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• Principle of linear superposition

• Young’s double-slit experiment

• Thin-film interference
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Ch. 27.  Interference and the Wave Nature of Light

Up to now, we have been studying geometrical optics, where the wavelength 
of the light is much smaller than the size of our mirrors and lenses and the 
distances between them.

→ The propagation of light is well described by linear rays except when 
reflected or refracted at the surface of materials.

Now we will study wave optics, where the wavelength of the light is 
comparable to the size of an obstacle or aperture in its path.

→ This leads to the wave phenomena of light called interference and 
diffraction.



27.1 The Principle of Linear Superposition
Take two waves of equal 
amplitude and wavelength and 
have them meet at a common 
point:

If the two waves are in-phase, 
then they meet crest-to-crest 
and trough-to-trough.

Their two amplitudes add to each other.  In this case, the resulting wave would
have an amplitude that doubled.

This is called Constructive Interference (CI).

For CI to occur, we need the waves to meet crest-to-crest, thus the waves 
must differ by an integer multiple of the wavelength λ:

Define Optical Path Difference (OPD):  

OPD = The difference in distance that two waves travel.

... 2, 1, 0,m ,mOPD == λ Constructive Interference



The resulting wave has zero 
amplitude.  The two waves 
cancel out.

This is called Destructive Interference (DI).

Now take two waves of equal 
amplitude and wavelength and have 
them meet at a common point, but 
this time have them be out-of-phase.

Thus, they now meet crest-to-
trough.

For DI to occur, we need the waves to meet crest-to-trough, thus the waves 
must differ by any odd integer number of ½λ :

... 2, 1, 0,m ,)m(OPD 2
1 =+= λ Destructive Interference

All waves do this, including EM waves, and since light is an EM wave, light 
waves do this too.



For interference to continue at some point, the two sources of light producing 
the waves must be coherent, which means that their phase relationship relative 
to each other remains constant in time.

27.2 Young’s Double Slit Experiment (http://www.youtube.com/watch?v=AMBcgVlamoU)

Look what happens when water waves strike a barrier with two slits cut in it:

Each slit acts like a coherent point source of waves.
The waves diverge from each slit and interfere with each other.
The bright regions are areas of constructive interference, and the dark 
regions are areas of destructive interference.



In 1801 an English scientist Thomas Young repeated the double slit experiment, 
but this time with light.

Coherent light source

Screen

Each slit acts like a coherent light 
source.
The two waves meet at point P on 
a screen.

P

S1

S2

Δl is the optical path difference of 
the two light waves coming from 
S1 and S2.

Δl
The two waves interfere with each 
other, and if:

λml =Δ Constructive interference, and we 
see a bright spot.

λ)( 2
1+=Δ ml Destructive interference, 

and we see a dark spot.

Thus, we should see alternating bright and dark regions (called fringes) as we 
move along the screen and the above two conditions are satisfied.
Can we find a relationship between the fringes and the wavelength of the light?

The answer is yes……………
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Assume the screen is far away from the 
slits which are small.  This is called the 
Fraunhofer approximation.
Thus, since the slits are very close 
together, θ is the same for each ray.
From the figure we see that:

d
lΔ

=θsin θsindl =Δ⇒

We know that for constructive interference: λml =Δ
Thus, λθ md =sin for constructive interference. 

and...

λθ )(sin 2
1+= md for destructive interference. 

m is the order of 
the fringe.

These are the interference conditions for the double slit.



This is what a typical double 
slit interference pattern 
would look like.
Notice there are alternating 
light and dark fringes.
Also note that the central 
fringe at θ = 0 is a bright 
fringe.

The order of the bright fringes starts at the central bright fringe.

Bright Dark
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The order of the dark fringes starts right above and below the central 
bright fringe.

m = 0

m = 0

m = 1

m = 1

m = 2

m = 2

m = 3

m = 3

So, the second dark fringe on either side of the central bright fringe is the 
1st order dark fringe, or m = 1. Remember, order means m.

It is also the brightest of the 
bright fringes.

Young’s experiment provided strong evidence for the wave nature of light.

If it was completely particle like, then we would only get two fringes on the screen, not an 
interference pattern!



Example
In a Young’s double-slit experiment, the angle that locates the 3rd dark 
fringe on either side of the central bright maximum is 2.5o.  The slits have a 
separation distance d = 3.8 × 10-5 m.  What is the wavelength of the light?

2.5o

What is the order?

It is the 2nd order dark fringe, 
or m = 2.

Since it’s a dark fringe, we know it must be 
destructive interference:
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In our discussion of Young’s double slit experiment, we only considered 
monochromatic light (light of one color).  What would the interference 
pattern on the screen look like if we used white light instead?
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Clicker Question 27 - 1

1. It would look the same.
2. We would see colored 

fringes.
3. There would be no 

fringes.



27.3 Thin Film Interference

Light waves can interfere in many situations.  All we need is a difference in optical 
path length.

As an example, let’s consider a thin film of oil or gasoline floating on the surface 
of water:

Part of a light ray gets reflected (1) from the 
surface of the film, and part gets refracted (2).

Then the refracted ray reflects back off the 
film/water interface and heads back into the 
air toward our eye.
Thus, two rays reach our eyes, and ray 2 has 
traveled farther than ray 1.  Thus, there is a 
difference in the optical path length.

If the film is thin, and the ray strikes almost 
perpendicularly to the film, then the OPD is 
just twice the film thickness, or .2tl =Δ
If , we have Constructive 
Interference and the film appears bright.

λmt =2

If , we have Destructive 
Interference and the film appears dark. 

λ)(2 2
1+= mt



The optical path difference occurs inside the film, so the index of refraction that 
is important here is nfilm.

What is the wavelength of the light in the film (λfilm)?
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One more important point:

When waves reflect from a boundary, it is possible for them to change their phase.

1. Light rays will get phase shifted by ½λ upon 
reflection when they are traveling from a smaller 
index of refraction to a larger index of refraction. 

Smaller n → larger n → Phase shift!

2. Light rays will experience no phase shift upon 
reflection when they are traveling from a larger index 
of refraction to a smaller index of refraction. 

Larger n → smaller n → No phase shift!



So a phase shift can occur upon reflection.

For thin films then the following is used:
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Example A soap film (n = 1.33) is 375 nm thick and is surrounded on both sides 
by air.  Sunlight, whose wavelengths (in vacuum) extend from 380 nm 
to 750 nm strikes the film nearly perpendicularly.  For which 
wavelength(s) in this range does the film look bright in reflected light?

sunlight

n = 1.33

n = 1.00

n = 1.00

soap

air

air

1 2

R1

R2

t

We want the film to appear bright, 
which means constructive interference:

λml =+Δ shifts) (phase

Do we have any phase shifts?

At R1 we are going from a smaller n to 
a larger n → ½λ phase shift. 
At R2 we are going from a larger n to a 
smaller n → No phase shift. 

So now we have 1 phase shift: λλ mt =+ 2
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These two are in the visible 
spectrum (red and violet).

Thus, the film appears redish/violet.
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Hole diffraction
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27.5 Diffraction

Diffraction is the bending of waves around obstacles or around the edges of 
openings.

It is an interference effect – explained by Dutch scientist Christian Huygens.

Huygens Principle:

Every point on a wave front acts as a tiny source of wavelets that move forward 
with the same speed as the wave.  At a later time, the new wave front is the 
surface that is tangent to the wavelets.

As an example, consider sound waves diffracting thru an opening.



Divide the opening up into equally spaced points, 
here we’ve chosen 5.
Each of these points acts like a source of waves or 
wavelets.
The wave front is always tangent to the waves.

The direction of propagation of the wave is always 
perpendicular to the wave front.
Thus, the wave can bend (or diffract) thru an 
opening or around a corner.

So what determines the degree of the diffractive 
bending?
It is determined by the ratio of the wavelength of 
the wave to the size (width) of the opening or 
obstacle.

W
λ

≈nDiffractio

Thus, for more diffraction (or bending) of the waves, we want longer wavelengths 
and smaller openings.



We get more diffraction for the situation on the 
right, where the ratio λ/W is larger.



Single-slit Diffraction

Consider monochromatic light of wavelength λ passing thru a single, narrow 
slit of width W.

If no diffraction occurred, we would 
just see one bright fringe directly 
behind the slit.

But, due to diffraction effects, we see 
an interference pattern – alternating 
bright and dark fringes.

As in the case for the double slit, here 
too do we have a central bright 
maximum.  Why?

Huygens:  Wavelets arriving at the center 
of the screen are traveling parallel and 
essentially the same distance.  Since the 
OPD is zero, they arrive in phase and 
interfere constructively.  



But, farther up the screen from the central bright maximum, the OPD between 
Huygen sources is not zero.

Here, for example, wavelets from sources 1 and 
2 are out of phase and would interfere 
destructively on the screen, which is located a 
far distance away.  

From the figure, we see that:  

W
mλθ =sin

This is the condition for dark fringes for single-
slit diffraction, with m = 1, 2, 3,…  

Width



27.6 Resolving Power
Resolving Power:  The ability of an optical instrument to distinguish (or resolve) 
two closely-spaced objects.

Look at the headlights of a car as it backs away from you to a far distance:

When the car is close, it is easy to distinguish two separate headlights.

But as it gets farther away, it’s harder to resolve the two headlights.

Finally, there is a certain point when the car gets even farther away, that we 
can’t distinguish the two headlights clearly.

This inability to resolve two closely-spaced objects is due to diffraction.



We have light passing thru openings, i.e. my eyes, a telescope, a microscope –
any optical instrument – and it’s diffraction thru these apertures that limits my 
resolution.

The screen to the left shows the diffraction 
pattern for light from one object passing thru 
a small circular opening.  Notice there is a 
central bright fringe and alternating bright 
and dark fringes.

θ locates the angle from the central bright 
fringe to the first dark fringe.

If the screen distance is much larger than the 
width of the circular aperture (D), then:

D
λθ 22.1sin =



Object 1 Object 2

aperture

Now, if we have two objects, we would get the following:

Each object creates a diffraction 
pattern on the screen.

I can distinguish the two objects 
now, since their diffraction patterns 
are widely separated.  

But look what happens if I move 
them closer together:

Now their diffraction patterns 
overlap, and I am unable to 
distinguish two separate objects.

It is useful to have a criterion for judging whether or not two objects are 
resolved.

We use the Rayleigh Criterion for Resolution: We say that two closely-spaced 
objects are just resolved when the first dark fringe of one image falls on the 
central bright fringe of the other.



Here is an image of two objects that are just 
resolved.
Notice, the first dark fringe of one image is right at 
the edge of the central bright fringe of the other.

This sets a condition on the minimum angle 
between the two objects being resolved.

Thus, if θ < θmin, then we won’t be able to resolve 
the two objects.

Since θmin is small, then .sin minmin θθ ≈

Thus, the Rayleigh Criterion for Resolution
becomes: 

D
λθ 22.1min ≈



Example
You are looking down at earth from inside a jetliner flying at an altitude of 
8690 m.  The pupil of your eye has a diameter of 2.00 mm.  Determine how 
far apart two cars must be on the ground if you are to have any hope of 
distinguishing between them in red light (wavelength = 665 nm in vacuum).  
Take into account the index of refraction in the eye.

Solution:

eye
2.00 mm

car 1 car 2
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27.7 The Diffraction Grating

We see diffraction patterns of alternating bright and dark fringes when 
monochromatic light is shined on a single or double slit.

What if we shined light on many close-spaced slits?  What would we 
expect to see?
Such an instrument is called a Diffraction Grating.

Some of them can have tens of thousands of slits per cm.
Again we see alternating bright and dark fringes:

Each slit acts as a 
source of wavelets in 
accord with Huygens.

The figure to the left 
shows have the first and 
second order (m = 1 and 
2) maxima (bright 
fringes) develop.



Fringe formation of multiple diffraction The envelop of single 
slit diffraction

The results of multi-
slit interference

Principle maxima



diffraction pattern of a grating



So, the principal maxima of the diffraction grating are given by:

d
mλθ =sin m = 0, 1, 2, 3, …

d is the slit separation distance.  It can be calculated by knowing the # of slits 
per cm.

For example, let’s say we have a diffraction grating with 7500 slits/cm, then

cm 1033.1cm 
7500

1 4−×==d

What if we shined white light on a diffraction grating?

Just like the double slit, we would see multiple colored bright fringes:
A diffraction grating separates light according to 
color (wavelength) much the same way a prism 
disperses light, but there is a difference:

In a prism, it’s the longer wavelengths that are 
bent the least, whereas the diffraction grating 
bends the longer wavelengths the most.



27.9 X-ray Diffraction

Not all diffraction gratings are artificially made.  Some are made by Mother 
Nature.  

Take table salt, for example, NaCl.  

Cl

Na

The Na and Cl ions form a 3-dimensional 
periodic array of atoms called a crystal.

The distance between the atoms (interatomic 
spacing) is about 1 Ǻ (1 × 10-10 m).

Thus, this distance could act like the slit 
separation distance on a diffraction grating for 
waves with an appropriate wavelength.

Thus, let’s choose light whose 
wavelength is ~ 1 × 10-10 m.
Light of this wavelength resides in 
the X-ray part of the EM spectrum.

By shining X-rays on the crystal, we 
should see diffraction effects.



Indeed, a diffraction pattern does result when you shine X-rays on a 
crystalline material.

Cubic NaCl

The diffraction pattern gives us information about the structure of the 
crystal and the distance between its atoms.

X-ray diffraction is also vitally important to determining the structures of 
biological molecules, like proteins.  

DNA Double Helix
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