Physics 2113
Lecture 12: WED 24 SEP

CH24: Electric Potential

24-6 Potential Due to a Point Charge 635
24-7 Potential Due to a Group of Point Charges 636
24-8 Potential Due to an Electric Dipole 637
24-9 Potential Due to a Continuous Charge Distribution 639
Definition of electric potential:

Potential energy of a system per unit charge \(V = \frac{U}{q} \)

Units… Units…

\[V_f - V_i = \frac{U_f - U_i}{q} = \int_{i}^{f} \vec{E} \cdot d\vec{s} \]

Units: \([V] = \frac{\text{Joule}}{\text{Coulomb}} \equiv \text{Volt}\]

Unit most commonly used for electric fields

\[\Delta V = \frac{\Delta U}{q} \Rightarrow \Delta U = q \Delta V \]

\(eV = \text{electron-volt}, \) the energy that an electron acquires when placed in an electric potential of 1V

\[1 \ eV = (1.6 \times 10^{-19} \text{ C})V = 1.6 \times 10^{-19} \text{ J} \]
Potential due to a point charge:

Change in potential in bringing q0 from infinity to a point P.

\[\Delta V = -\int_A^B E \cdot d\vec{s} = -\int_{\infty}^{r} E \, dr' = -\int_{\infty}^{r} \frac{q}{4\pi\varepsilon_0 r'^2} \, dr' = -\frac{q}{4\pi\varepsilon_0} \int_{\infty}^{r} \frac{1}{r'^2} \, dr' = -\frac{q}{4\pi\varepsilon_0} \left[-\frac{1}{r'} \right]_{\infty}^{r} = \frac{q}{4\pi\varepsilon_0 r} \]

- If charge is negative, then potential is negative.
- At infinity, potential is zero, as expected for isolated sources.
- For several charges, potentials are simply superposed:

\[V = \sum_i V_i = \frac{1}{4\pi\varepsilon_0} \sum_i \frac{q_i}{r_i} \]

As was the case with electric fields, the potential outside a charged sphere or charged shell coincides with the potential of a point charge at the origin.
(a) In Fig. 24-9a, 12 electrons (of charge \(-e\)) are equally spaced and fixed around a circle of radius \(R\). Relative to \(V = 0\) at infinity, what are the electric potential and electric field at the center \(C\) of the circle due to these electrons?

KEY IDEAS

1. The electric potential \(V\) at \(C\) is the algebraic sum of the electric potentials contributed by all the electrons. (Because electric potential is a scalar, the orientations of the electrons do not matter.)
2. The electric field at \(C\) is a vector quantity and thus the orientation of the electrons is important.

Calculations: Because the electrons all have the same negative charge \(-e\) and are all the same distance \(R\) from \(C\), Eq. 24-27 gives us

\[
V = -12 \frac{1}{4\pi \varepsilon_0} \frac{e}{R} \quad \text{(Answer) (24-28)}
\]

Because of the symmetry of the arrangement in Fig. 24-9a, the electric field vector at \(C\) due to any given electron is canceled by the field vector due to the electron that is diametrically opposite it. Thus, at \(C\),

\[
\vec{E} = 0. \quad \text{(Answer)}
\]

Reasoning: The potential is still given by Eq. 24-28, because the distance between \(C\) and each electron is unchanged and orientation is irrelevant. The electric field is no longer zero, however, because the arrangement is no longer symmetric. A net field is now directed toward the charge distribution.
Potential due to a Dipole

At point P, the total potential is due to that of +q and -q

\[
V = \frac{1}{4\pi\varepsilon_0} \left(\frac{q}{r_+} - \frac{q}{r_-} \right) = \frac{q}{4\pi\varepsilon_0} \left(\frac{r_- - r_+}{r_+ r_-} \right)
\]

If point P is at “infinity” or \(r >> d \), then in this approximation we can consider fig (b):

\[
r_- - r_+ = d \cos \theta \quad \text{and} \quad r_- r_+ \approx r^2
\]

Then,

\[
V = \frac{q}{4\pi\varepsilon_0} \left(\frac{d \cos \theta}{r^2} \right)
\]

Electric dipole: defined as \(p = d \ q \)

\[
V = \frac{1}{4\pi\varepsilon_0} \left(\frac{p \cos \theta}{r^2} \right)
\]
CHECKPOINT 5

Suppose that three points are set at equal (large) distances r from the center of the dipole in Fig. 24-10: Point a is on the dipole axis above the positive charge, point b is on the axis below the negative charge, and point c is on a perpendicular bisector through the line connecting the two charges. Rank the points according to the electric potential of the dipole there, greatest (most positive) first.

\[V = \frac{1}{4\pi\varepsilon_0} \left(\frac{p \cos \theta}{r^2} \right) \]
Induced dipole

As we discussed, some molecules (H2O) have a permanent dipolar nature. Others do not, the distribution of electrons is spherical and its center coincides with the center of the nucleus.

But when a field is applied, a dipole moment is induced
Like for electric fields, you break it up into small pieces, treat each little piece like a point charge, and add up the resulting potentials. Unlike electric fields, you superpose the potentials as scalars, not vectors.

So it is messy, but a bit simpler.
Potential due to continuous distributions of charge

Strategy: same as for field calculations, break up into infinitesimal pieces, integrate. It is easier than for the field, since the potential is a scalar.

Example: charged rod

\[\lambda = \frac{q}{L} \quad dq = \lambda \, dx \]

\[dV = \frac{dq}{4\pi\varepsilon_0 r} = \frac{\lambda \, dx}{4\pi\varepsilon_0 \sqrt{a^2 + x^2}} \quad V = \int_0^L dV \]

\[V = \frac{\lambda}{4\pi\varepsilon_0} \ln \left[\frac{L + \sqrt{L^2 + a^2}}{a} \right] \]

Check: if \(a \to \infty \), then \([\ln] \to 1\), \(V \to 0 \)

Since the argument of log is greater than unity, \(V \) is always positive
Potential due to a charged disk

Consider a charged disk of radius R with a uniform charge density. We wish to compute the potential at point P lying on the central axis of the disk.

We consider a differential element of radius R' and width dR', enclosing a surface area $2\pi R' dR'$

Enclosed charge: $dq = \sigma (2\pi R' dR')$

This enclosed charge leads to the potential:

$$dV = \frac{dq}{4\pi \varepsilon_0 r}$$

We can then integrate this potential from 0 to R to get the net potential due to the disk:

$$V = \int_0^R \frac{dq}{4\pi \varepsilon_0 r} = \frac{\sigma}{2\varepsilon_0} \left(\left(z^2 + R^2 \right)^{1/2} - z \right)$$
Example

All the charge is at the same distance \(R \) from \(C \), so the potential at \(C \) is,

\[
V = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{R} - \frac{6Q}{R} \right) = -\frac{5Q}{4\pi\varepsilon_0 R}
\]

All the charge is at the same distance from \(P \), so the potential at \(P \) is,

\[
V = \frac{1}{4\pi\varepsilon_0} \left(\frac{Q}{\sqrt{R^2 + z^2}} - \frac{6Q}{\sqrt{R^2 + z^2}} \right) = -\frac{5Q}{4\pi\varepsilon_0 \sqrt{R^2 + z^2}}
\]
Summary

• Like electric fields, potentials for configurations involving many charges or continuous charge distributions are obtained by superposing.
• But the superposition is a scalar one, so it is usually easier to do than superposing fields.
• Next class we will learn that one can obtain the fields from the potentials, so this simplifies calculations quite a bit.