.

• The test consists of 3 questions (multiple choice), and 4 problems (numerical). All numerical quantities must have appropriate units. Points will be deducted if units are absent.

• For the problems: Show your reasoning and your work – no credit will be given for an answer without explanation or work. Note that in many of the problems, you can do parts (b) or (c) even if you get stuck on (a) or (b).

• You may use scientific or graphing calculators. Cell phones cannot be used as calculators.

• Feel free to detach, use, and keep the formula sheet pages. No other reference material is allowed during the exam.

• Good Luck!
Problem 1 [20 points]
A long cylindrical wire of diameter 1.0 cm carries a total current of 75 A uniformly distributed over its cross section.

(a) [5 pts] Calculate the current density in the wire:

(b) [8 pts] At what distance from the axis of the wire, but still inside the wire, does the magnetic field have a magnitude of 1.0 mT? (Hint: think Ampere's Law)

(c) [7 pts] At what distance from the axis of the wire, but now outside the wire, does the field once again have a magnitude of 1.0 mT? (Hint: can be done independently of part (b)).
Question 1 [10 points]

The figure shows three long, straight, parallel, equally spaced wires with identical currents either into or out of the page.

(a) [4 pts] What is the direction of the net force on wire a, due to the other two wires:

 a) Toward the right
 b) Upward
 c) Toward the left
 d) Downward
 e) net force is zero

(b) [6 pts] Rank the wires according to the magnitude of the net force on each of them, due to the other two wires

 \[F_b > F_c > F_a \quad F_c > F_a > F_b \quad F_b > F_a = F_c \]

 \[F_c > F_b > F_a \quad F_a = F_b = F_c \]
Problem 2 [16 points]
The figure shows a 120 turn coil of radius 1.8 cm and resistance 7.0 Ω which is coaxial with a solenoid with 210 turns/cm and radius 1.6 cm. The current in the solenoid drops from 1.5 A to zero at in the time interval from t = 0 to t = 25 ms.

(a) [5 pts] Calculate the magnitude of the magnetic field inside the solenoid at time t = 0:

(b) [11 pts] Calculate the magnitude of the current which is induced in the coil during the time between t = 0 and t = 25 ms.
Question 2 [10 points]

The figure shows a long straight wire placed next to (in the plane of) a rectangular conducting loop. The straight wire carries a constant current i.

(i) [4 pts] What is the direction of the magnetic field from the long straight wire, at the position of the loop?

 a) Toward the right
 b) Toward the left
 c) Into the page
 d) Out of the page
 e) The magnetic field is zero

(ii) [6 pts] Now the wire is moved toward the loop. While the wire is being moved toward the loop, what is the direction of the induced current in the loop:

 a) Counterclockwise
 b) Clockwise
 c) Counterclockwise on the left side and clockwise on the right side
 d) Clockwise on the left side and counterclockwise on the right side
 e) The induced current is zero
Problem 3 [16 points]

A coil with an inductance of 1.6 H and a resistance of 10 Ω is suddenly connected to an ideal battery with an emf $E = 100 \text{ V}$.

(a) [11 pts] At a time of 0.5 s after the connection is made, calculate the rate at which energy is being stored in the magnetic field:

(b) [5 pts] A long time after the connection is made, what is the potential difference over the coil:
Question 3 [10 points]
The figure shows a parallel plate capacitor and the current in the connecting wires that is discharging the capacitor.

(i) [5 pts] What is the direction of the electric field E between the plates?

a) Toward the right
b) Toward the left
c) Into the page
d) Out of the page
e) The electric field is zero

(ii) [5 pts] What is the direction of the displacement current i_D between the two plates?

a) Toward the right
b) Toward the left
c) Into the page
d) Out of the page
e) The displacement current is zero
Problem 4 [18 points]

The figure shows a circuit in which switch S_2 has been closed for a long time. Now we open switch S_2 and at the same time close switch S_1, to make an LC circuit.

(a) [6 pts] Calculate the frequency f of the oscillation in the circuit.

(b) [6 pts] Calculate the maximum current in the circuit:

(c) [6 pts] Calculate the total energy stored in the circuit: