Physics 2101 Section 3 Apr 14th

Quiz Friday

• Midterm #4, April 28th 6 pm

• Final: May 11th-7:30am

Make up Final: May 15th-7:30am

Class Website:

http://www.phys.lsu.edu/classes/spring2010/phys2101-3/

http://www.phys.lsu.edu/~jzhang/teaching.html

Chap. 16 Waves

Waves and particle

Vibration \rightarrow waves

- Sound medium vibrates
- Surface ocean waves no net water is displaced
- Mechanical waves Newton's equations with medium
- Electro-magnetic waves NO MEDIUM light (photons)

Oscillation vs Wave

- How do you describe the motion?
- How many variables do you need?

Traveling Waves

A Pulse: A pulse can be sent along a spring... it travels to the right over time

Repeating the Pulse: Generates a periodic traveling wave...

If it reflects off of the other (fixed) end correctly it becomes a Standing Wave – it looks like the wave is standing still

Transverse vs Longitudinal Waves

Transverse: Displacement of particle is perpendicular to the direction of wave propagation

Longitudinal: Displacement (vibration) of particles is along same direction as motion of wave

-Sound (fluids...)
-Ocean currents
- top vs bottom

Traveling Waves - they travel from one point to another - Nodes move **Standing Waves** - they look like they're standing still - <u>Nodes</u> do not move

Transverse Waves

In a transverse wave the motion of the particles of the medium is perpendicular to the direction of the wave's travel

Longitudinal Waves

A longitudinal pulse travels along the medium but does not involve the transport of matter ... just energy

Here are periodic longitudinal waves – pick a single particle and follow its motion as the wave goes by

A Wave on the Water

A water wave is a combination of a **longitudinal** and a **transverse** wave ... notice how the blue dots make a circular motion:

Description of transverse traveling wave

Displacement (y) versus position (x)

$$y(x,0) = y_{\text{max}} \sin(kx)$$
 $k = \frac{2\pi}{\lambda}$

Spatially Periodic (repeats): $k\lambda = 2\pi$

Temporally Periodic (repeats): $\omega T = 2\pi$

$$y(0,t) = y_{\text{max}} \sin(-\omega t)$$
 $\omega = \frac{2\pi}{T}$

Displacement versus time does not show "shape"

Description of transverse wave

 $v = \frac{\pi}{\pi} = f\lambda$

- To describe a wave (particle) on a "string", the transverse displacement (y) depends on both the position (x) along the string and the time (t)

Displacement Y versus position X

Spatially Periodic (it repeats)

$$vT = \lambda$$

Temporally Periodic (it repeats)

$$f = \frac{1}{T}$$

Description of traveling wave: mathematical

What is the velocity at which the wave crests move?

Wave speed

Velocity at which crests move = wave velocity or phase velocity

phase:
$$kx - \omega t = const.$$
 $\Rightarrow k \frac{dx}{dt} - \omega = 0$

$$v_{wave} = \frac{dx}{dt} = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$$

A wave crest travels a distance of one wavelength, λ , in one period, T

Wave speed

Velocity at which crests move = wave velocity or phase velocity

$$v_{wave} = \frac{dx}{dt} = \frac{\omega}{k} = \frac{\lambda}{T} = \lambda f$$

A wave crest travels a distance of one wavelength, λ , in one period, T

Velocity of particle

$$y(x,t) = y_m \sin(kx - \omega t)$$

$$v_t(x,t) = -\omega y_m \cos(kx - \omega t)$$

$$|v_t(x,t)|_{\max} = \omega y_m$$

Wavelengths of Radio Stations

Waves like radio, light, x-rays etc. are part of the electromagnetic spectrum. They travel with a velocity:

$$v = c = \text{speed of light}$$

= $3 \times 10^8 n / s$

What is the wavelength of talk radio WJBO am 1150?

$$f = 1150 \ kHz = 1150 \times 10^3 Hz$$
$$= 1.15 \times 10^6 Hz$$

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8 \, m/s}{1.15 \times 10^6 \, /s}$$
$$= 261 \, m$$

What is the wavelength of KLSU fm 91.1?

$$f = 91.1 MHz = 91.1 \times 10^6 Hz$$
$$= 9.11 \times 10^7 Hz$$

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8 \, m/s}{9.11 \times 10^7 / s} = 3.29 \, m$$

Problems

Sample problem 16

 $y(x,t) = 0.00327 \sin(72.1x - 2.72t)$

A wave traveling along a string is described by: y(x, t) = 0.00327 sm(72.13) in which the numerical constants are in SI units (0.00327 m, 72.1 rad/m, and 2.72 rad/s).

- a) Which direction are the waves traveling? Positive x-direction
- b) What is the amplitude of the waves? $y_{max} = 0.00327 \text{ m} = 3.27 \text{ mm}$
- c) What is the wavelength? $k = 72.1 \text{ rad/m} \rightarrow \lambda = 0.0871 \text{ m} = 87.1 \text{ mm}$
- d) What is the period? $\omega = 2.72 \text{ rad/s} \rightarrow T = 2.31 \text{ s}$
- e) What is the frequency? $T = 2.31 \text{ s} \rightarrow f = 0.433 \text{ Hz}$
- f) What is the velocity of the wave (v_w) ? $v_w = \omega / k = \lambda f = 38 \text{ mm/s}$
- g) What is the displacement y at x = 22.5 cm and t=18.9 s? y = 1.92 mm make sure your calculator is in radians
- h) What is u, (or v_t) the transverse velocity, at x = 22.5 cm and t=18.9 s? $u=-\omega y_m \cos(kx-\omega t)$
- i) What is a_t , the transverse acceleration, at x = 22.5 cm and t = 18.9 s? $a_t = -\omega^2 y(x,t)$

Problems

(a) write an equation describing a sinusoidal transverse wave traveling on a cord in the +x direction with a wavelength of 10 cm, a frequency of 400 Hz, and an amplitude of 2.0 cm.

$$k = \frac{2\pi}{\lambda} = \frac{2\pi \cdot rad}{(0.10 \cdot m)} = 62.8 \cdot rad/m$$

$$\omega = \frac{2\pi}{T} = 2\pi f = 2\pi \cdot rad(400 \cdot 1/s) = 2513 \cdot rad/s$$

$$y(x,t) = (0.02 \cdot m) \sin[(62.8 \cdot rad/m)x - (2513 \cdot rad/s)t]$$

(b) What is the maximum speed of a point on the cord

$$|u|_{\text{max}} = \omega y_{\text{max}} = (2513 \cdot s^{-1})(0.02 \cdot m) = 50.3 \cdot m/s$$

(c) What is the speed of the wave?

$$v_{wave} = \frac{\lambda}{T} = \frac{\omega}{k} = \frac{2513 \cdot s^{-1}}{62.8 \cdot m^{-1}} = 40 \cdot m/s$$