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Physics 2101
Section 3
March 10 : Ch. 10

Announcements:
« Exam #2 grade posted
* Next Quiz is March 12

« I will be at the March APS
meeting the week of 15-
19th Prof. Rich Kurtz will
help me.

Class Website:
http://www.phys.lsu.edu/classes/spring2010/phys2101-3/

http://www.phys.Isu.edu/~jzhang/teaching.html



Rotational Work and Energy

We can compare linear variables with rotational variables
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The same can be done for work and energy:

For translational systems

W =F-X

KE:Emv
2

2

For rotational systems

W=r1-6
KE=1|w2
2




Example #2
Massless cord wrapped around a pulley of radius r and - l o
mass M, (frictionless surface/bearings) and I,,=1/2M,,, r.
What is angular acceleration, ¢, of pulley (disc)?
1) What are forces on m,?
) ! 2) What are forces on m,? .
T X: T.-mgsin@d=m,a - I,
. ) 9 1 y: T,-m,g=-m,a |
y: N-mgcosé=0 T T_,
. = =m —da _
= T,=m,(a+gsin6) 2 2(9 ) x | Mg
A 4
NOTE: T, & T, are NOT equal
3) What are torques about wheel?
Z —7 47 7o = IT,5iN(90° )+ T, sin(-90)
= R(Tl—TZ)(+2)
NOTE: angular acceleration vector is in negative-z direction
4) Solve for o ? l, & = r[(Tz)_(Tl)]
(1 2 _ .
lya =(3Myr*)a=r[(m,(g—a))—-(m (a+gsing))] a)  IFM, =0, same as
problem 5-43

here a =ar = (;MWRz)a:rg(m2—mlsine)—r(ar)(m2+m1) b)  1f 0 =902, same as

_2g| m,—msing (pHrc\)At/)I:r;)ll-SS
r|M,+2(m+m,)

a

o - into board



Summary: Effects of rotation

From before

my 1”2 46)
M
L With Rotation m=M
l a=30
—_— 4 "

_ 2g(m, —m, sin ) M— 49d(M —m) ‘V‘ —’ngd

Mw+2(m1+m2) - MW+2(m+M)

Done with both

Done via force/torque Done via energy

remember this for later

In each of these cases: “translation” was separate from “rotation”




SHW#6: Three masses M, 2M and 3M are shown in T,
the figure with two pulley of moment of inertial | T, "“}
and radius . | |
(a) What is the linear Acceleration?
T,—Mg=Ma Solve for T,, then T,,------
la id it ri
(Tz—Tl)rz P If 1 did it right
T,-T,=2Ma a=r
—+ 3M
! e
(T,-T,)r=— '
r .
3Mg—T, = 3Ma Check if I=0
F=3Mg- Mg=6Ma
a=2

3



SHW#6: Three masses M, 2M and 3M are shown in T2 or—
the figure with two pulley of moment of inertial |
and radius r. The coefficient of friction is n, and the

tableis L m long.

T,— Mg = Ma
(T,-T)r= Ialea
T,-T,-21Mg=2Ma
(T4—T3)r:|Ta
3Mg-T, =3Ma

Need v=rowo & a=ra

'\..\-E -
I ﬁ

T,=9gM (3-2x )- a(rl—2+5Mj

gM Lrlz(z_ﬂk)+ M (4—,uk)}

|
L2+3M}
T,= —a[iz+3M] + 3Mg

"
T, =-Mg(1- 1 )+ 3Mg = Mg (2 + )

_ Mg(l_luk)

=

Ty

T, =

a




-
SHWH#6: Three masses M, 2M and 3M are shown in _ T2 oy 3
the figure with two pulley of moment of inertial | T, &3“— soemw=ad |4

and radius r. The coefficient of friction is u, and the , ‘ ‘
table is L m long. ’

Let us use Energy.

We can define zero so E_, (start) =0
After block 3 has moved a distance d we have

2 2

Emech :O_zzukMgd - 6|\gv + 2I2a) _(3M _M)gd
3Mv®  IV°
~#Mgd =—"—+_5-Mgd (use V = ro) Same as before
M (1), o) - M?(l—uk)
. k
r 3M +— r
r
2d[3M +|2j
V, +V, "
t=d: t=

2 Mgd (1- )



SHW#6-problem #4: A M kg woman isin a
rotor with a r m radius, laying against the
inner surface. The friction between the
woman's sweater and the surface is L. (a)
The rotor begins spinning with a constant
angular acceleration , and when the rotor
reaches enough angular speed, the door
drops but the woman stays sticking to the
wall. (a) What is the minimum angular
velocity that will allow the woman not to fall
down when the door drops? (b) What's the
maximum angular acceleration that will not y
make the woman slide along the wall when a =ar
the rotor is speeding up to the angular 5
velocity calculated in (a)? a = —

Cemiral
A

(a) Calculate Normal Force Rotation//

2 axis

Mv® . -
F, = Ma, = —— gives Frictional Force
r

My (b) Calculate Tangential Force
\"

F. = s—>M M
A F = Ma = =% < 4 Mro® = . Mr (et

()



Chapter 11

Rolling, Torque, and Angular Momentum

In this chapter we will cover the following topics:

- Rolling of circular objects and its relationship with friction

- Redefinition of torque as a vector to describe rotational problems that
are more complicated than the rotation of a rigid body about a fixed
axis

- Angular momentum of single particles and systems of particles

- Newton’s second law for rotational motion

- Conservation of angular momentum

- Applications of the conservation of angular momentum



Conservation of Angular Momentum

Describe their motion:
o) > o(t) > aft)

| »*

| >

— Torque

Angular Momentum = lw

.o =1 w;




Understanding rolling with wheels

These relationships
define “smooth rolling motion”

Wheel moving forward with constant speed v,

S=6R displacement: translation— rotation
ds d(&R
Vcom = = ( ) - a)R
dt  dt only if
NO SLIDING

acom dvcom — d(a)R) — aR
dt dt

[smooth rolling]

At point P (point of contact),

wheel does not move




Understanding rolling with wheels Il

(a) Pure rotation =+ (b) Pure translation

- — —

_ - —
V=Veom A% =vc0m V= 2vc0m

(¢) Rolling motion

;)= E::mn —> — —
V="VYeom T Veom = 0
All points on wheel AII.points. on wheel Combination of
move with same ®. All points on move to the right with same “pure rotation” and “pure

outer rim move with same linear linear velocity v ., as center of  /351ation”
speedv=v_,. wheel

V=wXTI
Note at point P:  vector sum of velocity = 0 (point of stationary contact)
at point T: vector sum of velocity = 2v__ (top moves twice as fast as com)




Kinetic energy of rolling

(a) Pure rotation + (b) Pure translation — (¢) Rolling motion
-
V= Yesin ;’: 2;)com

——
VWit Vegm =0
1 _
2 Icom o KEtOt

Note: rotation about COM and translation of COM combine for total KE

Remember: v, = or






Question #2 J

Two solid disks of equal mass, but different radii, are released
from rest at the top of a ramp. Which one arrives at the bottom
first?

1. The smaller radius disk.
2. The larger radius disk.

3. Both arrive at the same time.

The equation for the speed of the a disk at the bottom
of theramp is ” :
\/§ glsing

Notice, it does not depend on the radius or the mass
of the disk!!




Rolling down a ramp : Energy considerations

from top of incline plane to bottom. What 1
isv, a, and At at bottom

Object, with mass m and radius r, roles
@

Emech = O
AT BOTTOM AKE  =-AU

(KEWMOM Jawa ~ )iy =—[(0)f.na. ~(mg ).n.t]

1

2 MV COM T2 Icoma) =mgLsin ¢

Using 1-D kinematics

v =V, +2al
) L1 v) : v? gsin g
2 MV COM 2|COM r =mgLSIn6? a=2L: |
(1+ 2]
5 ICOM mr
Voo | M+ —- . =2mgLsin g AND
29Lsin o t= 2_'— (1+ '2)
‘VCOM‘Z ( | ) gsin @ mr
mr° AT BOTTOM



Compare different objects

Assuming same work done (same change in U),

objects with larger rotational inertial have larger KE,, 2gLsin g
and during rolling, their KE. . __is smaller. ‘VCOM ‘ - |
trans 1 com
T 2
| mr
— —_ com
KEtot o KEtrans + I‘<Erot T KEtrans(1+ 2)
mr
Roll a hoop, disk, and solid sphere down a ramp - what wins?
Rotational Fraction of Energy in
Object Inertia, I, Translation Rotation
Hoo 2

= P Imr 0.5 0.5 slowest
v O
% 3 k

Dis 1 2

L= ZMr 0.67 033 o - | 2L (1+ | j
n Qh bottom - 2
3 o gsing\ mr
2 3 Soh
- = ere

3 P mr? 0.71 0.29

M sliding block 0 . 0 fastest

(no friction)



Problem #1

A solid cylinder starts from rest at the upper end of the track as\
shown. What is the angular speed of the cylinder about its
center when it is at the top of the loop?

Using conservation of mechanical energy: h

0=AE - AKEtot +AU grav
O i [(; meom ’ ; ICOma)Z )final - (O)init ]+ [(mg(2 R)final o (mg(h))init :I
mg(h—-2R) = s mar)” +3 G mr )’

mech

2

Rearranging yields 2mg(h -2R) — o’ E|_+ %:I

mr
4g(h-2R
e \/ 9(h - 2R)
3r
NOTE: Compare with before Trans + Rot = V=4/+qd
y

V=ar =4/4g(h—2R) =/4gd, < Roling




Problem #1

A solid cylinder of radius 10 cm and mass 12 kg starts from rest
and rolls without slipping a distance of 6 m down a house roof
that is inclined at 302.

Where does it hit?

Using conservation of mechanical energy:

0=AE, .., =AKE, + AU

mech — tot grav

[( chom z lom@ )fma, _( )|n|t:| |:(O)final N (mgh)init]
mgLsind=m(v) + ;(;mrzix]z

r

Rearranging yields 2mgLsing
- =V [1+ %]

4 -
Vbottom,COM - ‘\/ 3 gl SIn 0

Then just use kinematics (v, V,,...)



