

Physics 2101

 Section 3 March 22rd : Ch.13-14
Announcements:

- More on gravity.
- Start Ch. 14
- Exam. 3 on Mar. $24^{\text {th }}$

Class Website:

http://www.phys.Isu.edu/classes/spring2010/phys2101-3/
http://www.phys.Isu.edu/~jzhang/teaching.html

Chapt. 13: review

Force on 1 due to 2: $\quad \vec{F}_{12}=G \frac{m_{1} m_{2}}{r_{12}^{2}} \hat{r}_{12}$

$$
G=6.67 \times 10^{-11} N \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

Force on 1 due to many: $\vec{F}_{1, \text { net }}=\vec{F}_{12}+\vec{F}_{13}+\vec{F}_{14}+\ldots+\vec{F}_{1 n}=\sum_{i=1}^{n} \vec{F}_{1 i} \quad$ VECTOR ADDITION!!

Gravitational potential energy

If we define $\mathrm{U}=0$ at ∞, then the work done by taking mass m from R to ∞
$U(r)=-G \frac{m_{1} m_{2}}{\left|r_{12}\right|} \quad \vec{F}_{12}=G \frac{m_{1} m_{2}}{r_{12}^{2}} \hat{r}_{12}$

Planets and Satellites: Kepler's Laws

$\underset{\text { 1571-1630 }}{\text { Kepler }} \rightleftarrows$ Brahe $\underset{1546-1601}{\rightleftarrows} \underset{\text { Newton }}{ } \quad \underset{1642-1727}{ }$

1) Law of Orbits:
 All planets move in elliptical orbits with the Sun at one focus

Ellipse criterion:
Fm + F'm = const
$\mathrm{a}=$ semimajor axis
e = eccentricity

Assumes $\mathrm{M}_{\text {Sun }} \gg \mathrm{M}_{\mathrm{E}}$

earth-moon
= apogee
= perigee

$$
\begin{aligned}
& R_{a}=a(1+e) \\
& R_{p}=a(1-e)
\end{aligned}
$$

Planets and Satellites: Kepler's 2nd Law

2) Law of equal areas :

A line that connects a planet to the sun sweeps out equal areas in equal time

- Planets move slowest when furthest away from Sun (at R_{a})
- Planets move fastest when closest away from Sun (at R_{p})

\longrightarrow ANGULAR MOMENTUM IS CONSERVED

Angular momentum $\quad \vec{L}=\vec{r} \times \vec{p}$

$$
L=r p=r(m v)=r(m(\omega r))=m r^{2} \omega
$$

$$
\frac{L}{m}=r^{2} \omega
$$

Area of "triangle": $\quad d A=\frac{1}{2}(r d \theta) r$

$$
\frac{d A}{d t}=\frac{1}{2} r^{2} \frac{d \theta}{d t}=\frac{1}{2} r^{2} \omega \longrightarrow \frac{d A}{d t}=\frac{L}{2 m}=\text { constant }
$$

Planets and Satellites: Kepler's 3rd Law

3) The Law of Periods:

The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit

$$
\begin{aligned}
-\frac{G m_{\text {sat }} M_{E}}{r_{\text {sat }}^{2}}=-m_{\text {sat }} \frac{\left(\frac{2 \pi r_{\text {sat }}}{T}\right)^{2}}{r_{\text {sat }}} & \Rightarrow r_{\text {sat }}^{3}=\left(\frac{G M}{4 \pi^{2}}\right) T^{2} \\
& \Rightarrow T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r_{\text {sat }}^{3}
\end{aligned}
$$

NOTE: $\mathbf{r}^{3} \propto \mathbf{T}^{\mathbf{2}}$

Circular Orbit

When used in the equations, r (radius) and a (semimajor axis) are synonymous

Elliptical Orbit

Example: Hot Jupiter

In 2004 astronomers reported the discovery of a large Jupiter-sized planet orbiting very close the star HD 179949. The orbit was about 1/9 the distance of Mercury from our sun, and it takes the planet only 1.09 days to make one orbit (assumed to be circular). (a) What is the mass of the star? (b) How fast is this planet moving?
a) $T=\frac{2 \pi r^{3 / 2}}{\sqrt{G M_{\text {star }}}}=2.67 \times 10^{5} \mathrm{~s}$ and $r=\frac{1}{9} r_{\text {Mercury }}=6.43 \times 10^{9} \mathrm{~m}$

$$
M_{\text {star }}=\frac{4 \pi^{2} r^{3}}{T^{2} G}=2.21 \times 10^{30} \mathrm{~kg}=1.11 M_{\text {Sun }}
$$

b) $\quad v=\frac{2 \pi r}{T}=1.51 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Conservation of Mechanical Energy

Escape speed: Minimum speed ($v_{\text {excape }}$) required to send a mass m, from mass M and position R, to infinity, while coming to rest at infinity.

At infinity: $\mathrm{E}_{\text {mech }}=0$ because $\mathrm{U}=0$ and $\mathrm{KE}=0$
Thus any other place we have:

$$
\begin{aligned}
& E_{\text {mech }}=\left(K E+U_{g}\right)=0 \Rightarrow E_{\text {mech }}=\left(\frac{1}{2} m v^{2}-\frac{G m M}{R}\right)=0 \Rightarrow v_{\text {escape }}=\sqrt{\frac{2 G M}{R}} \\
& \begin{array}{l}
\text { Earth }=11.2 \mathrm{~km} / \mathrm{s}(25,000 \mathrm{mi} / \mathrm{hr})
\end{array} \\
& \text { Escape speed: } \quad \begin{array}{l}
\text { Moon }=2.38 \mathrm{~km} / \mathrm{s} \\
\\
\\
\text { Sun }=618 \mathrm{~km} / \mathrm{s}
\end{array}
\end{aligned}
$$

Problem 13-37

a) What is the escape speed on a spherical asteroid whose radius is 500 km and whose gravitational acceleration at the surface is is $3 \mathrm{~m} / \mathrm{s}^{2}$?
b) How far from the surface will the particle go if it leaves the asteroid's surface with a radial speed of $1000 \mathrm{~m} / \mathrm{s}$?
c) With what speed will an object hit the asteroid if it is dropped from 1000 km above the surface?

Problem 13-37

a) What is the escape speed on a spherical asteroid whose radius is 500 km and whose gravitational acceleration at the surface is is $3 \mathrm{~m} / \mathrm{s}^{2}$?
b) How far from the surface will the particle go if it leaves the asteroid's surface with a radial speed of $1000 \mathrm{~m} / \mathrm{s}$?
c) With what speed will an object hit the asteroid if it is dropped from 1000 km above the surface?
a) $\mathrm{a}_{\mathrm{g}}=\frac{G M}{R^{2}}=3 \mathrm{~m} / \mathrm{s}^{2} ; \quad M=\frac{a_{g} R^{2}}{G}$
$v=\sqrt{\frac{2 G M}{R}}=\sqrt{\frac{2 G M}{R}}=\sqrt{2 a_{g} R}=1.732 \times 10^{3} \mathrm{~m} / \mathrm{s}$
b) Mechanical energy consevation: $\frac{1}{2} m v_{i}^{2}-\mathrm{G} \frac{\mathrm{mM}}{\mathrm{R}_{\mathrm{i}}}=-\mathrm{G} \frac{\mathrm{mM}}{\mathrm{R}_{\mathrm{f}}}$

$$
R_{f}=\frac{2 G M}{\frac{2 G M}{R_{i}}-v_{i}^{2}}=2.5 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

c) Mechanical energy consevation: $-G \frac{m M}{R_{i}}=-G \frac{m M}{R_{f}}+\frac{1}{2} m v_{f}^{2}$

$$
\frac{1}{2} v_{f}^{2}=G M\left(\frac{1}{R_{i}}-\frac{1}{R_{f}}\right) \Rightarrow v_{f}=\sqrt{2 G M\left(\frac{1}{R_{i}}-\frac{1}{R_{f}}\right)}=1.4 \mathrm{~km} / \mathrm{s}
$$

$$
\text { Why } v_{f} \neq \sqrt{2 a_{g} h}=\sqrt{2 a_{g}\left(R_{i}-R_{f}\right)} ?
$$

Chapter 14: Fluids

What is a fluid??

Solids vs liquids vs gasses

Pressure $\quad P \equiv \frac{F}{A}$

Units: pascal $=\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}$
1 atmosphere $=1 \mathrm{~atm}$
$=1.01 \times 10^{5} \mathrm{~Pa}$
$=760$ torr
$=14.7 \mathrm{lb} / \mathrm{in}^{2}$

The collisions of gas molecules on the wall of the tire keep it inflated

Hydrostatic Pressure: Water applies a force perpendicular to all of the surfaces in the pool, including the swimmer, the walls of the pool etc.

Density
 $\rho \equiv \frac{m}{V}$

Note: density solid > liquid > gas

$$
\begin{aligned}
& \text { air }=1.21 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { wood }=550 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { water }=1000 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\mathrm{Al}=2700 \mathrm{~kg} / \mathrm{m}^{3}=2.7 \mathrm{~g} / \mathrm{cm}^{3}
$$

$$
\mathrm{Cu}=8960 \mathrm{~kg} / \mathrm{m}^{3}=8.9 \mathrm{~g} / \mathrm{cm}^{3}
$$

$$
\mathrm{Pb}=11340 \mathrm{~kg} / \mathrm{m}^{3}=11.34 \mathrm{~g} / \mathrm{cm}^{3}
$$

