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Overview: Quantum Critical Point in Hubbard Model

Vidhyadhiraja et. al PRL 102, 206407 (2009)

Hubbard model on square lattice
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A quantum critical point exist in the Hubbard model

Characterized by quasi-particle weight going to zero

At finite temperatures, MFL separates a NFL phase from FL
phase
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Scaling behavior of d-wave susceptibility

Yang et. al PRL, 106, 047004 (2011)

At QCP, pairing polarization decays algebraically χ′0d(T ) ∝ 1√
T

Scaling - T 1.5χ′′0d(ω)/ω curves for different T fall on top of each
other

T 1.5χ′′0d(ω)/ω = H(ω/T ) = (ω/T )−1.5

Kramers-Krönig -
χ′0d(T ) = 1

π

∫
dωχ′′0d(ω)/ω = 1

π

∫
dxH(x)× 1√

T
∝ 1√

T
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Motivation

Bethe-Salpeter equation for χ

BCS equation for transition temperature Tc

χ′0d(T ) ∝ 1√
T
⇒ Tc ∼ U2
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Energy Dispersion

vHS is pinned to the Fermi level near anti-nodal point X (π, 0)
at the QCP!

New result - pinning at finite filling

Role of vHS in the quantum criticality of Hubbard model?
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Bare d-wave susceptibility does not show good scaling!

χ
′
0d (T ) =

1

β

X
k,iωn

g2
d (k)G(k, iωn)G(−k,−iωn) =

X
k

g2
d (k)

 
1− 2nF (εk)

2εk

!

For standard dispersion ε(k) = −2t(cos kx + cos ky ), DOS
N(ω) ∼ log |ω|
By converting sum to integral cutoff by T , we get χ′0d ∼ −(log T )2
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Closer look at dispersion shows that vHS is flatter than
quadratic!

Dispersion around the Fermi vector along the anti-nodal
direction
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Critical DOS is ALGEBRAICALLY singular, not
logarithmic!

Peaks in DOS are algebraic near ω = 0 (Using analytic continuation of self
energy, Wang et. al PRB 80, 045101 (2009))

N(ω) ∼
1

(ω − ωp)α
,

where, 0 < α < 0.5 and ωp is location of maximum of peak

Peaks moves through ω = 0 at quantum critical filling

Quantum critical N(ω) shows low ω particle-hole symmetry
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Quartic dispersion show algebraic decay!

Toy Model with Quartic Dispersion

ε(k) = − 4

π4

(
(|kx | − π)4 − k4

y

)
Similar argument shows that for N(ω) ∼ 1√

ω
, χ0

d ∼
1√
T
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Effect of t ′ (t ′ = −0.1)

vHS pinned to Fermi level for larger range of doping

Affects transport properties like linear T resistivity, etc. for
larger doping range
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n = 0.75
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n = 0.80
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n = 0.83
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n = 0.85
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n = 0.87
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Summary

The algebraic decay of χ′0d cannot be understood simply from
vHS at Fermi level picture

Combined effect of vHS at Fermi level, extendedness of the
singularity and thermal broadening of the quasi-particle peaks
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Summary

For negative t ′, vHS pinned to Fermi level for larger range of
doping

leads to larger range of doping where MFL behavior is
observed
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Phase Diagram
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