

Physics 2101 Section 3 March $5^{\text {rd }}:$ Ch. 10

Announcements:

- Grades for Exam \#2 posted next week.
- Today Ch. 10.7-10,
11.2-3
- Next Quiz is March 12 on SHW\#6

Class Website:

http://www.phys.Isu.edu/classes/spring2010/phys2101-3/
http://www.phys.Isu.edu/~jzhang/teaching.html

Summary: Translational and Rotational Variables

(a)

Rotational position and distance moved

$$
s=|\theta| r \quad \text { (only radian units) }
$$

Rotational and translational speed

$$
\begin{aligned}
|\vec{v}| & =\frac{|d \vec{r}|}{d t}=\frac{d s}{d t}=\frac{d|\theta|}{d t} r \\
v & =|\omega| r
\end{aligned}
$$

$$
\vec{v}=\vec{\omega} \times \vec{r}
$$

Rotational and translational acceleration
$a_{t}=\frac{d|\omega|}{d t} r=|\alpha| r \quad$ tangential acceleration

$$
\vec{a}_{t}=\vec{\alpha} \times \vec{r}
$$

$$
a_{r}=\frac{v^{2}}{r}=|\omega|^{2} r \text { radial/centripetal acceleratioI } \quad \vec{a}_{r}=\vec{\omega} \times(\vec{\omega} \times \vec{r})
$$

$$
\left|\vec{a}_{\text {tot }}\right|^{2}=\left|\vec{a}_{r}\right|^{2}+\left|\vec{a}_{t}\right|^{2}
$$

$$
=\left|\omega^{2} r\right|^{2}+|\alpha r|^{2}
$$

$$
\vec{a}_{t o t}=\vec{a}_{t}+\vec{a}_{r}
$$

Example: Beetle on a merry-go-round

A beetle rides the rim of a rotating merry-go-round.
If the angular speed of the system is constant, does the beetle have
a) radial acceleration and b) tangential acceleration?

$$
\text { If } \omega \text { constant, } \quad \alpha=0 \quad \left\lvert\, \begin{aligned}
\left|\vec{a}_{\text {tot }}\right|^{2} & =\left|\vec{a}_{r}\right|^{2}+\left|\vec{a}_{t}\right|^{2} \\
& =\left\lvert\, \underline{\left.\omega^{2} r\right|^{2}+|0|^{2} \quad \Rightarrow \quad \vec{a}_{\text {tot }}=\omega^{2} r(-\hat{r})} \begin{aligned}
\text { only radial }
\end{aligned}\right.
\end{aligned}\right.
$$

If the angular speed is decreasing at a constant rate, does the beetle have a) radial acceleration and b) tangential acceleration?

$$
\text { If } \begin{aligned}
& \alpha=\text { negative but constant, } \\
& \omega=\omega_{0}+\alpha t \\
& \left\lvert\, \begin{aligned}
\left|\vec{a}_{\text {tot }}\right|^{2} & =\left|\vec{a}_{r}\right|^{2}+\left|\vec{a}_{t}\right|^{2} \\
& =\left|\omega^{2} r\right|^{2}+|\alpha r|^{2} \\
\left|a_{\text {tot }}\right| & =\sqrt{\left(\left(\omega_{0}+\alpha t\right)^{2} r\right)^{2}+(\alpha r)^{2}}
\end{aligned}\right.
\end{aligned}
$$

both radial and tangential

A ladybug sits at the outer edge of a merry-go-round, and a gentleman bug sits halfway between her and the axis of rotation. The merry-go-round makes a complete revolution once each second. The gentleman bug's angular speed is

1. half the ladybug's.
2. the same as the ladybug's.
3. twice the ladybug's.
4. impossible to determine

A ladybug sits at the outer edge of a merry-go-round, that is turning and speeding up. At the instant shown in the figure, the tangential component of the ladybug's (Cartesian) acceleration is:

1. In the $+x$ direction
2. In the $-x$ direction
3. In the $+y$ direction
4. In the $-y$ direction
5. In the $+z$ direction
6. In the $-z$ direction
7. zero

A ladybug sits at the outer edge of a merry-go-round that is turning and is slowing down. The vector expressing her angular velocity is

1. In the $+x$ direction
2. In the $-x$ direction
3. In the $+y$ direction
4. In the $-y$ direction
5. In the $+z$ direction
6. In the $-z$ direction
7. zero

1) Dot Product or Scalar Product (Vector \cdot Vector $=$ scalar $)$

$$
\begin{aligned}
\vec{A} \bullet \vec{B} & =|A \| B| \cos \theta \\
& =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

2) $\mathbf{C r o s s}$ Product (Vector \times Vector $=$ Vector $)$

$$
\begin{aligned}
& \vec{C}=\vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
A_{x} & A_{y} & A_{z} \\
B_{x} & B_{y} & B_{z}
\end{array}\right| \\
& |\vec{C}|=|A| B \mid \sin \theta \\
& \text { If } \mathbf{A} \perp \mathbf{B} \text { then } \mathbf{A} \times \mathbf{B}=\max \\
& \text { If } \mathbf{A}|\mid \mathbf{B} \text { then } \mathbf{A} \times \mathbf{B}=0
\end{aligned}
$$

Two vectors A and B define a plane. Vector C is perpendicular to plane according to right-hand rule.

If $A \perp B$ then $A \cdot B=0$
If $\mathrm{A} \| \mathrm{B}$ then $\mathrm{A} \cdot \mathrm{B}=\max$

(a)

Kinetic Energy of Rotation

TRANSLATION Review:
Newton's $2^{\text {nd }}$ Law $\Rightarrow \vec{F}_{\text {net }} \propto \vec{a}$ proportionality is inertia, $m \Rightarrow$ constant of an object

energy associated with state of translational motion	$K E_{\text {trans }} \propto v^{2}$	"motion" of particles with same v

\rightarrow mass is translational inertia \leftarrow

What about rotation? What is energy associated with state of rotational

Energy of rotational motion
$K E_{\text {rot }}=\frac{1}{2} I \omega^{2} \quad\left[K E_{\text {trass }}=\frac{1}{2} m v^{2}\right]$

Moment of Inertia

For a discrete number of particles distributed about an axis of rotation

$$
I \equiv \sum_{\text {all mass }} m_{i} r_{i}^{2}
$$

units of $\mathrm{kg} \cdot \mathrm{m}^{2}$

- Rotational inertia (moment of inertia) only valid about some axis of rotation.
- For arbitrary shape, each different axis has a different moment of inertia.
- I relates how the mass of a rotating body is distributed about a given axis.
- r is perpendicular distance from mass to axis of rotation

Moment of inertia: comparison

$$
\begin{aligned}
I_{1} & =\sum m_{i} r_{i}^{2} \\
& =(5 \cdot \mathrm{~kg})(2 \cdot \mathrm{~m})^{2}+(7 \cdot \mathrm{~kg})(2 \cdot \mathrm{~m})^{2} \\
& =52 \cdot \mathrm{kgm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
I_{2} & =(5 \cdot \mathrm{~kg})(0.5 \cdot \mathrm{~m})^{2}+(7 \cdot \mathrm{~kg})(4.5 \cdot \mathrm{~m})^{2} \\
& =(1.3+142) \cdot \mathrm{kgm}^{2}=144 \cdot \mathrm{kgm}^{2}
\end{aligned}
$$

Note: 5 kg mass contributes $<1 \%$ of total

- Mass close to axis of rotation contributes little to total moment of inertia.
- How does a larger moment of inertia "feel" ? $\quad\left[F_{n e t}=\mathbf{m} a\right]$

If rigid body = few particles
If rigid body $=$ too-many-to-count particles

$$
I=\sum m_{i} r_{i}^{2}
$$

Sum \rightarrow Integral

Moment of inertia: continuum mass

$$
I=\sum m_{i} r_{i}^{2} \Rightarrow \int r^{2} d m \quad \text { with } \rho=\frac{m}{V} \quad \Rightarrow \quad I=\rho \int r^{2} d V
$$

Example: moment of inertia of thin rod with perpendicular rotation through center

$$
\begin{aligned}
& I=\int r^{2} d m=\rho \int r^{2} d V \text { where } d V=\operatorname{area} \cdot d x=A \cdot d x \\
& I=\rho A \int r^{2} d x \quad \begin{array}{r}
r^{2}=x^{2} \text { in this case } \\
-L / 2 \rightarrow x \rightarrow+L / 2
\end{array}
\end{aligned}
$$

$$
I=\rho A \int_{-L / 2}^{+L / 2} x^{2} d x=\left.\rho A\left(\frac{1}{3} x^{3}\right)\right|_{-L / 2} ^{+L / 2}=\rho A\left(\frac{1}{3}\left(\frac{1}{8} L^{3}\right)-\frac{1}{3}\left(-\frac{1}{8} L^{3}\right)\right)
$$

$$
I=\left(\frac{m}{V}\right) A\left(\frac{L^{3}}{12}\right)=\frac{1}{12}\left(\frac{m \cdot A}{A \cdot L}\right)\left(L^{3}\right)=\frac{1}{12} m L^{2}
$$

INDEPENDENT of cross section area

Some Rotational Inertias

Each of these rotational inertias GO THROUGH the center of mass !

Parallel-Axis Theorem

$$
I=I_{\text {COM }}+M h^{2}
$$

Proof:

$$
\begin{aligned}
& \mathrm{I}=\int r^{2} d m=\int\left\{(x-a)^{2}+(y-b)^{2}\right\} d m \\
& I=\int\left(x^{2}+y^{2}\right) d m-2 a \int x d m-2 b \int y d m+\int\left(a^{2}+b^{2}\right) d m \\
& I=I_{\text {COM }}+0+0+h^{2} M
\end{aligned}
$$

Moment of inertia of a Pencil

It depends on where the rotation axis is considered...

Consider a 20 g pencil 15 cm long and 1 cm wide ...
... somewhat like MASS, you can feel the difference in the rotational inertia

Example \#1

A bicycle wheel has a radius of 0.33 m and a rim of mass 1.2 kg . The wheel has 50 spokes, each with a mass 10 g . What is the moment of inertial about axis of rotation?

What is moment of inertia about COM?

$$
I_{\text {tot,com }}=I_{\text {rim,center }}+50 I_{\text {spoke }}
$$

\rightarrow What is $\mathrm{I}_{\text {spoke }}$ (parallel-axis)?

$$
\begin{aligned}
& I_{\text {spoke }}=I_{\text {rod.com }}+M h^{2}=\frac{1}{12} M L^{2}+M\left(\frac{1}{2} L\right)^{2}=\frac{1}{3} M L^{2} \\
& =\frac{1}{3}(0.01 \mathrm{~kg})(0.33 \mathrm{~m})^{2} \cong 3.6 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

\rightarrow Putting together

Thin rod about axis through center perpendicular to length

$$
\begin{aligned}
I_{\text {tot,com }} & =I_{\text {rim,center }}+50 I_{\text {spoke }} \\
& =M_{\text {wheel }} R^{2}+50 I_{\text {spoke }} \\
& =(1.2 \mathrm{~kg})(0.33 \mathrm{~m})^{2}+50\left(3.6 \times 10^{-4} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)=0.149 \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

Example \#2

How much work did Superman exert on earth in order to stop it?
What is the kinetic energy of the earth's rotation about its axis?

Energy of rotational motion is found from:

$$
K E_{\text {rot }}=\frac{1}{2} I \omega^{2}
$$

What is earth's moment of inertia, I?

$$
\begin{aligned}
I_{\text {earrh }} & =I_{\text {sphere }}=\frac{2}{5} M r^{2} \\
& =\frac{2}{5}\left(6 \times 10^{24} \mathrm{~kg}\right)\left(6.4 \times 10^{6} \mathrm{~m}\right)^{2} \cong 1 \times 10^{38} \mathrm{~kg} \cdot \mathrm{~m}^{2}
\end{aligned}
$$

What is earth's angular velocity, ω ?

Solid sphere about any diameter

$$
\text { From } T=2 \pi / \omega \Rightarrow \omega=2 \pi \text { radians } / \text { day }=2 \pi /(3600 \times 24)=7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}
$$

Now plug-'n-chug:

$$
K E_{\text {rot }}=\frac{1}{2}\left(1 \times 10^{38} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(7.3 \times 10^{-5} \mathrm{rad} / \mathrm{s}\right)^{2}=2.6 \times 10^{29} \mathrm{~J}
$$

