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• Rutherford scattering

• Line spectra
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Another way to write the HUP is the following:
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We cannot know exactly the energy of a particle when it’s in a particular state 

of a physical system and also know precisely the time interval that it remains in 

that state.

Or, the shorter the lifetime of a particle in a particular state, the greater the 

uncertainty in its energy.

This is a statement of the Heisenberg Uncertainty 

Principle for Energy and Time:

Example:

Suppose an electron is confined to a box that is roughly the size of an 

atom, say 0.5 A on each side.  Take this distance to be equal to the 

uncertainty in the electron’s position and calculate the minimum 

uncertainty in its momentum.  Then, assume that this uncertainty in 

momentum is equal to the magnitude of the electron’s momentum at 

some arbitrary time and calculate the electron’s kinetic energy.
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This is on the order of atomic energies!  So the HUP tells us that an electron 

confined to a box the size of an atom must have an energy ~ 5 eV.  Thus, it is 

bouncing around quite rapidly, ~1.2 × 106 m/s.

What if we repeat this calculation for a tennis ball (m = 0.06 kg) confined to a cardboard 

box that is 0.5 m on each side?
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This is equivalent to a speed of ~1 × 10-33 m/s!

In other words, the tennis ball just sits there!



Ch. 30 The Nature of the Atom

We know there are two types of charge, + and -, 

and that matter is composed of both.

English physicist J.J. Thompson discovered the 

electron and measured its mass in 1897.

He then suggested the Plum-Pudding Model of the atom:

Negative electrons were scattered like plums in a pudding of positive charge 

that was equally distributed throughout the atom

electrons
Smeared-

out positive 

chargeTo this point, no one had detected the positively-

charged particles in an atom, but since they knew 

what the mass of the electron was, they knew 

most of the atom’s mass was due to the positive 

charges.

Then Rutherford comes along (a New Zealander), working in London in 1907.

He had been studying with Marie and Pierre Curie in Montreal who discovered 

radioactivity.

They observed two types of radiation.  Rutherford called them a and b.

30.1 Rutherford Scattering



Rutherford soon realized that b-radiation or b-rays were really just electrons.

But a-particles were much heavier and positively charged.

(a-particles are really the nucleus of a helium atom.  They consist of 2 protons and 2 neutrons.  

No one knew this at the time.)

Rutherford decided to use the a-particles to investigate the internal structure of 

atoms.

He shot the a-particles at a thin film of gold:

If Thompson’s model of the atom was 

correct, very little should happen to the a-

particles.  They should basically travel 

straight thru the film. WHY?

Most of them did just that, but some of the a-

particles were deflected at large angles.  In 

some cases almost 180o!

So how could these large deflections occur?

This was completely shocking!  Rutherford would later say that, “It was as if 

we were firing shells at tissue paper and having them bounce straight back at 

you!”



Really only one solution presented itself, and that was to have all the positive 

charges in the atom concentrated in a very small region – called the atomic 

nucleus.

The nucleus was much smaller than the entire atom, but it accounted for 

almost all of the atom’s mass.

Rutherford named the positively-charged particles in the nucleus Protons.

This led to the model of the atom that is still widely accepted today – the 

nuclear model (planetary model).

(The model is qualitatively accurate, although the electrons 

do not orbit the nucleus in pretty, constant, circular orbits.  

They actually exist in a cloud of probability.)

An atom is mostly empty space!!!

Nuclear radii ~1 × 10-15 m

Electron orbit ~1 ×10-10 m



But, there are problems with the Planetary Model of the Atom:

Consider an electron orbiting some nucleus at a radius r:

The electron has both KE and EPE.

And…..it is accelerating:  
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But we know from previous chapters that accelerating 

charges produce electromagnetic waves, and those 

waves carry energy.

v

r
Nucleus

Electron

This carries some of the electron’s energy away, it slows down, its orbit 

decreases, since opposite charges attract, and the electron spirals into the 

nucleus……..The atom collapses!

The planetary model is not stable based on classical electrodynamics!

We’ll come back to this soon, but first let’s talk about line spectra.

30.2 Line Spectra

Remember, all objects emit EM radiation.  Hot filaments in incandescent light 

bulbs emit a continuous range of wavelengths, some of which are in the visible 

spectrum.

Solid made of different atoms emits continuous energies of radiation



In contrast to this, single atoms only emit radiation at certain wavelengths.

We can use a diffraction grating to separate these wavelengths and produce a 

characteristic line spectra for those atoms.

Take mercury (Hg) for example:

Hg source

Diffraction grating

This is mercury’s line spectra.

Hydrogen gas, being the simplest 

element, also has the simplest line 

spectra.

It forms 3 groups of lines, called the Lyman, 

Balmer, and Paschen Series.

Only the Balmer series lies in the visible spectrum.

Atoms emits discrete energies of photons rather than continuous ones! 



Balmer series for 

hydrogen gas.

Lyman, Balmer, and Paschen 

discovered relationships 

between the different 

wavelengths of light in the 

line spectra.
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For n = 3, the Balmer series is: 
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30.3 Bohr Model of the Atom

He worked on the planetary model and tried 

to understand how matter could be stable if 

electrons are accelerating around the 

nucleus.

Like Einstein did with the photoelectric effect, Bohr adopted Planck’s idea 

of quantized energy levels, and assumed that the electron in the hydrogen 

atom could only have certain values of energy, i.e. they are quantized.

Bohr started with hydrogen, since it is the 

simplest of all elements.  We have just 1 

electron orbiting 1 proton.
v
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Niels Bohr died in 1962.  He was a native of 

Denmark who went to England on scholarship to 

work with J.J. Thompson.  He and Thompson 

didn’t get along, so Bohr went to work for 

Rutherford.



Each of these energy levels corresponds to a unique orbit that the electron 

moves in around the proton.  The larger the orbit, the larger the energy.

So here are Bohr’s assumptions:

1. Electrons travel in fixed orbits around the proton, each orbit being 

defined by a unique radius and energy.  These orbits are called stationary 

orbits or states, and while in these orbits, the electrons do not emit 

radiation.

How can we have radiationless orbits???  This goes against classical 

physics!!!!!

Furthermore, we know that all matter absorbs and emits radiation, so 

how do Bohr’s atoms do this??

To explain this, Bohr incorporated Einstein’s photon model:

2. An electron in an atom emits radiation (emits photons) when and only 

when it moves from a higher energy level to a lower one, i.e. it moves from 

a larger radius orbit to a smaller one.



As the electron makes a transition from a higher 

energy level to a lower one, it emits a photon.

By conservation of energy, the energy of the photon 

must be equal to the difference in the energies 

between the two stationary states Ei and Ef:

 fi EE Energy Photon 


hc
EEhf fi   

Remember, this is all theoretical, and Bohr could use this equation to 

calculate the wavelengths (colors) of light emitted by a hydrogen atom.

But first, he needed a way to calculate the energies, Ei and Ef.

To do this, he ends up using both classical and quantum physics.



An electron sitting in the n = 2 energy level of a hydrogen atom has an energy 

of -3.4 eV.  This electron makes a transition to the n=1 state by emitting a 

photon.  The n=1 state has an energy of -13.6 eV.  What is the energy of the 

emitted photon?

fi EE  Energy Photon 

0% 0% 0% 0%

Clicker Question 30 - 1

eV 2.10)eV 6.13(eV 4.3 

1. 10.2 eV

2. 17.0 eV

3. -10.2 eV

4. -17.0 eV



In order to predict the wavelengths of light emitted by hydrogen, he first 

had to come up with an expression for the energy levels.

Here is his simple model, where Z represents the # of 

protons in the nucleus.

There is an electrostatic force – attractive Coulomb 

force – between the proton and electron.

This is directed in toward the center of motion and thus 

provides the centripetal force.c
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Solve for mv2 and plug into the energy equation:
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This is a classical result for the total energy in a hydrogen 

atom.  It is negative, because the magnitude of the negative 

EPE is larger than the KE.

But what about the radius?  Here’s where the quantum physics comes in.

r not only defines a unique orbit, but also a unique angular momentum.

Remember from Physics 1, L = Iw, where I = mr2 for the electron, since it is 

a point particle, and w = v/r.

Thus, mvrmrL
r
v  ))(( 2

Angular Momentum

This is the classical result for angular momentum.

But since Bohr assumed the energy of the electron in the hydrogen atom 

was quantized, that meant r was quantized, which means the angular 

momentum must be quantized.

Thus, L can only assume discreet values of angular momentum.

But what would those discreet values be????  A clue is given if we look 

at the units of angular momentum:
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What else has these units???  Well, oddly enough, look at h:
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Thus, h has the same units as angular momentum!!!

In other words, h is the fundamental quantum value of angular momentum.

This led to Bohr’s third assumption: 1,2,3,...    ,  nnhrmvL nnn

In the quantum world, angular momentum comes in little packets of h.

Solve the above for v and plug into the force equation:

So here is the equation that gives us the different quantized orbits.
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For the hydrogen atom, Z = 1, and for the lowest quantized orbit (n = 1) we find that:

m 1029.5 11

1

r This is the first Bohr radius for hydrogen.

Remember, each n-level will correspond to a 

different Bohr radius.

Now that we have our expression for r, we can 

plug it into our equation for the total energy:
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This represents the quantized Bohr energy levels of the hydrogen atom.

The stuff in parentheses is just a constant:
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Again for hydrogen, Z = 1, and n = 1:

eV 6.131 E This is the energy of the electron in the first Bohr level.  It 

is also called the ground-state energy.

Notice, because of the 1/n2 dependence, the spacing 

between higher and higher energy levels decreases.

So, if I add 13.6 eV to an electron in the ground state of a 

hydrogen atom, then it will have zero total energy and no 

longer be bound to the proton  The electron is removed.

This process is called ionization.

So the Bohr theory predicts that the first ionization energy 

of hydrogen is 13.6 eV.  This was in excellent agreement 

with experiment.

So clearly he was on the right track, but did his theory 

predict the correct emission wavelengths for hydrogen???



From his second assumption:
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Lyman Series!!!

Bohr’s theory reproduces the experimental result!!!



The Lyman series consists of transitions to the ground state (n = 1) starting with 

the first excited state (n = 2):

The Balmer series consists of transitions to the first 

excited state (n = 2) starting with the 2nd excited 

state (n = 3).

The wavelengths we observe from hydrogen are 

called emission lines.  

Atoms can also absorb photons (absorption lines).  

If a photon is incident on an atom and has an 

energy equal to the energy difference between two 

quantum energy levels of the atom, then the 

electron can get “bumped up” to that higher energy 

level, called an excited state.

The lifetime of the electron in the excited state is 

finite and rather short.  It quickly drops back down 

to a lower energy state and emits a photon whose 

energy is equal to the difference in the energies of 

the two levels.  

excited states

ground state



Happy Holiday!

Turkey can in excited states!
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30.4 deBroglie’s Explanation of Bohr’s Angular Momentum Assumption 

Based on Bohr’s work, deBroglie pictured the electron orbiting the proton as 

a particle-wave.

For certain wavelengths, the electron will form standing waves around the 

nucleus:

A standing wave occurs when the distance the wave 

travels is an integral number of its wavelength. 

For this condition, ,...3,2,1  ,2  nnr 

But,
mv

h

p

h


Plug in above: n
nh

mvr
mv

nh
r 




2
2

nLn  Which is just the Bohr assumption on angular momentum!!!

So Bohr’s assumption of quantized angular momentum is exactly equivalent to a 

standing-wave condition for electron waves around the nucleus.



I believe de Broglie’s hypothesis is the first feeble ray of light on this worst of our 

physical enigmas.  It may look crazy, but it is really sound!

-Albert Einstein

30.5 The Quantum-Mechanical Description of the Atom

Considering the scope of the problem, Bohr’s achievements with such a simple 

model were remarkable. The electron states in the hydrogen atom were denoted 

by one unique number, n.  

But, it was later determined that for more complicated atoms (and hydrogen too) 

quantum mechanics would rely on 4 quantum numbers to describe the electron 

states in an atom.  

1. Principle Quantum #, n:  Similar to the Bohr model.  It gives the total energy of 

the atom.

2. Orbital Quantum #, l:  This # determines the angular momentum of the orbit.  

The values of l depend on n:  l = 0,1,2,…,(n-1).  Notice, there are n values of l.

Example: What would be the values of l for n = 3? l = 0,1, and 2



3. Magnetic Quantum #, ml:  This becomes important when we place the atom in a 

magnetic field.  The field alters the electron energy levels.  This is known as the 

Zeeman Effect.  If B = 0, then ml plays no role.  The value of ml depends on l:

The magnitude of L (the angular momentum) of the electron is then given by:

( 1)  L l l 

ml = -l, -l+1,…,-1,0,1,…+l, in integer steps.

Notice, there are (2l+1) total values of ml.

If an atom is placed in a magnetic field pointing in the z-direction, then the 

component of the angular momentum which would arise along the z-direction 

due to the Zeeman effect is:
z lL m

Example: What would be the values of ml if l=3?

ml =-3, -2, -1, 0, 1, 2, and 3

4. Spin Quantum #, ms:  An electron has the intrinsic property of spin.  The orbital 

and spin motions of the electron combine to produce magnetism in materials.  

The spin quantum # can only take two possible values:

2
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The ms = +1/2 is often called the “spin-up” state, and ms = -1/2 is referred to 

as the “spin-down” state.  

Spin, like mass and charge, is an intrinsic property of all electrons.  Each 

electron has the same spin.

Example: Determine completely the number of electronic states in a hydrogen atom 

for n = 2.

Solution: 2n 1,0 l
0l ,0 lm

2
1sm

1l 1,0,1 lm
2
1  ,1  sl mm

2
1  ,0  sl mm

2
1  ,1  sl mm

Thus, there are 8 total states (in general, the total # of states is (2n2).

n l ml ms
2 0 0 +1/2

2 0 0 -1/2

2 1 -1 +1/2

2 1 -1 -1/2

2 1 0 +1/2

2 1 0 -1/2

2 1 1 +1/2

2 1 1 -1/2

1.

2.

3.

4.

5.

6.

7.

8.

Total #

Of states
=  2n2



According to the Bohr model, the nth energy level is defined by the orbit whose 

radius is rn. Each time we make a measurement of the position of the electron, it is 

always in a circular orbit at a distance rn from the nucleus.

This picture is not correct.  The quantum mechanical picture dictates that due to 

the HUP, the position of the electron is uncertain.  If we were to take many 

measurements of the electron’s position, sometimes it would be very close to the 

nucleus, and sometimes it would be far away.  

So the electron exists as a particle-wave in a probability cloud around the 

nucleus.  

If the electron is in the n=1 state, then after many 

measurements, the most probable distance for the 

electron would be at r1 = 5.29×10-11 m. 

The higher-density cloud regions indicate areas of 

higher probability.  

There are different probability clouds for different 

quantum states.  
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Density clouds 

of a electron at 

different orbits in 

an atom labeled 

as {n, l, ml, ms}

Different orbits 

have different 

symmetry!

Atomic state is 

determined by 

both orbit and 

spin degrees of 

freedom



For the hydrogen atom, how many total electron states exist for n

= 4?

0% 0% 0% 0%

Clicker Question 30 - 3

1. 4

2. 8

3. 16

4. 32



30.6 The Pauli Exclusion Principle (PEP) 

The Bohr model was derived explicitly for one electron and one proton.  Will the 

energy levels apply to atoms with more than one electron?

The answer is NO!

Quantum mechanics does describe the energy levels correctly in multi-electron 

atoms, and it uses the 4 quantum #’s:  

{n, l, ml, ms}

The energy of the electrons depends on n and l, and in general, the energy 

increases as n and l increase, but there are exceptions.

So how do we categorize the energy levels of electrons 

in multi-electron atoms?

Each value of n corresponds to a single “shell”, called 

the K-shell for n = 1, L-shell for n = 2, and the M-shell for 

n =3.

Each shell has subshells defined by the orbital quantum 

#, l.



Example, the K-shell is the n =1, and it has one subshell, l = 0.

The L-shell is the n = 2, and it has two subshells defined by l = 0,1

When atoms are not subjected to violent collisions, high temperature, or high 

electric fields, characteristics of say room temperature, then the electrons in 

the atoms tend to spend most of their time in the low energy levels of the 

atom.  The lowest energy state is called the ground state.

However, when a multi-electron atom is in its ground state, not every electron 

can be in the n = 1 level.  They must obey a rule known as the Pauli Exclusion 

Principle (PEP).

No two electrons in an atom can have the same set of 

values for their 4 quantum numbers:  n, l, ml, and ms.  In 

other words, no two electrons can be in the same 

quantum state.

Because of the PEP, there is a maximum # of electrons that can fit into each 

energy level and subshell:



The Periodic Table



Because of the PEP, there is a maximum # of electrons that can fit into each 

energy level and subshell:

Example: Take n = 1: then l = 0, ml = 0, and ms = ±1/2. 

Thus, each l = 0 subshell can hold a maximum of 2 electrons, one with spin-up 

and one with spin-down.

2n 1,0 l
0l ,0 lm
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2
1  ,0  sl mm

2
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Now take n = 2:

Again I get two 

states for l = 0.

We get 6 states for 

the l = 1 subshell.

Thus, we get 8 total states for n = 2.

In general the # of possible states for any given subshell l, is: )12(2 l



Representation of the l-subshell is customarily done by letter:

l Letter Designation Max. # of e-s:  2(2l+1)

0 s 2

1 p 6

2 d 10

3 f 14

4 g 18

5 h 22

In general, the maximum # of electrons in any shell (n) is 2n2:

K-shell, n = 1  2 electrons

L-shell, n = 2  8 electrons

M-shell, n =3  18 electrons

etc….



So here is an example of the spectroscopic notation used to specify the 

electronic states in multi-electron atoms:

4p3
n =3

l =1

# of e-s in 

the subshell

Specifying the n and l value for each electron in an atom in this way is called the 

electronic configuration.

Let’s Play!!!



Example: Write down the full electronic configuration for carbon.

Carbon’s atomic # is 6, so it has 6 electrons to put into shells:

What order do the shells fill up???

It is given by the following construction:
1s

2s

3s

4s

5s

6s

2p

3p

4p

5p

6p

3d

4d

5d

6d

4f

5f

6f

5g

6g etc.

The order is shown by diagonal arrows 

starting in the upper right and pointing 

toward the lower left:

1s   2s   2p   3s   3p   4s   3d   4p  5s  4d   5p   6s   4f   5d   6p   7s   etc. …

So we start filling in these shells with carbon’s 6 electrons, keeping in mind 

that s’s hold 2 electrons, p’s hold 6, d’s hold 10, etc.

So for carbon, we find the electronic configuration to be: 1s2 2s2 2p2



Example: Write down the full electronic configuration for calcium.

Calcium’s atomic number is 20, so we have 20 electrons to put into shells:

1s2 2s2 2p6 3s2 3p6 4s2

Elements in the Periodic Table are arranged by their electronic configurations:





30.7 X-Rays

The cathode ray tube looked essentially like this:

Electrons get accelerated through a large 

voltage and then collide with a metal target, 

such as Cu, Mo, or Pd.  

When the electrons collided with the target, 

Roentgen noticed certain “rays” were 

produced.    

Since he couldn’t figure out what they were, he 

called them “X-Rays”.    

We now know that X-Rays are EM radiation –

light in the non-visible part of the spectrum.    

Wilhelm Roentgen was a Dutch physicist working with cathode 

ray tubes back in the late 1800’s.



If we measure the intensity of the X-Rays as a function of wavelength, we get 

the following characteristic plot:

As the electrons slow down (decelerate) 

upon striking the metal target, the broad 

background part of the curve, called 

Bremsstrahlung radiation, is produced.

Bremsstrahlung comes from the German 

word for “braking”.

But where do those large peaks in the 

intensity spectrum come from???

They depend on the material of the target, 

and are called Ka and Kb.

They are labeled “K” because they involve electrons in the n = 1 (K-shell).

As the electrons strike the atoms in the metal target, they slow down.  But, if they 

have enough energy, they can knock an electron in the atom out of the K-shell.

Then another electron in the atom sitting in a higher energy state falls down to 

replace it.  When it makes this transition, a photon is emitted with X-Ray energies.



Which characteristic X-Ray line, the Ka or Kb, has the larger 

energy?

0% 0% 0%

Clicker Question 30 - 3

1. Ka

2. Kb

3. They have the 

same energy.



Estimate the energy/wave length of X-ray

The Ka line occurs when an n = 2 electron falls back into the K-shell.

The Kb line occurs when an n =3 electron falls back into the K-shell.
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OR: 

Example: Use the Bohor model to estimate the wavelength of Ka line of X-ray spectrum 

of aluminum (Z=12 rather than 13). 
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