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Repeated Prisoner’s Dilemma

Sandeep Pathak

Abstract—Situations involving cooperation and

defect can be modelled using the model of Pris-

oner’s Dilemma. The equilibrium outcome for such

one shot game is that both players defect. The in-

teresting and rich situations arise when the game

is played iteratively. The idea is that two players

may choose to cooperate by the threat of punish-

ment by the other player in future for cheating in

the present period. In this review, we look for

possibilities of cooperation in repeated Prisoner’s

Dilemma.

Index Terms—Prisoner’s Dilemma, Repeated

Games, Nash Equilibrium, Subgame perfect equi-

librium

I. Introduction

GAME theory is the study of interactions among
intelligent decision makers (players). In a game,

each player has a set of strategies from which he can
choose his move or action. Due to interactions, the
payoff or return of a player, not only depend on his ac-
tion but also on all the players’ actions. Thus, players
choose strategies which will maximize their payoffs.
The analysis of such interactions to find optimal or
equilibrium outcomes lies at the heart of the subject.
Game Theory has tremendous applications in politi-
cal science, ethics, psychology, philosophy, economics,
computer science and evolutionary biology ([1], [2],
[3]).

One of the most well-known example of a game is
that of a Prisoner’s Dilemma. It can model various
social situations such as Duopoly, Arms Race, Com-
mon Property, Tariff wars between countries, etc. It
involves two players who both have two strategies –
“cooperation” (C) and “defection” (D). The prefer-
ences over outcomes for player i(6= j) is in the follow-
ing order:

• i chooses D, j chooses C
• i chooses C, j chooses C
• i chooses D, j chooses D
• i chooses C, j chooses D

So, we can see that irrespective of what his partner
chooses, a player always has an incentive to choose
D to C. Thus, this game has a unique steady state
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equilibrium solution or Nash equilibrium (to be de-
fined later in the text) which is (D,D).

In many social settings, same players may en-
counter each other more than once. At every point
of time, each player can decide her action depending
on the history (set of previous outcomes). Thus, a
strategy of a player takes the form of a decision rule
which is a function of previous histories. For exam-
ple, a strategy can be as follows – start with C and
continue to cooperate until the other player defects
(chooses D) and choose D forever (or till the comple-
tion of the game) from the point when the other player
defects (grim trigger strategy). A lot of research has
gone into finding strategies which will ensure coop-
eration as an equilibrium outcome in repeated two
person Prisoner’s Dilemma ([4], [5], [6], [7], [8], [9],
[10]).

An interesting application of this idea can be in
the modelling of situation of a medieval trade fair. In
such a fair, a transaction typically involved a transfer
of goods in exchange for a promissory note to be paid
at the next fair. It would be interesting to investi-
gate – how honesty can be ensured in such a traders’
community in which each trader has an urge to cheat?
The problem can be modelled as N players interacting
via Prisoner’s Dilemma (two at a time) repeatedly.
Milgrom et. al ([11]) have studied such a model and
concluded that the threat of publicity of dishonest
behavior (community enforcement) can ensure hon-
est trade. Their model also illuminates the role of ju-
diciary in attaining socially desirable outcome. They
have gone ahead and studied the situation if the judge
himself is dishonest and how the system can sustain
such threats.

Repeated Prisoner’s Dilemma can be useful in other
situations as well. For example, it can be used to
model situation of Predator inspection by Stickleback
fish. Sticklebacks moves in pairs towards predators
to collect information for the community. Moving
forward is like cooperating and holding back is like
defecting. A lot of work ([12], [13], [14], [15]) has
been done in investigating the strategies used by two
sticklebacks in such expedition.

Suppose two persons play repeated Prisoner’s
Dilemma with different strategies. The strategy
which do well against other strategies is the domi-
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nant one and will evolve in a population at the cost
of others[8]. This is known as evolutionary compe-
tition. This is analogous to biological evolution in
which evolution process takes place by differential re-
production of the more successful individuals. Axel-
rod conducted tournaments in 1980s to find dominant
strategy in such an evolutionary competition for re-
peated Prisoner’s Dilemma problem.

The plan of this review is as follows. We start
with an introduction to two types of games (strategic
form games (section II.A) and extensive form (sec-
tion II.B) games) in section II. Various solution con-
cepts like Nash equilibrium and subgame perfect equi-
librium are discussed in sections A.3 and B.4 respec-
tively. Ideas of Repeated Games are discussed in sec-
tion III. Specifically, the discussion is on how the
ideas of strategies, outcomes etc. gets modified in the
repeated game settings. Various strategies are ana-
lyzed for their possible candidature for Nash equilib-
ria and subgame perfect equilibria. In section IV, a
detailed overview of the current research in the field
of Repeated Games is given. This review is concluded
with the discussion of open problems in section V.

II. Types of Games

Broadly, games can be classified into two categories
depending upon, whether the moves in the game are
sequential or simultaneous:

A. Strategic form or Normal form game

A strategic form game is the simplest form of the
game in which players are asked to choose their ac-
tions simultaneously without the knowledge about
other players’ actions.

A.1 Definition

A strategic form game, 〈N, Si, ui〉 involves:
• A set of players, N
• A strategy set for each player, Si, i = 1, . . . , N
• A payoff function for each player, ui : ×N

i=1Si →
ℜ, i = 1, . . . , N

A.2 Representation – Matrix

Two player strategic form game can be represented
with the help of a payoff matrix (See fig. 1). If there
are two players, 1 and 2, then rows represents strate-
gies of player 1, while columns represents a strategy
for player 2. Here, a possible outcome, (s1, s2), where,
s1 ∈ S1, s2 ∈ S2, is represented by any cell of the pay-
off matrix. Payoffs for each players are mentioned in
each cell. Few common examples of strategic form

Fig. 1. A representative payoff matrix for Prisoner’s
Dilemma Game.

games are Prisoner’s Dilemma, BoS, Matching Pen-
nies, Stag Hunt, Hawk-Dove, etc. (See any standard
text e.g. [3] for more details)

A.3 Nash Equilibrium

The steady state equilibrium outcome is known
as “Nash equilibrium”. Nash equilibrium (NE) pre-
scribes an outcome with the property that no player
can do better by choosing a different strategy, given
that other players adheres to their Nash equilibrium
strategies.

Notation – S−i = ×j 6=iSj

The strategy profile s∗ in a strategic game is a Nash
equilibrium if,

ui(s
∗) ≥ ui(si, s

∗
−i) ∀si ∈ Si, ∀i (1)

The Nash equilibrium for Prisoner’s Dilemma prob-
lem (See fig. 1) is given by (D, D). Some points should
be noted regarding Nash equilibrium:

• Nash equilibrium need not be unique for a game.
• A Nash equilibrium represents a steady state so-

lution which can be expected when an ensem-
ble of people drawn from a population plays the
game simultaneously, with each person playing
the game only once.

• A Nash equilibrium need not be socially optimum
solution. For example, in fig. 1, the socially op-
timum outcome is (C, C).

• Nash equilibrium for strategic form games can be
calculated using best response functions.

B. Extensive form game

It is convenient to represent the game in “extensive
form” when the moves are sequential – A player is
assigned to start the game. The next assigned player,
depending on the action of first mover, chooses his
action from his action set. The game goes on in this
fashion until the terminal point is reached. The exam-
ples of such games are tit-for-tat, chess, parlor games
like poker etc.
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Fig. 2. An example of an extensive form game.

B.1 Representation – Tree

This game can be conveniently represented with the
help of a tree diagram (fig. 2). The starting node
is denoted by an open circle while the terminating
node is represented by a filled circle. Each node is
numbered with a player and the emanating branches
are labelled by choices available to the player. The
terminating node is labelled with the returns (payoffs)
for the players involved. A feasible outcome in an
extensive form game is any branch which starts at
the starting node and ends in a terminating node.

B.2 Definition

An extensive form game, 〈N, H, Z, P, ui〉, consists
of

• A set of players, N
• A set of sequences, H with the following proper-

ties:
– Φ ∈ H
– If (ak)k=1,...,K ∈ H and L < K, then

(ak)k=1,...,L ∈ H
– If an infinite sequence (ak)k=1,... ∈ H satisfies

(ak)k=1,...,L ∈ H for every positive integer L,
then (ak)k=1,... ∈ H

Each member of H is called history. Each com-
ponent of a history is an action taken by a player.
A history (ak)k=1,...,K is called terminal history
if it is infinite or there is no aK+1 such that
(ak)k=1,...,K+1 ∈ H i.e. no terminal history is
a proper subhistory of any other sequence in H.
That’s why the terminology – terminal. Let’s call
the set of terminal histories as Z.

• a function (player function) that assigns a player
to every non-terminal history, P : H\Z → Z

• Payoff function over set of terminal histories for
each player, ui : Z → R, i = 1, . . . , N

For example, consider fig. 2. Here,

• Players, N = 1, 2
• Histories – H = Φ, A, (A, L), (A, R), B

Fig. 3. Representation of extensive form game represented
by fig. 2 in strategic form and its Nash equilibrium (marked
with yellow colour).

• Terminal histories Z = (A, L), (A, R), B
• Player function P (Φ) = 1, P (A) = 2
• Payoff function

u1(A, L) = 0, u1(A, R) = 2, u1(B) = 1

u2(A, L) = 0, u2(A, R) = 1, u2(B) = 2

In extensive games, it is not required to specify the
action set for each player explicitly. It can be deduced
from the history set and the player function. The set
of all actions available to the player who moves after
history h is given by Ac(h) = {a : (h, a) is a history},
For example, in fig. 2,

Ac(Φ) = A, B, Ac(A) = L, R

An extensive game can be finite or infinite. It can be
infinite in two ways:

• Length of longest terminal history is infinite – In-
finite horizon games or Games with infinite hori-
zon

• There are infinite number of terminal histories.

B.3 Strategies and Outcomes

The concept of strategy is very crucial in extensive
form games.

• Definition – A strategy for player i in an exten-
sive form game is a function that assigns to each
history h after which it is player is turn to move,
an action in Ac(h).

• For example
1. In fig. 2, player 1 moves only at the start of

the game and thus have two strategies, namely,
A and B. Player 2 also has two strategies,
namely L and R. Thus, an extensive form
game can be reduced to a strategic form game
(See fig. 3) and we can calculate its Nash equi-
librium using standard techniques. Nash equi-
librium for this problem is (A, R) and (B, L).
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Fig. 4. An example of an extensive form game in which
player 1 moves both before and after player 2.

Fig. 5. Representation of extensive form game represented
by fig. 4 in strategic form and its Nash equilibrium (marked
with yellow colour).

2. In fig. 4, player 1 moves both before and after
player 2. In each case, he has two actions, so
he has four strategies, namely AE, AF, BE
and BF . AE represents the strategy in which
player 1 chooses A at the start of the game
and history (A, C), he chooses E. Similarly,
we can interpret nomenclature for his other
strategies. One might wonder that how come
action E or F possible after player 1 chooses B
at the start, in which case, the history (A.C)
never occurs? Remember that our definition
says that a strategy of any player i specifies
an action for every history after which it is his
turn to move, even for histories that, if the
strategy is followed, do not occur. Player 2 in
this game has two strategies – C and D. The
Nash equilibrium are calculated after reducing
the game to its strategic form (See fig. 5).

Outcomes The terminal history determined by a
strategy profile is called as an outcome of the game.

B.4 Subgame perfect equilibrium

The strategic form game in fig. 3 has two Nash
equilibrium (A, R) & (B, L). (A, R) gives more payoff

to player 1 who has the first say. So it is natural that
player 1 who is assumed to be rational will always
prefer (A, R). Thus, (B, L) is some sort of a perturbed
Nash equilibrium and is not robust. So the question
arises – How to evaluate a robust NE ?

The answer to the above question is that we need
to calculate Nash equilibrium for every subgame and
not just the full game. This gives rise to the concept
of subgame perfect equilibrium.

Subgame : Definition

Let τ = 〈N, H, Z, P, ui〉. For any non-terminal his-
tory h, we can define a subgame, τ(h) following the
history h as following extensive game:

• Players – Players in τ
• History Set – The set of all sequences h′ of actions

such that (h, h′) is a history
• Player function P (h, h′) is assigned to each

proper subhistory h′ of a terminal history.
• Preferences Each player prefers h′ to h′′ if he pre-

ferred (h, h′) to (h, h′′) in τ

In summary, a subgame of an extensive game is, sim-
ply, the game corresponding to a subtree of the tree
corresponding to the full game.

A subgame perfect equilibrium (s∗ = (s∗i , s
∗
−i)) in-

duces Nash equilibrium in every subgame.

• A subgame perfect equilibrium is a Nash equilib-
rium.

• In no subgame, any player i can do better by
choosing a strategy different from s∗i , given that
other players adheres to s∗−i.

• A subgame perfect equilibrium need not be
unique.

• Existence – Every finite extensive game has a sub-
game perfect equilibrium.

• Calculation of Subgame perfect equilibrium –
A subgame perfect equilibrium for finite horizon
games is calculated using Backward Induction
technique. Let’s define the length of the subgame
to be the length of the longest history in the sub-
game. The process of backward induction is as
follows – We start by finding optimum action for
players who move in the last game (length 1).
Then taking these actions as given, we find op-
timum actions of the players who move first in
the subgames of length 2. The process continues
until we get to the beginning of the game. The
process is illustrated in figs. 6 and 7 for the games
in figs. 2 and 4.

• It is known that in subgame perfect equilibrium
for ticktacktoe and chess, either (a) one player
has a winning strategy, or (b) both players have
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Fig. 6. Use of Back Induction to find subgame perfect
equilibrium of extensive game shown in fig. 2

Fig. 7. Use of Back Induction to find subgame perfect
equilibrium of extensive game shown in fig. 4

strategies which guarantees at worst a draw. In
ticktacktoe (b) is true ([16]) though not much is
known about chess. The empirical studies ([17],
[18]) suggest that Black does not have a winning
strategy but it has not been proved.

III. Repeated Prisoner’s Dilemma

We saw that the one shot Prisoner’s Dilemma, as
it is called, has a unique Nash equilibrium which is
that both player choose to defect. But when two play-
ers interact repeatedly, each player can condition his
action at each point in time on the other player’s pre-
vious actions and this may lead to cooperation. The
main idea is that players may be forced to cooperate

by the threat of future punishment from their part-
ners for deterring from the socially favorable behavior.

A repeated Prisoner’s Dilemma is an exten-
sive game with simultaneous moves. A his-
tory is a sequence of action profiles in strate-
gic from of Prisoner’s Dilemma. For example –
((C, C), (C, C), (C, D), (D, D), (D, D), . . .). After ev-
ery non-terminal history, each player chooses an ac-
tion (C or D) based on the history. A repeated
Prisoner’s Dilemma problem can be finite (T -period
repeated Prisoner’s Dilemma) or infinite, depending
upon which the equilibrium outcomes vary.

A. Preferences : Discounting

Let’s denote an outcome of a repeated game by se-
quence of outcomes of the strategic game, (at)t=1,...,T .
Outcomes of repeated games are evaluated using dis-
counted sum:

ui(a
1) + δiui(a

2) + δ2
i ui(a

3) + · · · + δT−1
i ui(a

T )

=
T∑

t=1

δt−1
i ui(a

t)

where 0 < δi < 1 is the discount factor which repre-
sents the patience level of player i. More the player
i values his future, more is the value of δi. A very
impatient player will have δi ≈ 0, while on the other,
a very patient player will have δi ≈ 1. Let’s assume
that δi = δ ∀i = 1, . . . , N , i.e. the patience levels of
all the player are same.

Discounted Average: A player’s preference over
a sequence (w1, w2, . . .) of payoffs is represented by
the discounted sum V =

∑∞
t=1 δt−1wt. For the given

sequence, we ask if there is a value c such that the
player is indifferent between the given payoff sequence
and (c, c, . . .)? For that to happen,

c + c + · · · =
c

1 − δ
= V ⇒ c = (1 − δ)V

Thus, the discounted average of any payoff se-
quence (w1, w2, . . .) for the discount factor, δ is (1 −
δ)

∑∞
t=1 δt−1wt. For any δ, and any number c, the

discounted average of the constant sequence of pay-
offs (c, c, . . .) is equal to c.

B. Strategies

The concept of strategies has to be modified to
be applied in the repeated setting. A strategy for
a player i takes the form of a decision rule which de-
pends on the previous history at any point in time.
For example –
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Fig. 8. Schematic representation of Grim trigger strategy

Fig. 9. Schematic representation of 1 period limited pun-
ishment strategy

• Grim trigger strategy Start with C, choose C as
long as other player chooses C, if in any period
other player chooses D, choose D in every sub-
sequent period.

• Tit-for-tat Start with C, choose the same action
as other players action in previous period.

• Limited Punishment Punish deviations for n pe-
riods and revert back to C

• Delayed initiation of punishment for defect
• Win-stay, lose-shift (Pavlov) Start with C,

choose the same action again if the outcome was
relatively good and switch action if it was not.

B.1 Strategies : Representations

Strategies can be represented, schematically, in
form block diagrams as in figs. 8 and 9. For exam-
ple, Grim trigger strategy can be thought of as a two
state strategy Start with state P0 in which C is cho-
sen state changes to P1 in which D is chosen, if the
partner defects (See fig. 8).

C. Finitely repeated Prisoner’s Dilemma

The discounted average for T -period repeated Pris-
oner’s Dilemma is given by (1 − δ)

∑T
t=1 δt−1wt.

C.1 Nash Equilibrium

Suppose a player chooses D in each period, other
player has no choice but to choose D in each period.
Thus, this is a Nash equilibrium as no player can do
better by deviating from this strategy, given that the
other play sticks to D in all periods. In fact, every

Nash equilibrium generates the same same outcome
path, i.e. (D, D) in each period.

There is incentive to defect in the last step as it
cannot be punished. Thus, (D, D) is the outcome
in the last period in any Nash equilibrium. Suppose
player 1 chooses C in the (T −1)th period. If player 2
chooses C, D is the better choice for player 1. If player
2 chooses D, D gives more payoff to player 1. Thus,
(D, D) is the outcome in any NE in (T − 1)th period.
Using Backward Induction, every Nash equilibrium
has outcome (D, D) in each period.

C.2 Subgame perfect equilibrium

Every subgame perfect equilibrium of an extensive
game is a NE. Thus, every subgame perfect equilib-
rium of a finitely repeated PD generates the outcome
(D,D) in every period.

D. Infinitely repeated Prisoner’s Dilemma

D.1 Nash Equilibria

Clearly, the strategy pair in which both players
chooses (D, D) is a Nash equilibrium of the infinitely
repeated Prisoner’s Dilemma problem. We look for
other strategy pairs which yields cooperation as an
equilibrium outcome of the infinitely repeated game:

• Grim Trigger Strategies (GTS)
Suppose that player 1 uses the GTS. If player
2 also uses the same strategy, then the outcome
is (C, C) in every period and discounted average
for both the players is 2.
If player 2 defects in some period, player 1 uses
D for every subsequent period. The equilibrium
outcome of player 2 would be to choose D. Thus,
the sequence of outcomes from the point of de-
fection are (C, D), (D, D), (D, D), . . . and payoff
sequence for player 2 is (3, 1, 1, . . .) whose dis-
counted average is

(1 − δ)(3 + δ + δ2 + δ3 + · · ·)

= 3(1 − δ) + δ

So, for both players playing GTS to be a Nash
equilibrium,

3(1 − δ) + δ ≤ 2

⇒ δ ≥ 1

2

• Limited k period punishment
Suppose player 1 uses limited k period punish-
ment strategy, where k is an integer. If player
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2 defects in some period, the payoff sequence is
(3, 1, 1, . . . , 1

︸ ︷︷ ︸

k times

) whose discounted average is

(1 − δ)(3 + δ + δ2 + δ3 + · · · + δk)

= 3(1 − δ) + δ(1 − δk)

If player 2 sticks to the strategy, then discounted
average is

(1 − δ) · · · 2 · (1 + δ + δ2 + δ3 + · · · + δk)

= 2(1 − δk+1)

For the strategy pair to be Nash equilibrium, So,
for both players playing GTS to be a Nash equi-
librium,

3(1 − δ) + δ(1 − δk) ≤ 2(1 − δk+1)

⇒ δk+1 − 2δ + 1 ≤ 0
– k = 1, there is no solution satisfying above in-

equality. Thus, one period of punishment is
not severe enough to discourage defection.

– k = 2, δ ≥ 0.62

– k = 3, δ ≥ 0.55

Thus, if players are patient enough, then short
punishment can ensure the desirable outcome.

• Tit-for-tat(TFT)
Suppose player 1 sticks to TFT . If player 2 also
sticks to TFT , then his discounted average is 2.
If player 2 defects in some period, the player 1
uses D in the subsequent period. Player 2 has
two options for the next period

1. He chooses D so that all subsequent outcomes
are (D, D). Discounted average in this case is

d1 = (1 − δ)(3 + δ + δ2 + δ3 + · · ·)

= 3(1 − δ) + δ

2. He chooses C and in the next period when
player 1 chooses C, he chooses D. Thus,
the outcome in such a case oscillates between
(D, C) and (C, D). The discounted average in
this case is

d2 = (1 − δ) · 3 · (1 + δ2 + δ4 + · · ·)

=
3

1 + δ

For both players playing TFT to be Nash equi-
librium,

d1 ≤ 2 & d2 ≤ 2

⇒ δ ≥ 1

2

D.2 Nash equilibrium payoffs in an infinitely repeated
Prisoner’s Dilemma

Till now, we were concerned mainly in finding
whether a given strategy pair is a Nash equilibrium
for an infinitely repeated Prisoner’s Dilemma or not.
Now, let’s ask the following question – Given a pair
of numbers, is there a Nash equilibrium in which the
discounted average payoff profile is equal to the given
pair?

1. Feasible discounted average payoffs
Let’s consider the simple case when all the player
are very patient (δ ≈ 1). Consider an outcome
in which the sequence (C, C), (D, C), (C, D) is re-
peated. The discounted average payoff of a player
in this case will be close to his average payoff in
the sequence. So player 1’s discounted average
payoff is 1

3
(2 + 3 + 0) = 5

3
. Similarly, discounted

average payoff player 2 is 5

3
and thus discounted

average payoff profile is (5

3
, 5

3
). Thus, it is easy

to see that in any outcome path, when δ ≈ 1,
the discounted average profile is the weighted
average of payoff profiles in the strategic game
(here, (2, 2), (3, 0), (0, 3), (1, 1)) as these are the
four possibilities in any point of time. This leads
us to the concept of Feasible payoff profiles.
Feasible payoff profiles – The set of feasible
payoff profiles of a strategic game is the set of
all convex combinations of payoff profiles in the
game.
If δ ≈ 1, the set of discounted average payoff
profiles generated by the outcome paths of an in-
finitely repeated game is approximately equal to
the set of feasible payoff profiles in the compo-
nent strategic game.

2. Nash equilibrium discounted average pay-
offs
Clearly, by choosing D in every period, all players
can, at least, obtain a payoff of ui(D, D). Thus,
in any Nash equilibrium of an infinitely repeated
Prisoner’s Dilemma, each players’ discounted av-
erage payoff is at least ui(D, D).
Let (x1, x2) be a feasible pair of payoffs in a Pris-
oner’s Dilemma with xi > ui(D, D) for i = 1, 2.
Then, by definition of feasibility, we can find a
finite sequence of outcomes, A = (a1, a2, . . . , ak)
of the game for which player i’s payoff approx-
imates xi for i = 1, 2 for δ ≈ 1. Thus, we can
design a strategy pair in which A is repeated in-
finitely. This can be done analogous to grim trig-
ger strategy formulation – play the game so that
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the sequence A is maintained until the partner
breaks it. On breaking of the sequence, play D.
We can check that both players sticking to this
strategy is the Nash equilibrium of the infinitely
repeated Prisoner’s Dilemma as δ ≈ 1.
There is a Nash’s folk Theorem for arbitrary
value of δ which we state without proof:

• For any value of δ , discounted average payoff
is at least ui(D, D) in any Nash equilibrium of
infinitely repeated Prisoner’s Dilemma.

• Let X = (x1, x2) be a feasible payoff pair s.t.
xi > ui(D, D), there exists δ̄ s.t. if δ > δ̄, then
infinitely repeated Prisoner’s Dilemma has a
Nash equilibrium in which discounted average
payoff profile is X.

• Infinitely repeated Prisoner’s Dilemma has a
Nash equilibrium in which the discounted av-
erage payoff of each player is ui(D, D) for any
value of δ.

D.3 Subgame perfect equilibrium

Subgame perfect equilibrium in the repeated game
settings are calculated using one deviation property:

One Deviation Property – No player can in-
crease his payoff by changing his action at the start
of any subgame in which he is the first mover, given
other players strategies and the rest of his own strat-
egy. Clearly, if the one deviation property is satisfied,
the outcome generates Nash equilibrium in every sub-
game and is, thus, a subgame perfect equilibrium.

The Nash equilibria in which both players chooses
D after every history are subgame perfect equilibrium
equilibrium also as if one player chooses D in every
period, the other cannot deviate from D in any pe-
riod. We look for other strategy pairs –

1. Grim Trigger Strategies (GTS)
Grim trigger strategies do not satisfy one devia-
tion property and is thus not a subgame perfect
equilibrium.
Consider the subgame following the outcome
(C, D). Let player 1 adheres to GTS. If player
2 adheres to GTS, then the outcome is (D, C)
in first period and (D, D) in subsequent periods.
Discounted average payoff in this case is

(1 − δ)(0 + δ + δ2 + δ3 + · · ·+) = δ

If player 2 deviates from GTS, then the outcome
is (D, D) in every period and thus, the discounted
average payoff is 1. Thus, it is not optimal for
player 2 to adhere to GTS. In fact, it can be

Fig. 10. A schematic block diagram showing the modified
Grim Trigger strategies.

shown that for δ > 1

2
, it is not optimal for a

player to punish deviation if the other player re-
verts back to C.

2. Modified Grim Trigger strategies (MGTS)
If we modify GTS slightly, then we get a strat-
egy which is the subgame perfect equilibrium
of infinitely repeated Prisoner’s Dilemma prob-
lem. The strategy prescribes to start with C
and change to D for all outcomes except (C, C)
(See fig. 10). Consider the subgame following
empty history or a history containing (C, C).
When both players follow the strategy, the out-
come is (C, C) and thus, discounted average pay-
off is 2 for both the players. If player 1 de-
viates in the first period and chooses D but
otherwise stick to the strategy, then outcome is
(D, C), (D, D), (D, D), . . .. The discounted aver-
age payoff in this case is

(1 − δ)(3 + δ + δ2 + δ3 + · · ·+) = 3 − 2δ

which is less than 2 for δ ≥ 1

2
.

Consider any other subgame. The outcome is
(D, D) in every period. Since (D,D) is a NE of
PD, deviation is not optimal.
Thus, this modified Grim Trigger strategy is a
subgame perfect equilibrium for δ ≥ 1

2
.

3. Limited Punishment –
This strategy pair is also not a subgame perfect
equilibrium for the same reasons for which GTS
pair is not a subgame perfect equilibrium.

4. Tit-for-tat (TFT) –
A players behavior in a subgame depends only
on the last outcome. So, consider 4 cases –

• History ending in (C, C) - This is subgame per-
fect equilibrium if δ ≥ 1

2

• History ending in (C, D) (or (D, C))
– If both the players adhere to TFT ,

the subsequent outcomes are
(D, C), (C, D), (D, C), (C, D), . . . and
the discounted average payoff for player 1
is d1

1 = 3/(1 + δ).
– If player 1 deviates in the first period but

adheres to TFT later, the outcomes are
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(C, C). Discounted average payoff is d2
1 = 2

in this case.
– d1

1 ≥ d2
1 ⇒ δ ≤ 1

2
, Similar analysis for player

2 yields δ ≥ 1

2
⇒ δ = 1

2
.

• History ending in (D, D) subgame perfect equi-
librium if δ ≤ 1

2
.

Thus, strategy pair with both strategies as TFT
is a subgame perfect equilibrium only when

δ = 1

2

D.4 Subgame perfect Folk Theorem for infinitely re-
peated Prisoner’s Dilemma

There is a corresponding Folk Theorem for exis-
tence of subgame perfect equilibrium as well, which
is stated without proof here –

• For any value of δ , discounted average payoff is
at least ui(D, D) in any subgame perfect equilib-
rium of infinitely repeated Prisoner’s Dilemma.

• Let X = (x1, x2) be a feasible payoff pair s.t.
xi > ui(D, D), there exists δ̄ s.t. if δ > δ̄, then
infinitely repeated Prisoner’s Dilemma has a sub-
game perfect equilibrium in which discounted av-
erage payoff profile is X.

• Infinitely repeated Prisoner’s Dilemma has a sub-
game perfect equilibrium in which the discounted
average payoff of each player is ui(D, D) for any
value of δ.

IV. Recent Research Work

A. Reciprocal Altruism among Sticklebacks

A much discussed example of possible application
of repeated Prisoner’s Dilemma is that of predator
inspection by sticklebacks (Gasterosteus aculeatus).
Sticklebacks often moves in pairs for predator inspec-
tion. To obtain information about the predator, stick-
leback has to move closer to the predator. Moving
forward is like cooperating, while holding back is like
defecting.

Milinski ([12]) reported an experiment using a two
compartment tank separated by a glass. A stickleback
was placed in one compartment while a cichlid, which
mimics the predator, was placed in the other com-
partment. A mirror was put in the stickleback com-
partment so that when stickleback moved forward, it
got an impression that she had a partner mimicking
her. In second condition, mirror was put at an angle
s.t. when stickleback moved forward, the image re-
taliated. It was found that the fish had moved much
closer to the cichlid in first condition. This meant that
some kind of retaliatory strategy was used by Stick-
leback. They had proposed tit-for-tat strategy for

this behavior. Later, they suggested that the strat-
egy among sticklebacks can be closer to Pavlov than
to tit-for-tat ([15]).

Similar kind of behavior was reported in guppier
approaching a pumpkinseed fish ([13], [14]).

B. Role of judiciary in revival of trade

The motivation of this section comes from the so-
cial settings in the medieval world. The trade used
to happen mainly at trade fairs in which people from
distant locality used to come and trade. A transac-
tion typically involved a transfer of goods in exchange
for a promissory note to be paid at the next fairs. It
might be possible that a trader once seen will never
be seen again. There was no proper judiciary as well
at that period. The situation is modeled by repeated
Prisoner’s Dilemma in which players are matched ran-
domly in every period. Honesty is like cooperating
and cheating is like defecting. Clearly each trader has
an urge to cheat as he may never be caught. Then
how can trust be ensured in such a society? This is
the work done by Milgrom et. al. ([11]).

Milgrom et. al. have suggested two measures by
which trust can be ensured in a trading community –

1. Community enforcement or Word of mouth –
The idea is that traders can be stopped from
cheating by the threat of spoiling of reputation.
Thus, reputation system can serve honest trade.
But this idea is valid only for small communities
when the cost of sharing information about dis-
honest behavior is not too high. Strategy is called
Adjusted TFT - Players are matched according
to some matching rule in a given period. A player
plays D if she played C in previous period and
her opponent had played D on the previous pe-
riod. Otherwise, player plays C.

2. Judiciary –
If players are matched in such a way that they
never have to face the same player again, then
the outcome in any Nash equilibrium is to play
cheat for all the players. Thus, a merchant Law
or judiciary is required.
Milgrom et. al. introduced an additional actor
LM in N player repeated Prisoner’s Dilemma
problem, who serves both as a repository of in-
formation and as an adjugator of disputes. This
game with additional actor is called as LM sys-
tem stage game. The key features of this game
are –

(a) Players may query the LM about their current
partner at utility cost Q > 0. Whatever is told
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back becomes common knowledge.
(b) Two trader play Prisoner’s Dilemma.
(c) Either player may appeal to LM at a personal

cost C > 0, only if he has queried the LM
(d) On appeal, LM awards judgment, J , to the

plaintiff if appeal is valid.
(e) If judgment is awarded, defendant may pay it

at personal cost f(J)
(f) Any unpaid judgments are recorded by LM

and becomes part of permanent record
They introduced a strategy called LM System
Strategy (LMSS) –

• At substage (a), player queries LM only if he
has no unpaid judgements

• At substage (b), if there is no query or it is es-
tablished that either of the players has unpaid
judgments, then both the players play D oth-
erwise both play C

• At substage (c), if both parties queried at sub-
stage (a) and exactly one cheats at substage
(b), then the victim appeals to the LM

• At substage (d), on valid appeal, judgment J is
awarded.

• At substage (e), defendant pays judgment iff he
has no other outstanding judgment.

They showed that if the costs of querying and
appealing to LM is not too high, then LMSS is
the strategy that supports honest trade.
They also studied situation in which the judge
may threaten to sully the reputations of the hon-
est traders unless they pay bribe (Dishonest LM)
and how system can survive such threats.

C. Axelrod’s Tournaments

In 1980s, Axelrod organized two tournaments be-
tween strategies for repeated Prisoner’s Dilemma.
The entries were pitted against each other on a round-
robin basis. Tit-for-tat was victorious (submitted by
Anatol Rapoport) ([19], [20], [4]).

Using the entries in the tournament, Axelrod sim-
ulated an evolutionary environment in which the
strategies that do well reproduce faster than the other
strategies using techniques of Genetic algorithm ([8]).
The process is analogous to biological evolution in
which evolution process takes place by differential re-
production of the more successful individuals. Strate-
gies were matched against each other and representa-
tives of the one giving higher payoff were increased at
each step after a large number of generations, TFT
had the most representatives in the population.

Although Axelrod’s results are very interesting but

they are not very robust. A large community ([21],
[22], [23], [24], [25]), believes that Tit-for-tat is not the
strategy which dominates such an evolutionary com-
petition. Also, Axelrod’s simulation had not included
mutation.

D. Other works

Akimov ([26]) applied similar approach in simulat-
ing evolutionary environment for N-person iterated
Prisoner’s Dilemma problem using automata theory
exhibiting cooperation.

Altruism in finitely repeated Prisoner’s Dilemma
We saw that the defection is the dominant strategy in
a finitely repeated PD. Andreoni ([27]) showed that
if players have incomplete information, then cooper-
ation in early rounds is rational (pretending to be
altruistic) to develop a reputation for cooperation.
Their work suggested that all models of altruism are
combination of pure altruism, duty & reciprocal altru-
ism. Also, they pointed out that the players need not
be altruistic for cooperation. Cooperation is possible
if the players believe that there are other altruistic
players in the society.

THIS is a small attempt at introducing ideas of
repeated games and a very brief account of

current research in the field of repeated Prisoner’s
Dilemma has been provided here. The interesting
readers may benefit from a detailed chronological bib-
liography available on Axelrod’s Homepage (http:
//www-personal.umich.edu/∼axe/).

V. Conclusions

Strategic and extensive form games and various so-
lution concepts related to their equilibrium outcomes
were reviewed.

We saw how these concept can be extended to be
applicable to repeated games. Defection is the only
equilibrium solution in strategic game of Prisoner’s
Dilemma, but in the repeated version, not only we
found that cooperation is possible but there is a rich
possibility of equilibrium involving combination of all
the four outcomes of strategic PD game.

We saw two direct applications of repeated Pris-
oner’s Dilemma in some detail - Predator inspection
by Sticklebacks and role of judiciary in the revival of
trade.

A. Suggestions for future work

Axelrods tournaments and simulations suggest that
tit-for-tat is the dominant strategy in evolution-
ary competition involving Prisoner’s Dilemma, while
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views differ on this point and it need further investi-
gation.

It would also be interesting to find dominant strat-
egy in N -player repeated Prisoner’s Dilemma.
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