

Physics for Technical Students

- Who am I?
- · Who are you?
- · Why are you here?
- What are you suppose to learn here?

Who I am?

Jiandi Zhang, Professor of Physics

Office: 229A Nicholson Hall

http://www.phys.lsu.edu/~jzhang/

jiandiz<u>@lsu.edu</u> 225-578-4103

What I am doing? Experimental Condensed Matter Physics

http://www.lsu.edu/highlights/2 009/06/NSF shtml

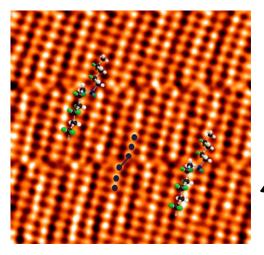
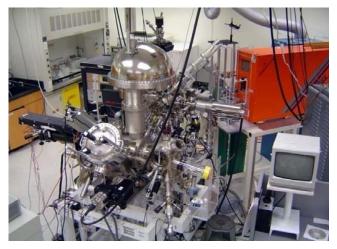



image of atomic scale manipulation

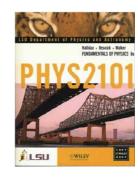
4.4 nm × 4.4 nm polymer film

experimental toys

PHYS2101

Class time: Mon, Wed, & Fri: 12:40 -1:30 PM

Office Hours: Mon, Wed, & Fri: 2:00PM – 3:30PM


Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101/

http://www.phys.lsu.edu/~jzhang/teaching.html : lecture notes / announcement

Pre-requisites: Basic Algebra & Calculus; Physics 1100

Textbook: Fundamentals of Physics, Halliday, Resnick, and Walker, 8th ed

Class: Covers Ch 1-6 Review only(fast) & Ch 7- 20 Standard teaching

Reading Assignments: Lecture schedule is provided

- read material before lecture!

Lectures: Concepts will be developed through the lectures,

demonstrations and class discussion

Homework: Best way to learn the material

Class Information is also through WebAssign

WebAssign will handle most of your class-related needs. On it you will find: homework, formulae sheets, practice tests

http://webassign.net/student.html
logon id is your PAWS e-mail address without the @lsu.edu
e.g. I am jiandiz @lsu.edu so my id is jiandiz

Your initial password is *hello* ... change it to something else...

Try logging into WebAssign TODAY:

If you have used WebAssign before, your old password will be in effect

If you have a problem logging in, e-mail me and I will reset your password

Today's lecture notes and the first homework assignment are posted.

HW will be due in 1 week! Start early and ask questions!!

Course details (see syllabus)

Class Format

- Announcements
- Mixture of Power Point and Chalk Board/Overhead
- Some theory Some problems...
- Power Point slides are available on class website & my own website
- Please ask questions (and correct me!).

<u>Grade</u>

See details from the syllabus

Help??

- Yourself...
- Friends, neighbors, family ...
- Tutoring room (Rm 102), grad students ...
- me (office, help sessions, email...)

Announcement: if they are taking a physics lab class, they need to attend this week or they will be dropped from the rolls

A way allestion...?

Chapter 1: Measurement

Basic concepts:

- 1. Measurement of a physical parameter
- 2. Units, systems of units (example: SI)
- 3. Basic units in mechanics
- 4. Changing units
- 5. Significant figures

As your field guide, Chapter 1 was a cake walk... Now let's start hiking some hills...

Chapter 2: Motion along a Straight Line

Basic Concepts:

Displacement:

$$\Delta x = x_2 - x_1$$

(Units: m)

Average velocity:

$$v_{\text{avg}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$

(Units: m/s)

Instantaneous velocity:

$$v = \lim \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$

Average acceleration:

$$\Delta t \rightarrow 0$$

Instantaneous acceleration

$$a_{\text{avg}} = \frac{v_2 - v_1}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$
 (Units: m/s²)

$$a = \lim \frac{\Delta v}{\Delta t} = \frac{dv}{dt}, \quad a = \frac{dv}{dt} = \frac{d}{dt} \left(\frac{dx}{dt}\right) = \frac{d^2x}{dt^2}$$

 $\Delta t \to 0$

Special Case: Motion with constant acceleration (a = const.)

 $a = \frac{dv}{dt} \rightarrow dv = adt$. If we integrate both sides of the equation we get:

$$\int dv = \int adt = a \int dt \rightarrow v = at + C$$
. Here C is the integration constant.

C can be determined if we know the velocity $v_0 = v(0)$ at t = 0:

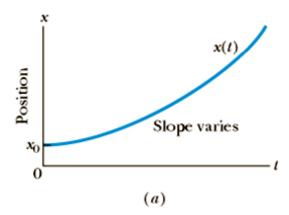
$$v(0) = v_0 = (a)(0) + C \rightarrow C = v_0 \rightarrow v = v_0 + at$$
 (eq. 1)

$$v = \frac{dx}{dt} \rightarrow dx = vdt = (v_0 + at)dt = v_0 dt + at dt$$
. If we integrate both sides we get:

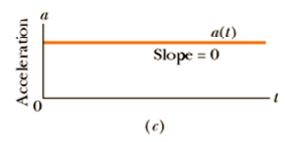
$$\int dx = \int v_0 dt + a \int t dt \rightarrow x = v_0 t + \frac{at^2}{2} + C'.$$
 Here C' is the integration constant.

C' can be determined if we know the position $x_0 = x(0)$ at t = 0:

$$x(0) = x_o = (v_0)(0) + \frac{a}{2}(0) + C' \rightarrow C' = x_o$$


$$x(t) = x_o + v_0 t + \frac{at^2}{2}$$
 (eq. 2)


If we eliminate the time t between equation 1 and equation 2 we get:


$$v^2 - v_0^2 = 2a(x - x_0)$$
 (eq. 3)

Below we plot the position x(t), the velocity v(t), and the acceleration a versus time t:

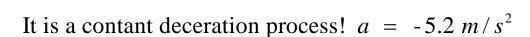
Motion with Constant Acceleration:

$$x = x_0 + v_0 t + \frac{at^2}{2}$$

The x(t) versus t plot is a parabola that intercepts the vertical axis at $x = x_0$.

$$v = v_0 + at$$

The v(t) versus t plot is a straight line with slope = a and intercept = v_0 .


$$a = const.$$

The acceleration a is a constant.

Example

The brakes on your car are capable of creating a constant deceleration of 5.2 m/s².

- a) If you are going 137 km/hr and suddenly see a state trooper, what is the minimum time in which you can get your car under the 90 km/hr speed limit?
- b) How far has your car traveled during the deceleration?

Initial speed:
$$v_0 = 137 \text{ km/s} = 38 \text{ m/s}$$

Final speed:
$$v = 90 \text{ km/hr} = 25 \text{m/s}$$

a) Pick up the first kinematic equation: $v = v_0 + at$

$$t = \frac{v - v_0}{a} = \frac{25m/s - 38m/s}{-5.2m/s^2} = 2.5s$$

b) Use the third kinematic equation: $v^2 = v_0^2 + 2a(x - x_0) = v_0^2 + ad$

$$d = \frac{v^2 - {v_0}^2}{2a} = 78.75m$$