On Beatrice M. Tinsley’s Notes from 1978

This document contains a scanned copy of one of my most cherished possessions from my time in the Astronomy Department at Yale University (mid 1978 – mid 1980): Five pages of handwritten notes from my mentor, Professor Beatrice M. Tinsley, showing that she, too, had given some thought to the implications of a 1/r force-law for gravity as early as 1978. As I recall, when I first mentioned to her that I was seriously looking into the idea that the flat rotation curves of galaxies as well as the velocity dispersion of clusters of galaxies might be simultaneously explained by invoking a 1/r force-law at large distances and was wondering whether or not it would be completely crazy to consider publishing the idea, she turned to her file cabinet, pulled out a thin folder and handed the contents to me.

– Joel E. Tohline
Professor Emeritus, LSU Dept. of Physics & Astronomy
(preface dated 3/8/2015)
Grav. force \(\sim \frac{1}{r^2} \) at large \(r \)

Let the accel. be \(a_c = -\frac{GM}{r^2} \)

\(-\frac{d^2a}{G} = \left[\rho(r) \cdot 2\pi y \cdot r \cdot d\theta \right] \cdot \frac{1}{r^2} \left(1 + \frac{x}{r_G} \right) \cos \phi \)

where \(y = r \sin \theta \), \(\cos \phi = \frac{d - r \cos \theta}{x} \)

\(\cos \theta = \frac{r^2 + d^2 - x^2}{2rd} \), \(\sin \theta \cdot d\theta = +\frac{yd}{rd}, \ d - r \cos \theta = \frac{r(d^2 - r^2 + x^2)}{2rd} \)

\[-\frac{d^2a}{G} = \rho(r) \cdot 2\pi r^2 \frac{x}{rd} \int \frac{x}{X^2} \frac{1}{X^2} \left(\frac{d^2 - r^2 + x^2}{2rd} \right)(1 + \frac{x}{r_G}) \]

\[-\frac{d^2a}{G} = 2\pi \rho(r) \cdot \frac{r^2 d^2}{2rd^2} \left(\frac{d^2 - r^2 + x^2}{2rd} \right) \left(\frac{1}{X^2} + \frac{1}{r_G} \right) \int dx \]

\[= \frac{1}{4} \frac{dM(r)}{rd^2} \left\{ \frac{(d^2 - r^2)}{(d - r)(d + r)} + 2r - \frac{d^2 - r^2}{r_G} \ln \frac{d + r}{d - r} + \frac{1}{2r_G} \left[(d + r)^2 - (d - r)^2 \right] \right\} \]

\[-\frac{d^2a}{G} = \frac{dM(r)}{d^2} + \frac{dM(r)}{r_G d} \left\{ \frac{d^2 - r^2}{4rd^2} \ln \frac{d + r}{d - r} + \frac{1}{2d} \right\} \]

Contrib. from shell of radius \(r \); \(dM(r) = 4\pi \rho(r) r^2 dr \).

Cf. expression if \(dM(r) \) was a point mass \(d \) away:

\[-\frac{d^2a}{G} = \frac{dM(r)}{d^2} + \frac{dM(r)}{r_G d} \]
Radio \(R = \frac{\text{Exact result}}{\text{pt. mass value}} = \frac{1}{d^2} + \frac{1}{r_c d} \left(\frac{d^2 - r^2}{4 r d} \ln \frac{d}{d-r} + \frac{1}{2} \right) \)

Express this in terms of \(\beta = d/r_c \) and \(\gamma = \frac{r_c}{d} \) \((0 < \beta < 1)\)

\[
R = 1 + \gamma \left(\frac{1}{4 \beta} \ln \frac{1+\beta}{1-\beta} + \frac{1}{2} \right) = \frac{1 + \gamma f(\beta)}{1 + \gamma}
\]

\[f(\beta) \to 1 \text{ as } \beta \to 0 \quad (r \ll d) \quad \text{and} \quad f(\beta) \to \frac{1}{2} \text{ as } \beta \to 1 \quad (r \approx d).
\]

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>95</th>
<th>99</th>
<th>999</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(\beta))</td>
<td>.997</td>
<td>.987</td>
<td>.969</td>
<td>.945</td>
<td>.912</td>
<td>.87</td>
<td>.82</td>
<td>.75</td>
<td>.66</td>
<td>.59</td>
<td>.53</td>
<td>.504</td>
</tr>
</tbody>
</table>

As \(\gamma \to 0 \) \((d \ll r_c)\), \(R \to 1 \) : Newtonian core.

As \(\gamma \to \infty \) \((d \gg r_c)\), \(R \to R(\beta) \).

If \(M(r) \) is centrally conc. so that say \(\beta < \frac{1}{2} \), \((r < \frac{d}{2})\), then

\[f(\beta) = .912 \text{ and } R \geq \frac{1.912}{2} = .96.
\]

:: A first approach (with systematic errors) is to treat a centrally conc. sphere \((r < r_c)\) or one with radius \(R \ll d \) as a point mass.

\[\mathbf{U}^2 \text{ circ.}(r) = \left| a_c \right| r = \frac{G M(r) + G M(r)}{r} \]

So if \(M(r) = \text{const.} \), inner total mass \(M \) at \(r > R \), and if \(r \gg r_c \), \(\mathbf{U}^2 \text{ circ.} \to \frac{G M}{r_c} = \text{const.} \)
Collapse time for a sphere

Considering force \(p + \) mass still, mass \(m \) fixed:

\[
\frac{d^2 r}{dt^2} = -\frac{Gm}{r^2} - \frac{Gm}{r_0 r}
\]

Usual:

\[
\frac{dt}{dr} = \left(\frac{dr}{dt}\right)^{-1}
\]

\[
\frac{dr}{dt} = \left(\frac{dt}{dr}\right)^{-1}, \quad \frac{d^2 r}{dt^2} = \frac{dt}{dr} \left(\frac{dt}{dr}\right)^{-1} = \frac{d}{dr} \left(\frac{dt}{dr}\right)^{-1} \times \frac{dr}{dt}
\]

Put \(y = \left(\frac{dt}{dr}\right)^{-1} \Rightarrow \frac{dy}{dr} = \frac{dr}{dt} \Rightarrow \frac{d^2 r}{dt^2} = \frac{dy}{dr} \times \frac{dy}{dr} \cdot \frac{dr}{dy} \cdot y \Rightarrow y = \frac{1}{r}, \; y(0) = 0.

\[
\frac{y}{\frac{dy}{dr}} = -\left(\frac{Gm}{r^2} + \frac{Gm}{r_0 r}\right) dr
\]

\[
\frac{1}{2} y^2 = \frac{Gm}{2} \left(\frac{1}{r} - \frac{1}{r_0}\right) - \frac{Gm}{r_0} \ln \frac{r}{r_0}
\]

Let \(r \to \infty \): Hence

\[
\frac{dr}{dt} = y = -\left(\frac{Gm}{r} - \frac{2Gm}{r_0} \ln \frac{r}{r_0}\right)
\]

At \(r = r_0 \):

\[
\frac{dr}{dt} = -\left(\frac{2Gm}{r_0} \ln \frac{r_0}{r_0}\right)
\]

Very roughly, \(t \approx (r_0 + r_0) \sim \frac{r_0}{\sqrt{\frac{2Gm}{r_0} \ln \frac{r_0}{r_0}}}
\]

b) \(r < r_0, \; r_0 \):

\[
\frac{dr}{dt} = \left(\frac{2Gm}{r}\right)^{1/2} \Rightarrow r^{1/2} dr = -\frac{2Gm}{r} t
\]

\[
\frac{2}{3} r_0^{3/2} - \frac{2}{3} r^{3/2} \approx \sqrt{2Gm} (t - t_0)
\]

\[
\text{total } t \sim \frac{r_0}{\left(\frac{2Gm}{r_0} \ln \frac{r_0}{r_0}\right)^{1/2}} + \frac{2}{3} \frac{r_0^{3/2}}{(2Gm)^{1/2}} \quad (r_0 > r_0)
\]

\[
r \approx \frac{2}{3} \frac{r_0^{3/2}}{(2Gm)^{1/2}} \quad (r_0 \ll r_0)
\]

\[
t \approx \sqrt{\frac{1}{6\pi G\rho_0}}
\]
Call the Newton mass collapse time \(t_N \) & the exact time \(t \), then

\[
\frac{t}{t_N} = \left(\frac{R_g}{R_0} \right)^{3/2} + \frac{3}{2} \frac{1}{R_0^{1/2}} \left(\frac{\ln R_0}{\ln R_0} \right)^{1/2} \left(\frac{1}{R_0} \right)
\]

\[
= R_0^{-3/2} + \frac{3}{2} R_0^{-1/2} \frac{1}{\ln R_0} \quad \text{where} \quad R_0 = \frac{R_0}{R_0}.
\]

This \(\downarrow \) as \(R_0 \uparrow \).

Point inside a spherical shell:

\[
y = r \cos \vartheta
\]

\[
\cos \vartheta = \frac{r^2 - d^2 - x^2}{2rd}
\]

\[
m \vartheta \ d\vartheta = \frac{2 \, dx}{rd}
\]

\[
\cos \varphi = \frac{r \cos \vartheta - d}{x} = \frac{r^2 - x^2 - d^2}{2 \, dx}
\]

Central accel: (go away from center)

\[
\frac{d^2 a}{G} = [g(r) \, dr \, 2 \pi y \, r \, d\vartheta] \frac{1}{x^2} \cos \varphi \left(1 + \frac{x}{R_0} \right)
\]

\[
= \frac{\pi pr^2 \, dr \, \frac{x}{rd} \, \frac{r^2 - x^2 - d^2}{2 \, dx} \left(1 + \frac{x}{R_0} \right)}{x^2}
\]

\[
= \frac{\pi pr^2 \, \frac{x}{rd} \, (\frac{r^2 - d^2}{x^2} - 1) \left(1 + \frac{x}{R_0} \right) \, dx}{d^2}
\]

\[
= \frac{dM(r)}{4 \, rd^2} \int_{r-d}^{r+d} \left(\frac{r^2 - d^2}{x^2} - 1 + \frac{r^2 - d^2}{x^2} - \frac{x}{R_0} \right) \, dx
\]

\[
= \frac{dM(r)}{4 \, rd^2 \, R_0} \left[\left(r^2 - d^2 \right) \ln \frac{r+d}{r-d} - \frac{1}{2} \left((r+d)^2 - (r-d)^2 \right) \right]
\]

\[
= \frac{dM(r)}{4 \, rd^2 \, R_0} \left\{ \frac{r^2 - d^2}{4 \, rd} \ln \frac{r+d}{r-d} - \frac{1}{2} \right\} = \frac{dM(r)}{R_0^2} \left\{ \frac{1 - d^2}{4 \, \alpha} \ln \frac{1 + \alpha}{1 - \alpha} - \frac{1}{2} \right\}
\]

where \(\alpha = \frac{d}{r} \quad \Rightarrow \quad 0 \leq \alpha < 1 \).
\[\frac{\text{d}a}{\text{d}t} = \frac{M(r)}{\text{rad}} \left\{ f(x) - 1 \right\} \quad \text{where } f(x) \text{ is the function defined on p.2: } f(x) \to 1 \text{ as } x \to 0 \]
\[\frac{\text{d}a}{\text{d}t} \to 0 \text{ as } \frac{d}{r} \to 0, \quad r \gg d \]
and \[\frac{\text{d}a}{\text{d}t} \to \frac{M(r)}{\text{rad}} \left(-\frac{1}{2} \right) \quad \text{as } d \to r \]

ie a force toward from the center, because the parks on the opposite side are relatively more effective than normal.

Not force in a medium of uniform density:

\[M(d) = \frac{4\pi}{3} pd^3 \]
\[dM(r) = 4\pi r^2 dr \]

Result (below): \[a = -\frac{G M(d)}{d^2} - \frac{G M(r)}{\text{rad}} \]

ie less central attraction than expected.

Particle at \(d \) experiences net accel:

\[\frac{\text{d}a}{\text{d}t} = \frac{M(d)}{d^2} - \frac{4\pi}{\text{rad}} \left\{ \int_0^d \text{dr} r^2 \left[\frac{d^2 - r^2}{4rd} \ln \frac{d}{r} + \frac{1}{2} \right] - \frac{d}{r} \int_0^d \text{dr} r^2 \left[\frac{r^2 - d^2}{4rd} \ln \frac{d}{r} - \frac{1}{2} \right] \right\} \]

\[= -\frac{M(d)}{d^2} - \frac{4\pi}{\text{rad}} \int_0^d \text{dr} r^2 (f' - 1) \]

\[\frac{\text{d}a}{\text{d}t} \to \frac{M(d)}{d^2} + \frac{3 M(d)}{\text{rad}} \left\{ \int_0^1 \text{d}x (f' - 1) \sum \text{approx} \right\} \]

\[\frac{\text{d}a}{\text{d}t} \to \frac{M(d)}{d^2} + \frac{M(d)}{\text{rad}} - \frac{6 M(d)}{\text{rad}} \left(\int_0^1 \text{d}x (f' - 1) \sum \text{approx} \right) \]

\[\frac{\text{d}a}{\text{d}t} \to \frac{M(d)}{d^2} + \frac{M(d)}{\text{rad}} - \frac{6 M(d)}{\text{rad}} \left(\int_0^1 \text{d}x (f' - 1) \sum \text{approx} \right) \text{since } (f' - 1) \text{ is negligible.} \]