

Physics 2101 Section 3 Feb. $26^{\text {th }}:$ Ch. 9

Announcements:

- Quiz \#3 today
- HW due
- Study session Monday evening at 6:00PM at Nicholson 130

Test\#2 (Ch. 7-9) will be at 6 PM, March 3 (6) Lockett)

Class Website:

http://www.phys.Isu.edu/classes/spring2010/phys2101-3/
Or go directly to my website

Linear Momentum

Total Linear Momentum of N particles:

$$
\vec{P}_{\text {tot }}=\vec{p}_{1}+\vec{p}_{2}+\vec{p}_{3}+\ldots+\vec{p}_{N}=M \vec{v}_{\text {com }}
$$

$$
\frac{d \vec{P}_{t o t}}{d t}=M \frac{d \vec{v}_{c o m}}{d t}=M \vec{a}_{c o m}=\vec{F}_{n e t, e x t}
$$

Conservation of Linear Momentum

$$
\begin{aligned}
& \text { If External force is zero (isolated, closed system)... } \\
& \qquad \begin{array}{c}
0=\vec{F}_{\text {nete,ext }}=\frac{d \vec{P}}{d t} \\
\vec{P}=\text { const } \\
\Delta \vec{P}=0
\end{array}
\end{aligned}
$$

Elastic \& Inelastic Collision/Scattering

$$
\sum K=\text { contant } \quad \text { (Elastic) }
$$

Sample problem 9: A bullet of mass m and initial velocity v_{0} collides with and sticks onto a large wooden block of mass M. Find the velocity of $M+m$ immediately after the collision. How high does the combined block + bullet go before coming to rest temporarily.

Collisions - ballistic pendulum

A bullet with with an initial velocity of $896 \mathrm{~m} / \mathrm{s}$ and a mass of 0.01 kg strikes a 2.5 kg block hung from the ceiling. How high do the block/bullet combination go ?

1) Only momentum conservation during collision
2) Conservation of Energy as it swings up under conservative force

$$
\begin{aligned}
& P_{o}=m_{1} v_{o 1}=P_{f}=(0.01 \mathrm{~kg})(896 \mathrm{~m} / \mathrm{s})=8.96 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s} \\
& P_{f}=\left(m_{1}+m_{2}\right) v_{f}=8.96^{\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}} \quad v_{f}=\frac{8.96 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}}{2.51 \mathrm{~kg}}=3.57 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Energy conservation:

$$
\begin{gathered}
K E_{o}=P E_{f}=\frac{1}{2}\left(m_{1}+m_{2}\right) v_{f}^{2}=\left(m_{1}+m_{2}\right) g h \\
h=\frac{\frac{1}{2} v_{f}^{2}}{g}=0.650 \mathrm{~m}
\end{gathered}
$$

Collisions in 2D

NOW ONTO HARDER THINGS:

2-D Elastic

Still COLM:

$$
\vec{P}_{1 i}+\vec{P}_{2 i}=\vec{P}_{1 f}+\vec{P}_{2 f}
$$

\& COKE:
$K E_{1 i}+K E_{2 i}=K E_{1 f}+K E_{2 f}$

Example: ${ }_{1 i}=0 \quad V_{2 i}=0$
COLM- $\hat{x}: m_{1} v_{1 i}=m_{1} v_{1 f} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2}$ COLM- $\hat{y}: \quad 0=-m_{1} v_{1 f} \sin \theta_{1}+m_{2} v_{2 f} \sin \theta_{2}$ and
COKE: $\quad \frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}$

8 variables and 3 Equations
2 mass \& 4 velocity \& 2 angle

NOW ONTO HARDER THINGS:

2-D Elastic

Still COLM:

$$
\vec{P}_{1 i}+\vec{P}_{2 i}=\vec{P}_{1 f}+\vec{P}_{2 f}
$$

\& COKE:
$K E_{1 i}+K E_{2 i}=K E_{1 f}+K E_{2 f}$

Example
$\vec{v}_{1 i}=v_{1 i} \hat{x} ; \vec{v}_{2 i}=0$ \& ELASTIC
$\vec{v}_{2} \int$ We do know θ_{1}
COLM in x -direction $m_{1} v_{1 i}=m_{1} v_{1 f} \cos \theta_{1}+m_{2} v_{2 f} \cos \theta_{2}$

COLM in y-direction
$0=-m_{1} v_{1 f} \sin \theta_{1}+m_{2} v_{2 f} \sin \theta_{2}$

Kinetic energy conservation (ELASTIC)
$\frac{1}{2} m_{1} v_{1 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}$
BE careful !!!

3 equations for there unknown quantities: $\mathbf{v}_{1 f}, \mathbf{v}_{2 f}$ and θ_{2}

Example: Supplementary HW 4

A ball of mass " m ", which is moving with a speed " v_{1} " in x -direction, strikes another ball of mass " 2 m ", placed at the origin of horizontal planar coordinate system. The lighter ball comes to rest after the collision, whereas the heavier ball breaks in two equal parts. One part moves along y-axis with a speed $" v_{2}$ ". Find the direction of the motion of other part. What do we know:
$v_{1 i}, v_{1 f}=0$, More than two bodies after collision

Total momentum conserves

$\sum \vec{P}_{i}$: x-component: $m v_{1}$
y-component: zero

BEFORE

$\sum \vec{P}_{f}$: x-component: $m v_{3} \cos \theta$
AFTER

y-component: $m v_{2}-m v_{3} \sin \theta$
Conservation:

$$
\begin{aligned}
m v_{1} & =m v_{3} \cos \theta \\
0 & =m v_{2}-m v_{3} \sin \theta
\end{aligned}
$$

$\tan \theta=\frac{v_{2}}{V_{1}}$

Formula sheet for the quiz \#3

Law of conservation of linear momentum:
$\vec{P}_{i}=\vec{P}_{i} \quad$ (if $\sum \vec{F}_{\text {ext }}=0$)
$m_{1 i} \vec{v}_{1 i}+m_{2 i} \vec{v}_{2 i}=m_{1 f} \vec{v}_{1 f}+m_{2 f} \vec{v}_{2 f}$

Free-fall motion:
$v_{f}^{2}=v_{i}^{2}+2 \mathrm{a}\left(\mathrm{y}-\mathrm{y}_{0}\right) \quad(\mathrm{a}=-\mathrm{g})$

Kinetic energy: $K=\frac{1}{2} m v^{2}$
Gravitational potential energy: $\mathrm{U}=m g h$
Relationaship between work done by external force and total mechanical energy
$W=\Delta E_{\text {mec }}=\Delta K+\Delta U$

