

Physics 2101 Section 3 April 30th: Chap. 19

Announcements:

- Final Exam: May $11^{\text {th }}$
(Tuesday), 7:30 AM at HoweRussell 130
- Make up Final: May $15^{\text {th }}$ (Saturday) 7:30 AM at Nicholson 119

Class Website:

http://www.phys.lsu.edu/classes/spring2010/phys2101-3/
http://www.phys.lsu.edu/~jzhang/teaching.html

Chap. 19: Kinetic Theory of Gases

Thermodynamics = macroscopic picture

Gases $=$ micro -> macro picture

IDEAL GAS LAW

\mathbf{n} = number of moles
$\mathbf{N}=$ number of particles

$$
\begin{array}{lcrl}
\mathrm{pV}=\mathrm{nRT} \mathrm{pV} & \mathbf{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} & \mathbf{R} & =8.315 \quad \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) \\
=\mathrm{NkT} & \mathrm{R}=\mathrm{kN}_{\mathrm{A}} & & =0.0821(\mathrm{~L} \cdot \mathrm{~atm}) /(\mathrm{mol} \cdot \mathrm{~K}) \\
& & & =1.99 \quad \text { calories } /(\mathrm{mol} \cdot \mathrm{~K})
\end{array}
$$

Monoatomic ideal gas : He, Ar, Ne, Kr... (no potential energies)

$$
E_{\text {int.t.monoonic }}=N\left(\frac{3}{2} k T\right)=\frac{3}{2} n R T
$$

The internal energy of an ideal gas depends

$$
\Delta E_{\text {int, monoononic }}=\frac{3}{2} n R(\Delta T)
$$ only on the temperature

Ideal Gases, Ideal Gas Law

$$
p V=n R T \quad p V=N k T
$$

It was found experimentally that if 1 mole of any gas is placed in containers that have the same volume V and are kept at the same temperature T, approximately all have the same pressure p. The small differences in pressure disappear if lower gas densities are used.

Further experiments showed that all low-density gases obey the equation $p V=n R T$. Here $R=8.31 \mathrm{~K} / \mathrm{mol} \cdot \mathrm{K}$ and is known as the "gas constant." The equation itself is known as the "ideal gas law." The constant R can be expressed as $R=k N_{\mathrm{A}}$. Here k is called the Boltzmann constant and is equal to $1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$. If we substitute R as well as $n=\frac{N}{N_{\mathrm{A}}}$ in the ideal gas law we get the equivalent form: $p V=N k T$. Here N is the number of molecules in the gas.

The behavior of all real gases approaches that of an ideal gas at low enough densities. Low densities means that the gas molecules are far enough apart that they do not interact with one another, but only with the walls of the gas container.

Work done by isothermal ($\Delta \mathrm{T}=0$) expension of ideal gas

On p-V graph, the green lines are isotherms...
... each green line corresponds to a system at a constant temperature.
From ideal gas law, this means that for a given isotherm:

$$
p V=\text { constant } \quad \Rightarrow p=(n R T) \frac{1}{V} \quad \text { Relates } \mathrm{p} \text { and } \mathrm{V}
$$

The work done by the gas is then:

$$
W_{b y}=\int_{V_{i}}^{V_{f}} p d V=\int_{V_{i}}^{V_{f}}\left(\frac{n R T}{V}\right) d V=n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V}
$$

$$
\begin{aligned}
\Rightarrow W_{\substack{\text { by, isothermal } \\
T T=0}} & =n R T \ln \left(\frac{V_{f}}{V_{i}}\right) \\
& =n R T \ln \left(\frac{p_{i}}{p_{f}}\right)
\end{aligned}
$$

Work done by isobaric ($\Delta \mathrm{P}=0$) expansion of an ideal gas

$$
\begin{array}{rl}
\Rightarrow W_{\substack{\text { byisobaric } \\
\Delta P=0}} & p \Delta V \\
& =n R \Delta T
\end{array}
$$

Work Done by an Ideal Gas at Constant Temperature

 Consider the gas shown in the figure. It is held at a constant temperature T and undergoes an isothermal expansion from volume V_{i} to volume V_{f}. The process follows the red line on the lower figure. The work W done by the ideal gas is given by the equation $W=\int_{V_{i}}^{V_{f}} p d V$. From the ideal gas law we have that $p=\frac{n R T}{V} \rightarrow W=\int_{V_{i}}^{V_{f}} \frac{n R T}{V} d V=n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V}=n R T[\ln V]_{V_{i}}^{V_{f}} ;$ $W=n R T \ln \frac{V_{f}}{V_{i}}$.For expansion we have : $V_{f}>V_{i} \rightarrow \ln \frac{V_{f}}{V_{i}}>0 \rightarrow W>0$.
For compression we have : $V_{f}<V_{i} \rightarrow \ln \frac{V_{f}}{V_{i}}<0 \rightarrow W<0$.

Sample problem 19-2: One mole of oxygen expands at a constant temperature T of 310 K from an initial volume V_{i} of 12 L to a final volume V_{f} of 19 L . How much work is done by the gas during the expansion.

We calculated W for isothermal expansion
$W=n R T \ln \left(V_{f} / V_{t}\right)$
$W=(1$ mole $)(8.31 \mathrm{~J} /$ mole K$)(310 \mathrm{~K}) \ln (19 / 12)$

$\mathrm{W}=1180 \mathrm{~J}$

Summary

Work Done by an Ideal Gas at Constant Volume

Consider process i $\rightarrow f$. and $V=$ contant.
The work W done by the gas is $W=\int p d V=0$.

Work Done by an Ideal Gas at Constant Pressure

 Consider process $i \rightarrow f$. and $P=$ contant.The work W done by the gas is
$W=\int_{V_{i}}^{V_{f}} p d V=p \int_{V_{i}}^{V_{f}} d V=p\left(V_{f}-V_{i}\right)$.
Work Done by an Ideal Gas at Constant Temperature Consider process $i \rightarrow f$. and $T=$ contant.
$W=\int_{V_{i}}^{V_{f}} p d V$. From the ideal gas law we have that
$p=\frac{n R T}{V} \rightarrow W=\int_{V_{i}}^{V_{f}} \frac{n R T}{V} d V=n R T \int_{V_{i}}^{V_{f}} \frac{d V}{V}=n R T \ln \frac{V_{f}}{V_{i}}$

19-6: A quantity of ideal gas at $10.0^{\circ} \mathrm{C}$ and 100 kPa occupies a volume of $2.50 \mathrm{~m}^{3}$. (a) How many moles of the gas are present? (b) If the pressure is now raised to 300 kPa and the temperature to $30.0^{\circ} \mathrm{C}$, how much volume does the gas occupy?
(a) $n=\frac{p V}{R T}=\frac{\left(100 \times 10^{3} \mathrm{~Pa}\right)\left(2.50 \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \bullet \mathrm{K})(283 \mathrm{~K})}=106 \mathrm{moles}$
(b) $\frac{p_{f} V_{f}}{p_{i} V_{i}}=\frac{T_{f}}{T_{i}}$

$$
V_{f}=V_{i}\left(\frac{p_{i}}{p_{f}}\right)\left(\frac{T_{f}}{T_{i}}\right)=0.892 \mathrm{~m}^{3}
$$

19-9: Suppose 1.80 mole of an ideal gas is taken from a volume of $3.00 \mathrm{~m}^{3}$ to a volume of $1.50 \mathrm{~m}^{3}$ via an isothermal compression at 30 ${ }^{\circ} \mathrm{C}$. (a)How much energy is transferred as heat during the compression, and (b) is the transfer to or from the gas?

Use Eqn. 19-45
$\Delta \mathrm{E}_{\text {int }}=n C_{V} \Delta T$
But $\Delta \mathrm{T}=0$
$\Delta \mathrm{E}_{\text {int }}=0$

$$
\begin{aligned}
& \Delta \mathrm{E}_{\text {int }}=Q-W \\
& Q=W
\end{aligned}
$$

Eqn 19-14

$$
W=n R T \cdot \ln \left[\frac{V_{f}}{V_{i}}\right]
$$

$$
\begin{aligned}
& Q=\mathrm{nRT} \cdot \ln \left[\frac{V_{f}}{V_{i}}\right] \\
& Q=(1.80)(8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K})(273+30 \mathrm{~K}) \cdot \ln \left[\frac{1.8}{3}\right] \\
& Q=-3 / 14 \times 10^{3} \mathrm{~J}
\end{aligned}
$$

19-10: Water bottle in a hot car. In the American Southwest, the temperature in a closed car parked in the sun during the summer can be high enough to burn flesh. Suppose a bottle of water at a refrigerator temperature of $5^{\circ} \mathrm{C}$ is opened, then closed, and then left in a closed car with an internal temperature of $75^{\circ} \mathrm{C}$. Neglecting the thermal expansion of the water and the bottle, find the pressure in the air pocket trapped in the bottle.

$$
\begin{aligned}
& T_{i}=5^{\circ} \mathrm{C}=278 \mathrm{~K} \\
& T_{f}=75^{\circ} \mathrm{C}=348 \mathrm{~K}
\end{aligned}
$$

Use Ideal Gas Law with $\mathrm{V}_{i}=V_{f}$

$$
\frac{p_{f} V_{f}}{p_{i} V_{i}}=\frac{T_{f}}{T_{i}}
$$

$$
p_{f}=\frac{T_{f}}{T_{i}} p_{i}=1.25 \mathrm{~atm}
$$

19-11: Suppose 0.825 mol of an ideal gas undergoes an isothermal expansion as energy is added to it as heat Q . The figure shows the final volume V_{f} versus Q , what is the gas temperature? ? (The scale of the vertical axis is set by $\mathrm{V}_{\mathrm{fs}}=0.30$ m^{3}, and the scale of the horizontal axis by $\mathrm{Q}_{\mathrm{s}}=1200 \mathrm{~J}$).

Remember $\Delta \mathrm{E}_{\text {int }}=0$
$\Delta E_{\text {int }}=Q-W=0 ; Q=W$
Eqn 19-14
$Q=n R T \cdot \ln \left[\frac{V_{f}}{V_{i}}\right]$

This Eqn applies anywhere

$$
Q=n R T \cdot \ln \left[\frac{V_{f}}{V_{i}}\right]
$$

Pick a point on graph

$$
\begin{aligned}
& Q=1000 \mathrm{~J}: V_{f}=0.30 \mathrm{~m}^{3} \\
& Q=n R T \cdot \ln \left[\frac{V_{f}}{V_{i}}\right] \text { with } V_{i}=0.20 \mathrm{~m}^{3} \\
& T=360 \mathrm{~K}
\end{aligned}
$$

19-15: A sample of an ideal gas is taken through the cyclic process abca shown in the figure. The scale is $p_{b}=$ 7.5 kPa and $\mathrm{p}_{\mathrm{ac}}=2.5 \mathrm{kPa}$. At point $\mathrm{a}, \mathrm{T}=200 \mathrm{~K}$. (a) How many moles of gas are in the sample? What are (b) the temperature of the gas at point b, (c) the temperature of the gas at point c , and (d) the net energy added to the gas as heat during the cycle?
(a) We know everything a point a

(c) Use Ideal Gas Law (ratios)
$\frac{p_{c} V_{c}}{p_{a} V_{a}}=\frac{T_{c}}{T_{a}}$
$T_{c}=600 \mathrm{~K}$
(b) Use Ideal Gas Law (ratios)
$\frac{p_{b} V_{b}}{p_{a} V_{a}}=\frac{T_{b}}{T_{a}}$
$T_{b}=1.8 \times 10^{3} \mathrm{~K}$
(d) Energy added: $\Delta \mathrm{E}_{\text {int }}=0$
$Q=W$
$Q=\frac{1}{2}($ base $)($ height $)=5000 J$

