PHYS2002 Final Formula Sheet

Gravitational constant $\quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
mass of proton $\quad m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$
mass of electron $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$
charge on proton $q_{p}=+1.602 \times 10^{-19} \mathrm{C}$
charge on electron $\quad q_{e}=-1.602 \times 10^{-19} \mathrm{C}$ permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~T} \cdot \mathrm{~m} / \mathrm{A}$
permittivity of free space $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} /\left(\mathrm{N} \cdot \mathrm{m}^{2}\right)$
Coulomb's Law constant $k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}=\frac{1}{4 \pi \varepsilon_{0}}$
Speed of light $\quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Plank's constant $h=4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{s}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$\hbar=\frac{h}{2 \pi}$
Atomic mass unit $u=931.5 \mathrm{MeV} / \mathrm{c}^{2}=1.66 \times 10^{-27} \mathrm{~kg}$
Hydrogen $\left({ }^{1} \mathrm{H}\right)$ Atomic mass $m_{H}=1.007825 u$
neutron mass $\quad m_{n}=1.008665 u$

$$
\begin{aligned}
\text { Joule } & =\mathrm{J}=\mathrm{N} \cdot \mathrm{~m} \\
\text { Watt } & =\mathrm{W}=\mathrm{J} / \mathrm{s} \\
\text { Amp } & =\mathrm{A}=\mathrm{C} / \mathrm{s} \\
\text { Volt } & =\mathrm{V}=\mathrm{J} / \mathrm{C} \\
\text { Ohm } & =\Omega=\mathrm{V} / \mathrm{A} \\
\text { Tesla } & =\mathrm{T}=\mathrm{N} \cdot \mathrm{~s} /(\mathrm{C} \cdot \mathrm{~m})
\end{aligned}
$$

$$
\begin{aligned}
& 1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J} \\
& \text { Weber }=\mathrm{Wb}=\mathrm{T} \cdot \mathrm{~m}^{2} \\
& \text { Henry }=\mathrm{H}=\mathrm{V} \cdot \mathrm{~s} / \mathrm{A} \\
& \text { Diopter }=\mathrm{D}=\mathrm{m}^{-1} \\
& \text { Bequerel }=\mathrm{Bq}=\text { decay } / \mathrm{s} \\
& \text { Curie }=\mathrm{Ci}=3.7 \times 10^{10} \mathrm{~Bq}
\end{aligned}
$$

$\sum \vec{F}=m \bar{a}$
$x-x_{0}=v_{0 x} t+\frac{1}{2} a_{x} t^{2}$

$$
\vec{p}=m \vec{v} \quad W=F d \cos \theta
$$

$$
E_{\text {total }}=K E+E P E+G P E+\mathrm{L}
$$

$$
v_{x}-v_{0 x}=a_{x} t
$$

$$
K E=\frac{1}{2} m v^{2}=\frac{p^{2}}{2 m}
$$

$$
G P E=m g y
$$

$$
v_{x}^{2}-v_{0 x}^{2}=2 a_{x}\left(x-x_{0}\right)
$$

$$
F_{c}=\frac{m v^{2}}{r}=m a_{c}
$$

$$
T=\frac{2 \pi r}{v}
$$

Potential \& E-field $\quad \Delta V=E \cdot \Delta d$

Point charges

$F=k \frac{\left|q_{1}\right| \cdot\left|q_{2}\right|}{r^{2}} \quad E=k \frac{\left|q_{1}\right|}{r^{2}}$
$E P E=k \underline{q_{1} q_{2}} \quad V=k \underline{q_{1}}$
RC Circuits $\quad \tau=R C$
RC discharging $\quad q=q_{0} e^{-t / \tau}$
RC charging $\quad q=q_{0}\left(1-e^{-t / \tau}\right)$

$$
\begin{array}{cr}
\text { Resistance } R=\rho \frac{L}{A} & \text { Ohm's Law } \\
R_{\text {series }}=R_{1}+R_{2}+\mathrm{K} & \frac{1}{R_{\|}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\mathrm{K} \\
I_{\text {series }}=I_{1}=I_{2}=\mathrm{K} & I_{\|}=I_{1}+I_{2}+\mathrm{K} \\
V_{\text {series }}=V_{1}+V_{2}+\mathrm{K} & V_{\|}=V_{1}=V_{2}=\mathrm{K} \\
\text { Power } & P=I V=I^{2} R=\frac{V^{2}}{R}
\end{array}
$$

Capacitance

$$
\begin{array}{cc}
q=C V & C=\frac{\kappa \varepsilon_{0} A}{d} \\
E n e r g y=\frac{1}{2} C V^{2} \\
E_{0}=\frac{\sigma}{\varepsilon_{0}}=\frac{q}{A \varepsilon_{0}} & E=\frac{E_{0}}{\kappa} \\
\frac{1}{C_{\text {series }}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\mathrm{K} & C_{\|}=C_{1}+C_{2}+\mathrm{K}
\end{array}
$$

Electric potential energy
 $\Delta E P E=-W=+q \Delta V$

Forces on charged particle
Force on a straight wire $F=I L B \sin \theta$

Torque on a coil of wire $\tau=N I A B \sin \phi$

$$
F=q E \quad F=q v B \sin \theta
$$

$\left.\begin{array}{l}\begin{array}{l}\text { Radius of motion of } \\ \text { charged particle in } \\ \text { uniform field }\end{array}\end{array}\right\} r=\frac{m v}{q B}$
Velocity Filter $\quad E=v B$

B fields made by currents
Long, straight wire $\quad B=\frac{\mu_{0} I}{2 \pi r}$
At center of coil of wire $B=\frac{N \mu_{0} I}{2 R}$
Solenoid $\quad B=\mu_{0}$ In

Magnetic Flux $\Phi_{M}=B A \cos \phi$
Motional EMF $\quad \varepsilon=v B L$

Faraday's Law $\varepsilon=-N \frac{\Delta \Phi_{M}}{\Delta t}$
AC Generator $\varepsilon=N A B \omega \sin \omega t$

Inductance			
$M=\frac{N_{S} \Phi_{S}}{I_{P}}$	$L=\frac{N \Phi}{I}$		
$\varepsilon_{S}=-M \frac{\Delta I_{P}}{\Delta t}$	$\varepsilon=-L \frac{\Delta I}{\Delta t}$		
Energy stored $=\frac{1}{2} L I^{2}$		\quad	Transformers
:---:			
$\frac{V_{s}}{V_{P}}=\frac{N_{S}}{N_{P}}$			
$I_{S}=\frac{V_{P}}{V_{S}} I_{P}$			

Electromagnetic waves

$E(t)=E_{0} \sin \omega t$
$E_{\text {mus }}=\frac{E_{0}}{\sqrt{2}}$
$E=c B$
$c=f \cdot \lambda$
$B(t)=B_{0} \sin \omega t$
$B_{r m s}=\frac{B_{0}}{\sqrt{2}}$
$\omega=2 \pi f$
$c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$

Energy density $\quad u=\frac{\varepsilon_{0}}{2} E^{2}+\frac{1}{2 \mu_{0}} B^{2}=\varepsilon_{0} E^{2}=\frac{1}{\mu_{0}} B^{2}$

$$
\bar{u}=\frac{\varepsilon_{0}}{2} E_{r m s}^{2}+\frac{1}{2 \mu_{0}} B_{r m s}^{2}=\varepsilon_{0} E_{r m s}^{2}=\frac{1}{\mu_{0}} B_{r m s}^{2}
$$

Intensity $\quad S=\frac{P}{A}=\frac{E}{t \cdot A}=c u \quad \bar{S}=c \bar{u}$

$$
S=c u=\frac{c \varepsilon_{0}}{2} E^{2}+\frac{c}{2 \mu_{0}} B^{2}=c \varepsilon_{0} E^{2}=\frac{c}{\mu_{0}} B^{2}
$$

$$
\left.\begin{array}{c}
f_{o}=f_{s}\left(1 \pm \frac{v_{\text {rel }}}{c}\right) \\
\frac{\lambda_{s}}{\lambda_{o}}=1 \pm \frac{v_{\text {rel }}}{c}
\end{array}\right\} \begin{aligned}
& \text { Doppler shift } \\
& + \text { if } v_{\text {rel }} \text { is towards } \\
& - \text { if } v_{\text {rel }} \text { is away }
\end{aligned}
$$

Malus' Law: $\quad S=S_{0} \cos ^{2} \theta$

Mirrors and Lenses

Law of reflection: $\theta_{r}=\theta_{i}$
Mirror/lens equation: $\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}$
Magnification: $m=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$
focal length $\boldsymbol{f}\left\{\begin{array}{l}0.5 * R \text { for spherical mirror } \\ - \text {-for convex mirror, diverging lens } \\ + \text { for concave mirror, converging lens }\end{array}\right.$

Index of refraction: $\quad n=\frac{c}{v}=\frac{\lambda_{\text {vac }}}{\lambda}$
Snell's Law: $\quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
Total Internal reflection (critical angle): $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$
Apparent depth: $d^{\prime}=d\left(\frac{n_{2}}{n_{1}}\right)\left\{\begin{array}{l}n_{1} \text { contains incident ray } \\ n_{2} \text { contains refracted ray }\end{array}\right.$
Brewster's Angle: $\tan \theta_{B}=\frac{n_{2}}{n_{1}}\left\{\begin{array}{l}n_{1} \text { contains incident ray } \\ n_{2} \text { contains refracted ray }\end{array}\right.$

Thin film interference

$2 t+\operatorname{shift} ?=m \lambda \quad$ Constructive interference

$2 t+$ shift $?=m \lambda+\frac{1}{2} \lambda \quad$ Destructive interference

Diffraction

Double slit
$\boldsymbol{m}=0,1,2,3, \ldots$
$d \sin \theta=m \lambda \quad$ bright fringes (constructive)
$d \sin \theta=\left(m+\frac{1}{2}\right) \lambda \quad$ dark fringes (destructive)

Single slit $\boldsymbol{m}=1,2,3, \ldots$ $\sin \theta=\frac{m \lambda}{W} \quad$ dark fringe of order m

Circular aperture - Resolving power - Rayleigh Criterion

$$
\sin \theta \approx \theta>1.22 \frac{\lambda}{D}
$$

Diffraction grating Principal maxima (bright fringes)

$$
\sin \theta=m \frac{\lambda}{d}
$$

Small angle approximation $\theta \approx \sin \theta \approx \tan \theta=\frac{s}{H}$

Photon Energy $\quad E=h f=\frac{h c}{\lambda}$
Photon Momentum $\quad p=\frac{h}{\lambda}=\frac{E}{c}$
Photoelectric effect $\quad h f=K E_{\max }+W_{0}$
DeBroglie Wavelength $\quad \lambda=\frac{h}{p} \quad p=m \nu$ if non-relativistic
Compton scattering $\quad \lambda-\lambda_{0}=\frac{h}{m_{e} c}(1-\cos \theta)$

$$
E=m c^{2}
$$

$\begin{array}{ll}\text { Heisenberg Uncertainty Principle } & \Delta p_{y} \cdot \Delta y \geq \frac{h}{4 \pi} \\ \qquad \mathrm{~h}=\frac{h}{2 \pi} & \Delta E \cdot \Delta t \geq \frac{h}{4 \pi}\end{array}$

Bohr model of the hydrogen-like atom

$$
\begin{array}{cl}
E_{i}-E_{f}=h f & E_{n}=-(13.6 \mathrm{eV}) \frac{Z^{2}}{n^{2}} \\
r_{n}=\left(5.29 \times 10^{-11} \mathrm{~m}\right) \frac{n^{2}}{Z} & \text { Rydberg Constant } \\
& R=1.097 \times 10^{7} \mathrm{~m}^{-1} \\
E_{i}-E_{f}=h f=(13.6 \mathrm{eV}) Z^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right) & \frac{1}{\lambda}=R Z^{2}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)
\end{array}
$$

Quantum mechanical description of atom

Subshell ordering 1 s 2 s 2 p 3 s 3 p 4 s 3 d 4 p 5 s 4 d 5 p 6 s 4 f $2(2 \ell+1)$ electrons in each subshell

$$
\begin{array}{rlr}
\mathrm{I} & =0 \rightarrow s & L=\sqrt{I(I+1)} \mathrm{h} \\
\mathrm{I} & =1 \rightarrow p & \\
\mathrm{I} & =2 \rightarrow d & L_{z}=m_{l} \mathrm{~h} \\
\mathrm{I} & =3 \rightarrow f &
\end{array}
$$

$A=Z+N$
$r \approx\left(1.2 \times 10^{-15} \mathrm{~m}\right) A^{1 / 3}$
mass defect

$$
m_{A}+\Delta m=Z m_{H}+N m_{n}
$$ binding energy $\quad(B E)=(\Delta m) c^{2}$

Radioactivity

$$
N=N_{0} e^{-\lambda t}=N_{0}\left(\frac{1}{2}\right)^{n} \quad n=\frac{t}{T_{1 / 2}} \quad \lambda=\frac{0.693}{T_{1 / 2}}
$$

Activity
$\frac{\Delta N}{\Delta t}=-\lambda N$
α decay $\quad{ }_{Z}^{A} P \rightarrow{ }_{Z-2}^{A-4} D+{ }_{2}^{4} \mathrm{He}$
β decay ${ }_{Z}^{A} P \rightarrow{ }_{Z+1}^{A} D+e^{-}+v$
β^{+}decay ${ }_{z}^{A} P \rightarrow{ }_{z-1}^{A} D+e^{+}+v$
γ decay $\quad{ }_{Z}^{A} P^{*} \rightarrow{ }_{Z}^{A} P+\gamma$

