LOUISIANA STATE UNIVERSITY

Algebra-based Physics II Review for Chap. 24-27

Cha. 24. Electromagnetic waves

Basic characters:

$$
\begin{array}{llll}
E(t)=E_{0} \sin \omega t & E_{r m s}=\frac{E_{0}}{\sqrt{2}} & E=c B & c=f \cdot \lambda \\
B(t)=B_{0} \sin \omega t & B_{r m s}=\frac{B_{0}}{\sqrt{2}} & \omega=2 \pi f & c=\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}
\end{array}
$$

Energy density:

$$
\begin{aligned}
& u=\frac{\varepsilon_{0}}{2} E^{2}+\frac{1}{2 \mu_{0}} B^{2}=\varepsilon_{0} E^{2}=\frac{1}{\mu_{0}} B^{2} \\
& \bar{u}=\frac{\varepsilon_{0}}{2} E_{r m s}^{2}+\frac{1}{2 \mu_{0}} B_{r m s}^{2}=\varepsilon_{0} E_{r m s}^{2}=\frac{1}{\mu_{0}} B_{r m s}^{2}
\end{aligned}
$$

Intensity:

$$
\begin{aligned}
& S=\frac{P}{A}=\frac{E}{t \cdot A}=c u \quad \bar{S}=c \bar{u} \\
& S=c u=\frac{c \varepsilon_{0}}{2} E^{2}+\frac{c}{2 \mu_{0}} B^{2}=c \varepsilon_{0} E^{2}=\frac{c}{\mu_{0}} B^{2}
\end{aligned}
$$

Example: What fraction of the power radiated by the sun is intercepted by the planet Mercury? The radius of Mercury is $2.44 \times 10^{6} \mathrm{~m}$, and its mean distance from the sun is $5.79 \times 10^{10} \mathrm{~m}$. Assume that the sun radiates uniformly in all direction.

Doppler Effect:

$$
\left.\begin{array}{c}
f_{o}=f_{s}\left(1 \pm \frac{v_{r e l}}{c}\right) \\
\frac{\lambda_{s}}{\lambda_{o}}=1 \pm \frac{v_{\text {rel }}}{c}
\end{array}\right\} \begin{aligned}
& \text { Doppler shift } \\
& + \text { if } v_{\text {rel }} \text { is towards } \\
& - \text { if } v_{\text {rel }} \text { is away }
\end{aligned}
$$

Calculate the intensity change

Index of refraction:

$$
n=\frac{c}{v}=\frac{\lambda_{v a c}}{\lambda}
$$

Snell's Law: $n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$

> Mirrors and Lenses Law of reflection: $\theta_{r}=\theta_{i}$
> Mirror/lens equation: $\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{f}$
> Magnification: $m=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}$
> focal length $\boldsymbol{f}\left\{\begin{array}{l}0.5 * R \text { for spherical mirror } \\ - \text { for convex mirror, , iverging lens }_{+ \text {for concave mirror, converging lens }}\end{array}\right.$

Apparent depth: $d^{\prime}=d\left(\frac{n_{2}}{n_{1}}\right)\left\{\begin{array}{l}n_{1} \text { contains incident ray } \\ n_{2} \text { contains refracted ray }\end{array}\right.$
Total Internal reflection (critical angle): $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$
Brewster's Angle: $\tan \theta_{B}=\frac{n_{2}}{n_{1}}\left\{\begin{array}{l}n_{1} \text { contains incident ray } \\ n_{2} \text { contains refracted ray }\end{array}\right.$

Cha. 27: Interference \& Diffraction

$$
\text { Linear superposition principle }\left\{\begin{array}{l}
\text { In phase: Constructive } \\
\text { Out of the phase: Destructive }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Double slit } \quad \boldsymbol{m}=0,1,2,3, \ldots \\
& d \sin \theta=\left\{\begin{array}{rr}
m \lambda & \text { bright fringes (constructive) } \\
\left(m+\frac{1}{2}\right) \lambda & \text { dark fringes (destructive) }
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Single slit } \quad \boldsymbol{m}=1,2,3, \ldots \\
& \sin \theta=\frac{m \lambda}{W} \quad \text { dark fringe of order } m
\end{aligned}
$$

Thin film interference

$$
\begin{array}{ll}
2 t+\text { shift } ?=m \lambda & \text { Constructive interference } \\
2 t+\text { shift } ?=m \lambda+\frac{1}{2} \lambda & \text { Destructive interference }
\end{array}
$$

Circular aperture - Resolving power - Rayleigh Criterion

$$
\sin \theta \approx \theta>1.22 \frac{\lambda}{D}
$$

Diffraction grating Principal maxima (bright fringes)

$$
\sin \theta=m \frac{\lambda}{d}
$$

