Physics 2203, Fall 2012
Modern Physics

- Friday, Aug. 31st, 2012:
 Finish Ch. 2
- Announcements:
 • Tutorial session 4:30 pm Tuesday in Nicholson 102
 • Quiz today
 • Fall break canceled!
 • Monday is Labor Day.
Relativistic E, E_K, and Momentum

\[E = \gamma m_0 c^2 = \frac{m_0 c^2}{\sqrt{1 - \frac{u^2}{c^2}}} = \gamma m_0 c^2 \equiv E_K + m_0 c^2 \]

\[E_K = m_0 c^2 (\gamma - 1) = \gamma m_0 c^2 - m_0 c^2 \]

\[E^2 = (pc)^2 + (mc^2)^2 \]

\[E_K = \sqrt{p^2 c^2 + (mc^2)^2} - mc^2 \]

\[\beta = \frac{\nu}{c} \equiv \frac{pc}{E} \]

\[E = \gamma m_0 c^2 = Mc^2 \]

\[M = \gamma m_0 \]
Units

Energy is measured in Joules. Convert J to eV

An electron volt (eV) is the energy to move an electron though one volt.

\[
1.0 \text{ eV} = e(1.0 \text{ V}) = \left(1.602 \times 10^{-19} \text{ C}\right)(1.0 \text{ V}) = 1.602 \times 10^{-19} \text{ J}
\]

\[
J = \frac{1 \text{ eV}}{1.602 \times 10^{-19} \text{ C}}
\]

Example: Rest energy of an electron

\[
m_0c^2(\text{electron}) = \frac{8.19 \times 10^{-15} \text{ J}}{1.602 \times 10^{-19} \text{ J}} = 5.11 \times 10^5 \text{ eV} = 0.511 \text{ MeV}
\]

\[
m_0c^2(\text{electron}) = 0.511 \text{ MeV}
\]

\[
m_0c^2(\text{neutron}) = 939.57 \text{ MeV}
\]

\[
m_0c^2(\text{proton}) = 938.3 \text{ MeV}
\]

Units for mass

\[
m_0 \rightarrow \frac{\text{MeV}}{c^2}
\]

\[
m_0(\text{electron}) = \frac{0.511 \text{ MeV}}{c^2}
\]
Units

Units for momentum: \(E^2 = (pc)^2 + (m_0c)^2 \)

\(pc \rightarrow \text{Energy} \rightarrow eV, KeV, MeV \)

\[pc = \frac{m_0vc}{\sqrt{1 - v^2 / c^2}} \]

Periodic Table notation: \(_Z^AP \)

\(P \) The chemical element --H, He, Ar, etc.

\(A=Z+N \rightarrow Z \# \text{protons}, N \# \text{neutrons} \)

Atomic Mass unit \(u \), defined as \(\frac{1}{12} \) mass of \(^{12}C\)

\(1u = 931.494013 Mev / c^2 \)

Uranium \(^{238}U \rightarrow 238.0507u \)
A simple experiment: two blocks of wood with equal mass m and kinetic energy K, are moving toward each other with velocity v. A spring placed between them is compressed and locks in place as they collide. Let's look at the conservation of mass-energy.

Mass – Energy before: \(E = 2mc^2 + 2K \)

Mass – Energy after: \(E = Mc^2 \)

Since Energy is conserved we have \(E = 2mc^2 + 2K = Mc^2 \)

\(M \) is greater than \(2m \) because \(K \) went into mass.

\[\Delta M = M - 2m = \frac{2K}{c^2} \]

In Relativistic Mechanics

Momentum and Total Energy are conserved!
Equivalence of Mass and Energy

Examples of Energy to Mass Exchange

• Ionization $H \rightarrow p + e : 13.6 \text{ eV: } \Delta M = \frac{13.6 \text{ eV}}{c^2}$

• Chemical Binding Energy $H_2O \rightarrow 2H + O : \sim 3 \text{ eV: } \Delta M = \frac{3 \text{ eV}}{c^2}$

• Fusion $^1H + ^1H \rightarrow ^2He + \text{ energy: } \Delta M = \frac{23.9 \text{ MeV}}{c^2}$

• Fission $^{232}Th \rightarrow ^{228}Ra + ^4He: \Delta M = \frac{4 \text{ MeV}}{c^2}$

• Nuclear reactions: $p + p \rightarrow p + p + p + p : \text{ antiproton}$
The antiproton \bar{p} was discovered in 1956 through the following reaction

$$p + p \rightarrow p + p + p + \bar{p}$$

Find the minimum kinetic energy of the accelerated proton in the figure. This is called the **threshold** kinetic energy, for which the **final particles move together** as if they were a single unit.

Conservation of Energy

$$E_p + m_p c^2 = 4E'_p$$

Conservation of Momentum

$$p_p = 4p'_p$$

Here E'_p and p'_p are for each of the 4 particles

$$E'_p = \frac{E_p + m_p c^2}{4}$$

$$\sqrt{E_p^2 - (m_p c^2)} = 4\sqrt{E_{p'}^2 - (m_p c^2)}$$

$$E_p^2 - (m_p c^2) = \left[\left(E_p + m_p c^2\right)^2 - 16(m_p c^2)\right]$$

$$E_p = 7m_p c^2$$

$$K = E_p - m_p c^2 = 6m_p c^2 = 6(938 \text{ MeV}) = 5628 \text{ MeV} = 5.628 \text{ GeV}$$
A neutral K meson (mass 497.7 MeV/c²) is moving with a kinetic energy of 77.0 Mev. It decays into a π meson (mass 139.6 MeV/c²) and another particle (A) of unknown mass. The π meson is moving in the direction of the original K meson with a momentum 381.6 MeV/c. (a) Find the momentum and total energy of the unknown particle. (b) Find the mass of the unknown particle.

Total Energy and **Momentum** of K meson are

\[E_K = K_K + m_K c^2 = 77.0 \text{MeV} + 497.7 \text{ MeV} = 574.7 \text{ Mev} \]

\[p_K = \frac{1}{c} \sqrt{E_K^2 + (m_K c^2)^2} = 287.4 \text{ Mev} / c \]

Total Energy of π meson is

\[E_\pi = \sqrt{(c p_\pi)^2 + (m_\pi c^2)^2} = \sqrt{(381.6 \text{MeV})^2 + (139.6 \text{MeV})^2} = 406.3 \text{ MeV} \]

Conservation of momentum requires \(p_K = p_\pi + p_A \)

\[p_A = p_K - p_\pi = (287.4 - 381.6) \text{ MeV} / c = -94.2 \text{ MeV} / c \]

Conservation of Energy requires \(E_K = E_\pi + E_A \)

\[E_A = E_K - E_\pi = (574.7 - 406.3) \text{ MeV} = 168.4 \text{ MeV} \]

(b) find mass: \(m_A c^2 = \sqrt{E_A^2 + (c p_A)^2} = \sqrt{(168.4)^2 + (94.2)^2 \text{ MeV}} = 139.6 \text{ MeV} \)
Equivalence of Mass and Energy: H atom

Binding Energy of the Hydrogen Atom: The binding energies of electrons to the nuclei of atoms are much smaller than nuclear binding energies. The binding energy for an electron to a proton (Bohr model) is 13.6 eV. How much mass is lost when an electron and proton from a hydrogen atom?

This is again a before and after problem: Before you have an isolated electron and proton. After you have a H atom whose binding energy is 13.6 eV.

\[
\Delta mc^2 = E(binding) = 13.6eV
\]

\[
m_Hc^2 \approx m_p c^2 = 938.3MeV
\]

\[
\frac{\Delta m}{m_H} \approx 1.4 \times 10^{-8}
\]
Equivalence of Mass and Energy: Dissociation

(a) How much lighter is a molecule of water than two hydrogen atoms and an oxygen atom? The binding energy of water is $\sim 3eV$.

(b) Find the fractional loss of mass per gram of water formed.

(c) Find the total energy released (mainly as heat and light) when 1 gram of water is formed?

\[\Delta M = (m_H + m_H + m_O) - M_{H_2O} = \frac{E(binding)}{c^2} \]

\[\Delta M = \left(3.0eV\right) \left(1.6 \times 10^{-19} J / eV\right) = 5.3 \times 10^{-36} \text{ kg} \quad \text{Really small!} \]

\[\frac{\Delta M}{M_{H_2O}} = \frac{E(binding)}{M_{H_2O}c^2} \]

\[M_{H_2O} = 18u : \quad u \text{ is } 1/12 \text{ of the mass of Carbon (6 protons, 6 neutrons)} \]

\[M_{H_2O} = 18 \left(1.66 \times 10^{-27} \text{ kg}\right) \]

\[\frac{\Delta M}{M_{H_2O}} = \frac{5.3 \times 10^{-36} \text{ kg}}{18 \left(1.66 \times 10^{-27} \text{ kg}\right)^2} = 1.8 \times 10^{-10} \quad \text{Still small!} \]

\[E = \Delta mc^2 = \left(1.8 \times 10^{-10}\right) \left(10^{-3} \text{ kg}\right) \left(3 \times 10^8 \text{ m/s}\right)^2 = 16kJ \quad \text{Big!} \]
Equivalence of Mass and Energy: Fusion

Fusion: Energy is gained by taking two light atoms and combining them into an atom with a heavier nuclei-later this semester. For example:

\[
\frac{1}{2}H + \frac{1}{2}H = \frac{4}{2}He + \text{Energy}
\]

\[
\frac{E}{c^2} = \text{mass} \left(\frac{1}{2}H + \frac{1}{2}H \right) - \text{mass} \left(\frac{4}{2}He \right)
\]

\[
E = \left(3751.226 - 3727.379 \right) \text{MeV}
\]

\[
E = 23.9 \text{MeV}
\]
Fission Reactions: The decay of a heavy radioactive nucleus at rest into several lighter particles emitted with large kinetic energies is a great example of mass-energy conversion. A nucleus of mass \(M \) undergoes \textit{fission} into particles with masses \(M_1, M_2, \) and \(M_3 \), with speeds of \(u_1, u_2, \) and \(u_3 \).

The conservation or Relativistic Energy Requires that

\[
M c^2 = \frac{M_1 c^2}{\sqrt{1 - \frac{u_1^2}{c^2}}} + \frac{M_2 c^2}{\sqrt{1 - \frac{u_2^2}{c^2}}} + \frac{M_3 c^2}{\sqrt{1 - \frac{u_3^2}{c^2}}}
\]

\textit{This is a very important equation to remember}

The Equation above is true if

\(M > (M_1 + M_2 + M_3) \)

\textit{Disintegration Energy} \(Q \) defined

\[
Q = [M - (M_1 + M_2 + M_3)] c^2
\]

\textit{Example} in our text (pg 61)

\(^{232}\text{Th} \rightarrow ^{228}\text{Ra} + ^4\text{He} \)

The offspring have 4 Mev Kinetic Energy

\begin{align*}
\text{Atom} & & \text{Mass (in u)} \\
^{232}\text{Th} & & 232.038 \quad \text{Initial} \\
^{228}\text{Ra} & & 228.031 \\
^4\text{He} & & + 4.003 \\
\{ & & \{ \frac{232.034}{0.004} \}
\end{align*}

\text{Initial Total} \quad \text{Difference}

\text{Appendix D:} \ 1 \ u = 1.66 \times 10^{-27} \text{kg:}

\[
\Delta M = (0.004 u) \left(1.7 \times 10^{-27} \text{kg}\right) u
\]

\[
\Delta M = 7 \times 10^{-30} \text{ kg}
\]

\[
\Delta Mc^2 = 6.3 \times 10^{-13} J = 4 \text{ MeV}
\]
Change in the Solar Mass: Compute the rate at which the Sun is losing mass, given that the mean radius R of the Earth’s orbit is 1.50×10^8 km and the intensity of the solar radiation on the Earth is 1.36×10^3 W/m2 (called solar constant).

Assume that the sun radiates uniformly as a sphere of radius R

$$P = (\text{area of sphere})(\text{solar constant})$$

$$P = (4\pi R^2)(1.36 \times 10^3 \text{ W} / \text{m}^2)$$

$$P = 4\pi (1.50 \times 10^{11} m)^2 (1.36 \times 10^3 \text{ W} / \text{m}^2)$$

$$P = 3.85 \times 10^{26} \text{ J} / \text{s}$$

This is about 4 million metric tons

$$m = \frac{E(\text{lost})}{c^2}$$

$$m = \frac{3.85 \times 10^{26} \text{ J} / \text{s}}{(3 \times 10^8 \text{ m} / \text{s})^2} = 4.3 \times 10^9 \text{ kg} / \text{s}$$

If this rate of mass loss remains constant and with a fusion mass-to-energy conversion efficiency of about 1 percent, the Sun’s present mass of $\sim 2.0 \times 10^{30}$ kg will “only” last for about 10^{11} more years!
In Classical Mechanics we can’t have a particle with m=0, because E and p are zero.

In Relativistic Mechanics we can have a particle with m=0

\[E = \gamma m_0 c^2 \]
\[\vec{p} = \gamma m_0 \vec{u} \]

\[E^2 = (pc)^2 + (m_0 c^2)^2 \]
\[\beta = \frac{v}{c} = \frac{pc}{E} \]

Now look at what happens to the equations in the right box if m=0.

\[E = pc \]
\[\beta = 1 \]

Now look at what happens to the equations in the left box if m=0.

\[E = \gamma m_0 c^2 \approx \infty \cdot 0 \]
\[\vec{p} = \gamma m_0 \vec{u} \approx \infty \cdot 0 \]
In Relativistic Mechanics we can have a particle with m=0. It is a photon. Chapter 4

A photon is a consequence of Quantum Mechanics (Einstein). It is the particle nature or light waves. The energy comes in terms of photons each with a discrete energy and momentum depending upon the wave length of the light.

You must have done the experiment with a supported plate with one side polished and the other side black. When light shines on this the plate rotates because of the momentum change from the photons.

Our example of ionization of H

\[\gamma + H \rightarrow e + p \]

Photons are massless particles v=c: E=pc

Neutrinos were believed to be massless, but recent experiments show m~10^{-5}m_e.

Gravitons are related to gravity the way photons are to light should have m=0. No experimental evidence--LIGO
Quiz
Quiz #1

Prove that by using the new definition of momentum that momentum is conserved in the S' coordinate system.

Consider the inelastic collision of two equal mass objects shown in the figure.

Now consider the S' system moving with object #1 at a velocity of v.

\[
\vec{p} = \frac{m\vec{u}}{\sqrt{1 - \frac{u^2}{c^2}}}
\]

\[
u' = \frac{u_x - v}{1 - \frac{vu_x}{c^2}}
\]

we need to find v_2' and V' using the transform

\[
v_2' = \frac{v_2 - v}{1 - \frac{v_2 v}{c^2}} = \frac{-v - v}{1 - \frac{c^2}{c^2}} = -2v
\]

\[
V' = \frac{V - v}{1 - \frac{V v}{c^2}} = \frac{0 - v}{1 - (0)v} = -v
\]