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Problems with Real Systems

Unnecessary Distractions??

Real systems have many
distractions -

Impurities
Sample Quality - Hard to
achieve single crystals
Other effects like band
structure, etc.

May hide the real cause of a
phenomenon of interest

A model can include only a
fraction of these

Cuprates

Orenstein 2000

How to find the real cause for a physical phenomenon and test
whether a model is correct? - Go to low temperatures !

Sandeep PathakIndian Institute of Science, Bangalore Ultracold Atoms in Optical Lattices



Motivation
Cooling

Optical Lattice
Applications

Cold Atoms

What are Cold Atoms?

Super-cooled gas (T∼ 10−7 K) of atoms trapped on a
periodic lattice formed by lasers (optical lattice)

Why Cold Atoms?

Free of impurities

Low temperatures - Enable us to study various quantum
phases

Easy and Fast tuning of experimental parameters like
underlying lattice periodicity, interaction between particles etc.
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Laser Cooling
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Evaporative Cooling

Steps involved in Cooling

Magneto-optical Trap
(MOT) - Laser Cooling,
Doppler Cooling

Magnetic Trap with
Evaporative Cooling

Experimental Setup of MOT

wikipedia
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Laser Cooling

Idea - Atoms absorb light and emit spontaneous - In the
process gets “cooler”

In each emission, atom kicking out a photon gets a recoil
which reduces its speed

On repetition, mean velocity and thus, mean kinetic energy of
the atom gets reduced - Temperature gets reduced!

It is important to use laser of right frquency (color) to match
atomic resonance
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Doppler Cooling

Laser cooling the fast atoms may heat
up the slow atoms - No cooling?

Atom moving towards laser with see it
bluer in color. If we start with laser
with frequency slightly less than
resonance frequency, then only faster
atoms (ω0 = ωL + kv) will be affected

It is getting harder - We have to keep
adjusting the laser color as atom cools

Doppler Effect

C. Salomon, SIGRAV School, Firenze, Sep 2006
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Magneto-Optical Trap (MOT)

How to trap cooler atoms to the
center of container and not let them
hit container’s wall and get heat up?

A small magnetic field is applied
which is minimum at the center of
container and increases towards the
edges (Anti-Helmholtz
Configuration)

This leads to Zeeman splitting of
levels - Resonance frequency
decreases - Doppler cooling possible
- Cooler atoms can be further slowed
if trying to move out - MOT

Experimental Setup of MOT

wikipedia
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Limitations

Doppler Cooling Limit - When an opposite moving
photon is absorbed, atom’s speed decreases - On
emission, an extra random momentum is added to the
atom which, on an average, give positive contribution

Maximum Concentration - If concentration of atoms
increases, collision may increase and the energy of
emitted photon may go into collision heat

Atomic Structure - Difficult to generate the laser power
needed at wavelengths much shorter than 300 nm. Also,
more hyperfine structure (related to nucleus - electron
spins interaction), more the number of ways to emit
photon without returning to ground state - dark states -
do not contribute in cooling further
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Evaporative Cooling

Magnetic Trap

B = 0 B 6= 0
Physics 2000 website (Colorado)

Strong magnetic field in form of potential well for the atomic
moments.
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Evaporative Cooling

t = 0 t > 0
Physics 2000 website (Colorado)

The most energetic molecules are allowed to escape. They
take more than their share of heat - atoms left behind are
colder now - Same as tea cooling in a cup
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Optical Lattice

An artifical crystal of light - a
periodic intensity pattern formed by
interference of two or more laser
beams

In 1-d, if two oppositely moving laser
beams with same wavelength
interfere - Standing waves - Regions
of dark and bright stripes -
V (x) = V0 sin2 x - Atoms trapped at
1-d lattice sites

If 3 such standing waves are
superimposed - an optical cubic
lattice !

Optical Lattice

wikipedia
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Optical dipole potentials

An electric dipole moment is induced in neutral atoms in an
Electric field

Interaction between dipole moment and Electric field modifies
atom energy (∼ −~d · ~E )

Two cases arises -

ωL < ω0 - Atoms are pulled to regions of maximum field
ωL > ω0 - Atoms are pushed away from maxima

Either way atoms can be trapped in a minima or a maxima
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Superfluid to Mott Insulator Transition

Bose Einstein Condensation

C. Salomon, SIGRAV School, Firenze, Sep 2006

Fermions obey Pauli Exclusion priciple - no two fermions can occupy same quantum level

Bosons obey Bose-Einstein statistics - all bosons can occupy same quantum state at absolute zero -

Bose-Einstein condensation

Interacting Bosons in Periodic Potential

H = −J
∑
〈ij〉 a†i aj + U

2

∑
i ni (ni − 1)
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Superfluid to Mott Insulator Transition

Ground state of Bose Hubbard Model

U
J << 1

All the particles occupying
k = 0 state - each atom
spread over entire lattice

Atom number at each site -
uncertain - follows Poisson
distribution

Wavefunction has a fixed
phase - Atoms loses their
individual identity - moves as a
coherent unit - Superfluid

U
J >> 1

Fluctuations in atom number
at a site becomes costly -
Ground state - Localized
wavefunctions at each site

For commensurate filling -
equal number of particles at
each site

Phase coherence is lost in this
state
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Superfluid to Mott Insulator Transition

U/J can be controlled by changing depth of potential, V0

On increasing V0, atomic wave packets become more and
more localized - U increases and J decreases

Possible to change J/U from 0 to as high as 2000 in cold
atoms experiment

Can we see this transition experimentally ?
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Superfluid to Mott Insulator Transition

Bloch 2005

Top Panel - When BEC is released from periodic potential - due to phase coherence - peak in

momentum distribution of particle number

Bottom - Mott Insulator - No phase coherence - No peak
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