Chapter 7: Kinetic Energy and Work

Different energies:

- Kinetic/translation
- Gravitational potential
- Heat energy
- Electromagnetic energy
- Strain or elastic energy

Each energy is associated with a "scalar" which defines a state of a system at a given time.

Kinetic Energy

Kinetic Energy is associated with the state of motion

$$
K E=\frac{1}{2} m v^{2} \quad \text { Units of Joules: } 1 \mathrm{~J}=\mathrm{kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}
$$

- KE depends on speed (v) not $\vec{v} \quad\left(\operatorname{here}^{2}=\vec{v} \bullet \vec{v}=|\vec{v}|^{2}\right)$
- KE doesn't depend on which way something is moving or even if it's changing direction
- KE is ALWAYS a positive scalar

How much is "Kinetic Energy"

1) Electron (e-) moving in Copper

$$
\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \text { and } \mathrm{v} \sim 1 \times 10^{6} \mathrm{~m} / \mathrm{s} \mathrm{KE}=7 \times 10^{-19} \mathrm{~J} \quad(\sim 4 \mathrm{eV})
$$

2) Bullet traveling at $950 \mathrm{~m} / \mathrm{s}(3100 \mathrm{ft} / \mathrm{s})$.

$$
\mathrm{m}=4.2 \mathrm{~g} \text { and } \mathrm{v} \sim 950 \mathrm{~m} / \mathrm{s}(3100 \mathrm{ft} / \mathrm{s}) \quad \mathrm{KE}=2000 \mathrm{~J}
$$

3) Football Linebacker

$$
\mathrm{m}=240 \mathrm{lbs} \text { and } \mathrm{v} \sim 18 \mathrm{mph}(7 \mathrm{~m} / \mathrm{s}) _\mathrm{KE}=2800 \mathrm{~J}
$$

4) Aircraft Carrier Nimitz

$$
\mathrm{m}=91,400 \text { tons and } \mathrm{v} \sim 1 \text { knot__K_KE } \quad 10 \mathrm{MJ}
$$

Work

If you apply a net force ($\sim \mathrm{a} \uparrow \rightarrow \mathrm{v} \uparrow$), KE $\uparrow \quad$ and \quad if you decelerate ($\mathrm{a} \downarrow \rightarrow \mathrm{v} \downarrow$), KE \downarrow Somehow force is related to KE energy...

If we transfer energy via a force, this is work.
"Doing work" is the act of transferring energy.

Work (W) is said to be done on an object by a force.

Energy transferred to an object is positive work.
Energy transferred from an object is negative work.

Work and Kinetic Energy

How to find an "alternate form" of Newton's $2^{\text {nd }}$ Law that relates position and velocity.??
Start in 1-D (e.g. Bead along wire \hat{X}), we know ...

$$
\begin{aligned}
& F_{x, n e t}=m a_{x}=m \frac{d v}{d t} \\
& \left(F_{x, n e t}\right)\left(\frac{d x}{d t}\right)=\left(m \frac{d v}{d t}\right)\left(\frac{d x}{d t}\right)=m v \frac{d v}{d t} \\
& 1 \\
& F_{x, n e t} \frac{d x}{d t}=\frac{d\left(\frac{1}{2} m v^{2}\right)}{d t} \\
& \begin{array}{c}
d t \\
F_{x, n e t} d x=d\left(\frac{1}{2} m v^{2}\right)
\end{array} \longrightarrow \begin{array}{c}
F_{x, n e t} d x=\int d\left(\frac{1}{2} m v^{2}\right)=K E_{2}-K E_{1} \\
W_{\text {net }} \equiv \int F_{x, n e t} d x=K E_{2}-K E_{1}=\Delta K E
\end{array} \\
& W_{\text {net }}=\Delta K E
\end{aligned}
$$

Work-Kinetic Energy Theorem

Work-Kinetic Energy Theorem $\longrightarrow\binom{$ change in the kinetic }{ energy of an object }$=\binom{$ net work done on }{ the particle }

If $\vec{F}_{\text {net }}$ is not a function of \vec{x}, then

$$
W_{n e t} \equiv \vec{F}_{n e t} \bullet \vec{d}=\Delta K E
$$

No work is done on an object by a force unless there is a component of the force along the objects line of motion.

Qualitatively, how much work am I doing on the bowling ball if I walk across the room with a constant velocity?

1. Quite a lot
2. None

Positive and Negative Work

Weight lifting: apply a FORCE up and DISPLACE the barbell up...
both the force and displacement are in the +y direction so work is positive

On the downward motion the FORCE is still up and the force is in the $+y$ but the displacement is in $-y$ direction so work is negative

External Force acts on box moving rightward a distance d.

Rank: Work done on box by F

(a)

(b)

(c)

(d)

Question

Two forces act on the box shown in the drawing, causing it to move across the floor. The two force vectors are drawn to scale. Which force does more work on the box?

1. F_{1}
2. F_{2}
3. They're both zero $\left(F_{1}=F_{2}=0\right)$
4. They're the same, but not zero ($F_{1}=F_{2} \neq 0$)

Example

During a storm, a crate is sliding across a slick, oily parking lot through a displacement $\vec{d}=(-3.0 m) \hat{i}$ while a steady wind pushes against the crate with a force $\vec{F}=(2.0 N) \hat{i}+(-6.0 N) \hat{j}$

(a) How much work does the force from the wind do on the crate during the displacement?

$$
W_{n e t} \equiv \vec{F}_{n e t} \cdot \vec{d}
$$

(b) If the crate has a kinetic energy of 10 J at the beginning of displacement \vec{d}, what is the kinetic energy at the end of \vec{d} ?

$$
W_{\text {net }}=\Delta K E=\left(K E_{f}-K E_{i}\right) \quad \text { or } \quad K E_{f}=W_{\text {net }}+K E_{i}
$$

Example

Question 7-4: The figure shows the values of a force \mathbf{F}, directed along an \mathbf{x} axis, that will act on a particle at the corresponding values of x . If the particle begins at rest a $\mathrm{x}=0$, what is the particle's coordinate when it has
(a) the greatest speed

$$
W_{\text {net }} \equiv \int \vec{F}_{n e t} \bullet d \vec{x}=\Delta K E=K E_{f}-K E_{i} \quad \text { Area under F-x plot is W. }
$$

(b) the minimum speed

Question: The figure shows the values of a force \mathbf{F}, directed along an \mathbf{x} axis, that will act on a particle at the corresponding values of x. If the particle begins at rest a $\mathrm{x}=0$, what is the particle's coordinate when it has
(a) the greatest speed
(b) the minimum speed

Greatest speed at $\mathrm{x}=3 \mathrm{~m} \quad$ Minimum speed (zero) at $\mathrm{x}=6 \mathrm{~m}$

Work

$$
\sum_{\text {all }} W_{i}=W_{\text {net }} \equiv \vec{F}_{\text {net }} \cdot \vec{d}=\Delta K E=K E_{f}-K E_{i}
$$

$$
\sum_{a l} W_{i}=W_{n e t}
$$

Work is sum total of all transfer of energy (pos and neg)
$W_{\text {net }} \equiv \int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{F}_{\text {net }}(r) \cdot d \vec{r}=\vec{F}_{\text {net }} \cdot \vec{d} \quad$ where $\left(\vec{r}_{2}-\vec{r}_{1}\right)=\vec{d}$

- No work is done on an object by a force unless there is a component of the force along the objects line of motion
- Sum of the area under net F-r plot yields net work

$$
\begin{aligned}
W_{n e t}=\Delta K E & \text { • If speed goes up then } \mathrm{W} \text { is positive -- energy transferred to object_ } \\
& \text { • If speed goes down then W is negative -- energy transferred from object } \\
& \text { If speed is constant then NO NET WORK IS DONE }
\end{aligned}
$$

$\Delta K E=K E_{f}-K E_{i} \quad$ Change in kinetic energy is change in speed (i.e. v^{2})
What about centripetal force?

Special Case: Work done by Constant Gravitational Force

$$
\begin{aligned}
& W_{g} \equiv \int \vec{F}_{g} \bullet d \vec{x}=\vec{F}_{g} \bullet \vec{d} \\
& \text { where } \quad F_{g}=(m g)(-\hat{j}) \text { and } g=9.81 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

If an object is displaced upward ($\Delta \mathrm{y}$ positive), then the work done by the gravitational force on the object is negative.

If an object is displaced downward ($\Delta \mathrm{y}$ negative), then the work done by the gravitational force on the object is positive.

What is the change in KE due to Gravitational Force

If the only force acting on an object is Gravitational Force then,

$$
W_{\text {net }}=\left(W_{g}=\vec{F}_{g} \bullet \vec{d}\right)=\Delta K E=\left(K E_{f}-K E_{i}\right)
$$

If an object is displaced upward (Δ y positive), the change in Kinetic Energy is negative (it slows down).

If an object is displaced downward ($\Delta \mathrm{y}$ negative), the change in Kinetic Energy is positive (it speeds up).

What work is needed to lift or lower an object?

In order to "lift" an object, we must apply an external force to counteract the gravitational force.

$$
W_{\text {net }} \equiv W_{g}+W_{e x t}=\Delta K E
$$

If $\Delta K E=0$ (i.e. $v_{f}=v_{i}$), then $W_{g}=-W_{\text {ext }}$

If an object is displaced upward ($\Delta \mathrm{y}$ positive), then the work done by the External force on the object is positive.

If an object is displaced downward ($\Delta \mathrm{y}$ negative), then the work done by the External force on the object is negative.

Example

Downhill Skier

A 58 -kg skier coasts down a 25° slope where the kinetic frictional force is $f_{k}=70 \mathrm{~N}$. If the starting speed is $v_{0}=3.6 \mathrm{~m} / \mathrm{s}$ then what is the speed after a displacement of 57 m ?
Along the direction of motion $(+x)$ the forces are:

$$
\begin{aligned}
& \sum F=m g \sin 25^{\circ}-f_{k} \\
= & 240 \mathrm{~N}-70 \mathrm{~N} \\
= & 170 \mathrm{~N}
\end{aligned}
$$

The work this force does is:

$$
W=F \cdot s=(170 \mathrm{~N})(57 \mathrm{~m})=9700 \mathrm{~J}
$$

This gives a change in kinetic energy that is:

$$
W=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}
$$

$$
\begin{array}{rlrl}
m \mathrm{~g} \\
\frac{1}{2} m v^{2} & =W+\frac{1}{2} m v_{0}^{2}=9700 J+\frac{1}{2}(58 \mathrm{~kg})(3.6 \mathrm{~m} / \mathrm{s})^{2} & v & =\sqrt{\frac{2(10100 J)}{58 \mathrm{~kg}}} \\
& =10100 \mathrm{~J} & & =19 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Special Case:

Work due to Friction:

WORK due to friction is ALWAYS NEGATIVE

- Energy is transferred OUT
- Kinetic energy decreases or $\Delta \mathrm{KE}<0$ (slow down)

Where did the energy go? THERMAL/Sound

(a)

(b)

