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Class Website:  
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Sep.10th, Chap. 19.5
Chap 20.1-4

Announcements:

1. HW2 part B is due on 
Sunday.

2. HW3 is coming too!
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C is a new quantity called the Capacitance, 
describing the capability of storing charges in a 
capacitor. 
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We will find:

Capacitance of a capacitor depends on the structure of itself only!



Dielectrics

We can fill the space between the plates with some insulating material, say air, 
oil, paper, rubber, plastic, etc.
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This material is called a dielectric.Dielectric

So what effect does the dielectric have on the 
field between the plates?

Since the dielectric is an insulator, the charges 
in it aren’t free to move, but they can separate 
slightly within each atom:
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Each one of these atoms now produces a small 
internal electric field which points in the opposite 
direction to the field between the plates:

E

Thus, the net electric field between the plates is reduced by the dielectric.

The reduction of the field is represented by the following:
E
Eo=κ

κ is called the dielectric constant, and it must be greater than 1.

Eo is the field without the dielectric
E is the field with the dielectric



Since κ is the ratio of two electric fields, it’s unitless.
E
Eo=κ

Material                   κ

Vacuum 1

Air 1.00054

Water 80.4

The larger κ is, the more it reduces the field between the plates!
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Eo Let’s say the plates have surface area A and are separated by a 
distance d.
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Capacitors store charge - what about energy?
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*This expression holds true for any electric fields, not just for capacitors!



Chap. 20   Electric Circuits 

1. Current (I)

2. Ohm’s Law

3. Resistance (R)

4. Resistivity (ρ)

5. Power (P)

6. Basic Circuits



20.1 – Electromotive Force
Every electronic device depends on circuits.

Electrical energy is transferred from a power source, such as a battery, to a 
device, say a light bulb.

Battery

Light bulb

+

-

Light

A diagram of this circuit 
would look like the following:
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Inside a battery, a chemical reaction separates positive 
and negative charges, creating a potential difference.

This potential difference is equivalent to the battery’s 
voltage, or emf (ε) (electromotive force).

This is not really a “force” but a potential.

Conducting 
wires

Because of the emf of the battery, an electric field is produced within and parallel to the wires.

This creates a force on the charges in the wire and moves them around the circuit.

This flow of charge in a conductor is called electrical current (I).



A measure of the current is how much charge passes a certain point in a given time:
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Electrical Current

If the current only moves in one direction, like with batteries, it’s called Direct Current (DC).

If the current moves in both directions, like in your house, it’s called Alternating Current (AC).

Electric current is due to the flow of moving 
electrons, but we will use the positive 
conventional current in the circuit diagrams.

Battery

Light bulb

+

-

I

I

I

e So I shows the direction of “positive” charge 
flow from high potential to low potential.



20.2 – Ohm’s Law

The flow of electric current is very analogous to the flow of water through a pipe:

The battery pushing the current acts like the water pump pushing the water.

The voltage of the battery is analogous to the pump pressure – the higher the pump 
pressure, the faster I can push the water through.  Thus, the larger my battery 
voltage, the greater my current.

IV ∝

Let’s make this an equality: IRV = This is Ohm’s Law.

The proportionality constant, R, is called the electrical resistance.

Units? [ ] [ ]Ω==⎥⎦
⎤

⎢⎣
⎡=⎥

⎦

⎤
⎢
⎣

⎡
= Ohm

A
V

Amp
Volts 

I
VR

Define Resistor:  A component of an electrical circuit that offers 
resistance to the flow of electric current.



Symbol for resistors:
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ε = V

R

Straight lines have 
essentially zero resistance

Resistor,

20.3 - Resistivity

The electrical resistance of a conductor depends on its shape:

-Longer wires have more resistance

-Fatter wires have less resistance

Thus, .
A
LR ∝

Cross-sectional area

Length

Let’s make this an equality:
A
LR ρ=

The proportionality constant, ρ, is the electrical resistivity.
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Resistivity is an intrinsic property of materials, like density:

Every piece of copper has the same resistivity, but the resistance of any 
one piece depends on its size and shape.

ρ, R ρ, R



Temperature Dependence of Resistivity

The resistance of most materials changes with temperature.

For good conductors (metals) the resistance decreases with decreasing temperature.
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For insulators (poor conductors) the resistance increases with decreasing temperature.

R
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For many materials, we find that: [ ])(1 oo TTRR −+= α
R = Resistance at temperature T

Ro = Resistance at temperature To α is the temperature 
coefficient of resistivity
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20.4 Electrical Power

Our standard definition of power is: .
Time
WorkPower =

So what would electrical power be?

From the definition of potential: qVW
q

WV =⇒=

Thus,
t

qVP = P IV⇒ =

We can write this different ways using Ohm’s Law, V=IR:

R
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*So we have 3 ways of calculating electrical power 
depending on what other quantities are known.



Electrical Energy

Work and Energy have the same units (Joules).

Thus, TimePowerEnergy ×=
Electrical companies, like Entergy, 
measure your monthly energy use this 
way, in units of kilowatt⋅hours (kWh).

For example, if you used an average power of 1500 W for 31 days (744 hours), 
your energy consumption would be: kWh 1116)h 744)(kW 5.1( ==E

At a cost of roughly $0.13/kWh, this would be a monthly bill of $145.

J 1060.3kWh 1 6×=



Power Transmission

Why is the electrical power transmitted at high voltages, instead of high currents???

Thermal losses (losing electrical power by converting it to heat) is proportional to I2 for a 
given voltage and proportional to V.

2IP ∝ VP ∝



20.6 Series Circuits
Now let’s add more than one component to the circuit!

There are several ways to hook these components together.

The first way is to wire them together in series:

The same current runs through two 
components connected in series.

V1 and V2 are called voltage drops.

*We speak of currents running through resistors, and voltages drops across resistors.

Thus, the current through resistor R1 is I, and the voltage drop across R1 is V1.



How would we find the net resistance (equivalent resistance, Req) for resistors 
connected in series?

For resistors connected in 
series, the sum of the voltage 
drops across all the resistors 
must equal the battery voltage.

Thus, 21 VVV +=

But from Ohm’s Law:
21 IRIRIReq += 21 RRReq +=⇒

Thus, for resistors wired up in series, the equivalent resistance is:

⋅⋅⋅+++= 321 RRRReq

i.e. you just add them!!!



20.7 Parallel Circuits
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For resistors connected in parallel, the voltage 
drop across each resistor is the same.

Thus, .21 VVV ==

From Ohm’s Law:
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The current through each might be different.  It splits:  I = I1 + I2.
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for resistors in parallel.



I I

I

II

I

What is the current I in the following circuit?

Thus, Ω=  240eqR

eqR
VI = A 1.0

240
24

==

20.8 Series and Parallel Circuits
Now let’s hook resistors up both in series and in parallel in the same circuit!

We need to find the 
equivalent resistance!



20.9 Internal Resistance
So far we’ve just considered batteries and generators as contributing their emf to a circuit.

In reality, they too have some resistance.

This is called internal resistance, r.

In batteries it’s due to the chemicals, and in 
generators it’s due to wire resistance.

So, if a battery is connected to a load resistor, R, then the internal 
resistance, r,  is in series with the load:

Notice:  R and r are in series!

Thus, the voltage across the 
battery (known as the 
terminal voltage, VT) is less 
than the full voltage V, since 
some is lost across r.

VT

Thus, rT VVV −=

Terminal voltage Battery voltage Voltage drop across the 
internal resistance, r



Kirchhoff’s Rules

In many circuits, applying the series or parallel methods is not sufficient to analyze them.

There are two other rules we can use called Kirchhoff’s Rules:

1. Junction Rule – Current into a junction has to equal current out.
It is based on conservation of charge.

I flows into junction, and I1 and I2 flow out, thus:

I

I2

I1 21 III +=

2. Loop Rule – Around any closed circuit loop, the sum of the potential 
(voltage) drops has to equal the sum of the potential rises.

It is based on conservation of energy.



Here’s an example with the loop 
rule.  We have a closed circuit loop 
with multiple batteries.  What is the 
current in the circuit?

Solution

Start at point A and go around the loop clockwise, and make a list of the potential 
drops and rises as we go all the way around.

Drops        Rises

12I

6

8I

24
Now apply the loop rule: ∑∑ = RisesDrops

248612 =++⇒ II 1820 =⇒ I

A 9.0=⇒ I

1. Choose the direction of the current(s) in each loop.

2. Label the resistors from + to – in the direction

of the current flow.



20.11 Measuring Voltages and Currents

Currents and voltages can be measured with devices called ammeters and voltmeters.
Both of these devices rely on the DC Galvanometer:

To measure the current with an ammeter, we must 
“break” the circuit and insert it:

Inside the ammeter, a small resistor rs is wired in parallel with the galvanometer:

Coil resistance

rs

Almost all of the current passes through the shunt 
resistor, so the ammeter has very little effect on the 
circuit, i.e. nearly zero resistance.



Voltmeter – Measures the potential difference between two points in the circuit, i.e. across a 
resistor.

It does not have to be inserted in the circuit, i.e. the circuit does 
not have to be broken to use it.

The voltmeter has a high resistance, so very little 
current actually flows through the voltmeter.

Thus, like the ammeter, it barely affects the circuit at all.

20.12 Capacitors in Series and Parallel
Let’s first look at two capacitors connected in parallel:

+ -

C1

C2

V

Since they are in parallel, they each have the same voltage 
drop across them:  V1 =V2=V.

But the charge on each will, in general, be different:

VCQVCQ 2211  and ==

What is the equivalent capacitance?



+ -

C1

C2

V

21 QQQTot += VCVC 21 += VCC )( 21 += VCeq=

Thus, ⋅⋅⋅+++= 321 CCCCeq

To find the equivalent capacitance for 
capacitors wired in parallel, you just add them!

Now consider two capacitors wired in series:

C1 C2

+ -

V

The voltage across each will now, in general, be different, 
but the charge on each of the plates must be the same.

21 VVV +=
V1 V2

21 C
Q

C
Q += ( )

21

11
CCQ +=

( ) VCVQ eqCC =+=⇒ −111
21

Thus, ⋅⋅⋅+++=
321

1111
CCCCeq

For capacitors wired in series, the 
reciprocal of the equivalent 
capacitance is just the sum of the 
reciprocal capacitances.*Notice that these rules are just the 

opposite for resistors in combination.



Clicker Question 20-7 (cont.)
Let’s first number the capacitors:

1 2

3 4

5 6

Capacitors 2, 4, and 6 are in series, thus:

642246

1111
CCCC ++= 8

1
12
1

24
1 ++= 4

1=

Now the circuit looks like this:

F 0.4246 μ=⇒ C
1

3
246

5

4.0 μF

Now capacitor 3 is in parallel with capacitor 246: 24632346 CCC += 844 =+=

Now the circuit looks like this:

1

2346
8.0 μF

5

Now capacitors 1,2346, and 5 
are in series:

523461123456
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1
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8
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5
1 ≈++= F 0.2123456 μ==⇒ CCeq



20.13 RC Circuits Many circuits contain both resistors and capacitors together.

Let’s look at a simple circuit (called an RC circuit) with a resistor in series with 
a capacitor:
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R C

Vo

Switch

At this point, the switch is open, and the 
capacitor has no charge on its plates.

Now let’s close the switch:

Once the switch is closed, a current starts to 
flow around the circuit, and charge builds up 
on the capacitor plates:

I

+Q -Q

What does a plot of the charge on the capacitor versus time look like?

Q

t

Qo
Notice that the charge builds up gradually 
and approaches an equilibrium value, Qo.

If the capacitor is initially uncharged at t = 0, 
then the charge on the capacitor at some later 
time t is:
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e is the base for natural log (ln), not log10. 718.2≈e

If t = 0, then
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We can get the voltage across the capacitor at any time by dividing by the charge by 
the capacitance, since V = Q/C:
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Let’s look at the product (RC)

What are the units of RC? [ ] [ ]FeCapacitancResistance ⋅Ω=×
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Thus, RC has the units of time, and the product                        
is known as the time constant of the circuit. RC=τ Time Constant

Thus, we can write the charging equation as: ⎥⎦
⎤
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Let’s start with an uncharged capacitor and then charge it for a length of time equal 
to one time constant, i.e. t = τ :

Then, [ ]111 −−
−=⎥⎦

⎤
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⎡ −= eQeQQ oo

τ
τ

)632.0(oQ= oQ%)2.63(=

*Thus, charging for one time constant is the length of time it 
takes to accumulate 63.2% of the total charge on the capacitor.

Now let’s start with a capacitor that is charged all the way to Qo and then 
discharge it through the resistor:

Discharging

R C

Switch

Fully charged
When we close the switch, a current flows 
through the resistor and we discharge the 
capacitor:

+Qo -QoI

Now what does a plot of the charge 
on the capacitor versus time look 
like?

Q
Qo

t

Discharging 
equationThe functional form is: τ

t
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Notice at t = 0, oo QeQQ == τ
0

Now let t = τ, one time constant: 1−−
== eQeQQ oo

τ
τ

oo QQ %)8.36()368.0( ==

Thus, one time constant is also the length of time it takes 
a fully charged capacitor to lose 63.2% of its charge.

One common use of the RC circuit is in pacemakers.  
What value of τ would be good for such a device???
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