

Physics 2101 Section 3
 Feb. $24^{\text {th }}:$ Ch. 9

Announcements:

- Today finish Ch. 9
- Friday Review Ch. 7-9
- Next Quiz will be Friday, Feb. 26 on SHW \#5
- Next HW due Friday the $26^{\text {th }}$
-Study session next Monday at 6 pm

Test\#2 (Ch. 7-9) will be at 6 PM, March 3 (6) Lockett)
Class Website:
http://www.phys.Isu.edu/classes/spring2010/phys2101-3/

One more COM problem

A railroad flatcar of mass M can roll without friction along a straight horizontal track. Initially, a man of mass \underline{m} is standing on the car, which is moving to the right with speed $\underline{v_{0}}$. What is the change in velocity of the car if the man runs to the left so that the speed relative to the car is $\underline{v}_{\text {rel }}$?

$$
\Delta \vec{P}=0 \Rightarrow \vec{P}_{\text {before }}=\vec{a}_{\text {afer }}
$$

One more COM problem

A railroad flatcar of mass M can roll without friction along a straight horizontal track. Initially, a man of mass \underline{m} is standing on the car, which is moving to the right with speed $\underline{v_{0}}$. What is the change in velocity of the car if the man
runs to the left so that the speed relative to the car is $\underline{v}_{\text {rel }}$? Lets do $v_{0}=0$ first.

$$
\Delta \vec{P}=0 \Rightarrow \vec{P}_{\text {before }}=\vec{P}_{\text {affer }}
$$

$$
\vec{P}_{\text {before }}=0 \quad \vec{P}_{\text {after }}=(M) v_{\text {after }} \hat{i}+(m)\left(v_{\text {after }} \hat{i}+v_{\text {rel }}(-\hat{i})\right)=0
$$

$$
v_{a f t e r}=\frac{m v_{r e l}}{M+m}
$$

One more COM problem

A railroad flatcar of mass M can roll without friction along a straight horizontal track. Initially, a man of mass \underline{m} is standing on the car, which is moving to the right with speed $\underline{v}_{\underline{v}}$. What is the change in velocity of the car if the man runs to the left so that the speed relative to the car is $\underline{v_{r e l}}$?

$$
\Delta \vec{P}=0 \quad \Rightarrow \quad \vec{P}_{\text {before }}=\vec{P}_{a f f e r}
$$

$$
\begin{gathered}
\vec{P}_{\text {before }}=(m+M) v_{0} \hat{i} \quad \vec{P}_{\text {affer }}=(M) v_{\text {affer }} \hat{i}+(m)\left(v_{\text {after }} \hat{i}+v_{\text {rel }}(-\hat{i})\right) \\
\Delta \vec{v}_{\text {car }}=\left(v_{\text {after }}-v_{0}\right)=v_{\text {after }}-\frac{(M+m) v_{\text {affer }}-m v_{\text {rel }}}{M+m} \\
\Delta \vec{v}_{\text {car }}=\frac{m v_{\text {rel }}}{M+m} \quad \begin{array}{c}
-\quad \begin{array}{c}
\text { DOESN'T MATTER IF } v_{0}=0 \\
\text { DOLvalent to Man }=\text { bullet \& Flatcar }=\text { rifle }
\end{array} \\
\text { or Man = cannon ball \& Flatcar }=\text { canon }
\end{array}
\end{gathered}
$$

One more COM problem: Center of Mass

A railroad flatcar of mass M can roll without friction along a straight horizontal track. Initially, a man of mass \underline{m} is standing on the car, which is moving to the right with speed $\underline{v_{0}}$. What is the
 change in velocity of the car if the man runs to the left so that the speed relative to the car is $\underline{v}_{\underline{\text { rel }}}$?

$$
\Delta \vec{P}=0 \quad \Rightarrow \quad \vec{P}_{\text {before }}=\vec{P}_{a f f e r}
$$

Lets move along with the car at $\mathrm{v}=\mathrm{v}_{c m}=v_{0}$: Then P (before) $=0$

$$
\begin{gathered}
\vec{P}_{\text {before }}=0 \\
\stackrel{\vec{P}}{\text { after }}=(M) v_{\text {affer }} \hat{i}+(m)\left(v_{\text {affer }} \hat{i}+v_{\text {rel }}(-\hat{i})\right)=0 \\
v_{\text {after }}=\frac{M v_{\text {rel }}}{M+m} \quad \begin{array}{l}
-\quad \text { use a coordinate system moving with } v_{\text {Com }}
\end{array}
\end{gathered}
$$

Impulse \& Collisions

An isolated event in which two or more bodies exert relatively strong forces on each other for a relatively short time.

We study two types:

1) Inelastic (KE lost to $\boldsymbol{E}_{\text {therm }}$)
2) Elastic (total KE=const)
[interaction through conservative forces]

However in both we assume closed and isolated systems

Forces during isolated, closed Collision

$d \vec{p}_{R}=\vec{F}_{L \rightarrow R}(t) d t$

$$
\int_{\vec{p}_{i}}^{\vec{p}_{i}} d \vec{p}_{R}=\int_{t_{i}}^{t^{\prime}} \vec{F}_{L \rightarrow R}(t) d t
$$

$$
\vec{J} \equiv \int_{t_{i}}^{t_{t}} \vec{F}_{n e t}(t) d t
$$

$$
\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}=\vec{J} \quad \text { Vector! Must satisfy for each direction! }
$$

Impulse-momentum theorem

Question

Suppose you are on a cart, initially at rest on a track with no friction. You throw balls at a partition that is rigidly mounted to the cart. If the balls bounce straight back as shown in the figure, will the cart be put into motion?

1. Yes. The cart moves left.
2. Yes. The cart moves right.
3. No. The cart does not move.
4. Sometimes; it depends on the velocity of the ball and mass of the cart.

Problem \#20: The figure shows the path of a cue ball of mass m as it bounces from a rail of a pool table. The ball's initial speed is v_{0} and the angle from the normal is θ_{1}. The bounce reverses the y component of the ball's velocity but does not alter the x component. What are (a) the angle θ_{2} and change in the momentum in vector notation.

The x component of velocity is conserved

Plot x vs. t and y vs. t

Inelastic Collisions?

Inelastic Collisions: 1-D

Inelastic collision : KE is not conserved (\sim thermal energy)
However, if system is closed and isolated, the total linear momentum P cannot change (whether the collision is elastic or inelastic !).

$$
\begin{aligned}
\vec{P}_{\text {before }} & =\vec{P}_{\text {affer }} \quad 1-\mathrm{D} \\
\left(m_{1} v_{1 i}+m_{2} v_{2 i}\right) & =\left(m_{1} v_{1 f}+m_{2} v_{2 f}\right)
\end{aligned}
$$

Only COLM: Conservation of Linear Momentum

Special Case:
Completely
Inelastic
Collision
(hit-'n-stick)

$m_{1}+m_{2}$

$$
V=\frac{m_{1} v_{1 i}}{\left(m_{1}+m_{2}\right)}
$$

Plot x vs. t for both masses

Example \#1
Pure inelastic collision Hit-'n-stick

$$
\begin{aligned}
& v_{c o m}=V=\frac{1 m_{1}(1)}{\left(m_{1}+3 m_{1}\right)} \\
& V=v_{\text {com }}=\frac{1}{4} \cdot \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\vec{P}_{\text {before }} & =\vec{P}_{\text {affer }} \quad 1-\mathrm{D} \\
\left(m_{1} v_{1 i}+m_{2} v_{2 i}\right) & =\left(m_{1} v_{1 f}+m_{2} v_{2 f}\right) \\
\left(m_{1} v_{1 i}+0\right) & =V_{f}\left(m_{1}+m_{2}\right)
\end{aligned}
$$

Special case: $\mathrm{v}_{2 \mathrm{i}}=0 \& \mathrm{~m}_{2}=3 \mathrm{~m}_{1}$ take $\mathrm{v}_{\mathrm{li}}=1 \mathrm{~m} / \mathrm{s}$

Velocity of COM

In a closed, isolated system the COM velocity ($\vec{v}_{\text {com }}$) of the system is CONSTANT. Why?

$$
\begin{aligned}
& \vec{F}_{\text {net }}=\frac{d \vec{P}_{t o t}}{d t}=0 \Longrightarrow \vec{P}_{t o t}=M \vec{v}_{c o m}=\left(m_{1}+m_{2}\right) \vec{v}_{c o m} \\
& \vec{P}_{\text {tot }}=\vec{p}_{1 i}+\vec{p}_{2 i} \\
& \vec{v}_{c o m}= \frac{\vec{P}_{t o t}}{\left(m_{1}+m_{2}\right)}=\frac{\vec{p}_{1 i}+\vec{p}_{2 i}}{\left(m_{1}+m_{2}\right)}=\frac{\vec{p}_{1 f}+\vec{p}_{2 f}}{\left(m_{1}+m_{2}\right)}
\end{aligned}
$$

Constant !!

Exploding things from Chapt. 9:

Summary: Velocity \& Position of COM

(closed \& isolated system)

Elastic Collisions: 1-D

Elastic collision : TOTAL KE is conserved (\sim Conservative forces)
 AND if system is closed and isolated, the total linear momentum P cannot change (whether the collision is elastic or inelastic !).

For example:

$$
v_{2 i}=0
$$

During Collision: transfer KE and momentum between objects through
 conservative internal forces

$$
\begin{aligned}
K E_{\text {before }} & =K E_{a f f e r} \\
\left(\frac{1}{2} m_{1} v_{1 i}^{2}\right) & =\left(\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\vec{P}_{\text {efore }} & =\vec{P}_{a f f e r} \quad 1-\mathrm{D} \\
\left(m_{1} v_{1 i}\right) & =\left(m_{1} v_{1 f}+m_{2} v_{2 f}\right)
\end{aligned}
$$

Examples of Elastic Collisions

1-D Elastic: Solve Eqn's with $v_{2 i}=0$

$$
\begin{aligned}
& v_{f 1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{o 1} \\
& v_{f 2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{o 1}
\end{aligned}
$$

$$
\frac{5 \text { variables and } 2 \text { Equations }}{2 \text { mass \& } 3 \text { velocity }}
$$

Special Cases:

1) Equal masses

If $m_{1}=m_{2}$ then $v_{f 1}=0$ and $v_{f 2}=v_{o 1}$

1-D Elastic: Solve Eqn's with $v_{2 i}=0$

$$
\begin{aligned}
& v_{f 1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{o 1} \\
& v_{f 2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{o 1}
\end{aligned}
$$

$$
\frac{5 \text { variables and } 2 \text { Equations }}{2 \text { mass \& } 3 \text { velocity }}
$$

Special Cases:
2) Massive target If $m_{1} \ll m_{2}$ then $v_{f 1} \approx-v_{o 1}$ and $v_{f 2} \approx \frac{2 m_{1}}{m_{2}} v_{o 1}$

1-D Elastic: Solve Eqn's with $v_{2 i}=0$

$$
\begin{align*}
& v_{f 1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{o 1} \\
& v_{f 2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{o 1}
\end{align*} \quad \text { (Eqn. 9.67) }
$$

$$
\frac{5 \text { variables and } 2 \text { Equations }}{2 \text { mass \& } 3 \text { velocity }}
$$

Special Cases:
3) Massive Projectile If $m_{1} \gg m_{2}$ then $v_{f 1} \approx v_{o 1}$ and $v_{f 2} \approx 2 v_{o 1}$

1-D Elastic Collision: 2-particles, moving target

Note: if $v_{o 2}=0$, the equations above ($9.75 \& 9.76$) reduce to

6 variables and 2 Equations Eqn's 9.67 \& 9.68

Example: 1-D Elastic
 $v_{2 i}=0$

$$
\begin{aligned}
& v_{f 1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{o 1} \\
& v_{f 2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{o 1}
\end{aligned}
$$

Special Cases: Equal masses If $m_{1}=m_{2}$ then $v_{f 1}=0$ and $v_{f 2}=v_{o 1}$

Plot x vs. t for both masses

Question 9-10*

Two bodies that form a closed, isolated system undergo an elastic collision in 1-D. Which of the three choices best represents the position-versus-time ($x-t$ plot) of those bodies and their center of mass velocity $\left(v_{\text {com }}\right)$?

Example \#2 1-D elastic collision with $m_{2}=3 m_{\underline{1}}$ and $v_{2 \underline{2}}=0$

$v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}=\frac{m_{1}-3 m_{1}}{m_{1}+3 m_{1}} v_{1 i}=-\frac{1}{2} v_{1 i}$

$$
v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}=\frac{2 m_{1}}{m_{1}+3 m_{1}} v_{1 i}=\frac{1}{2} v_{1 i}
$$

Review: Impulse \& Collision s

An isolated event in which two or more bodies exert relatively strong forces on each other for a relatively short time.

We study two types:

1) Inelastic (KE lost to $E_{\text {therm }}$)
2) Elastic (total KE=const)
[interaction through conservative forces]
However in both we assume closed and isolated systems

$$
\vec{J} \equiv \int_{t_{i}}^{t_{t}} \vec{F}_{n e t}(t) d t
$$

Impulse-momentum theorem

$$
\vec{p}_{f}-\vec{p}_{i}=\Delta \vec{p}=\vec{J} \quad \text { Vector! Must satisfy for each direction! }
$$

Review: 1-D Collisions

If system is closed and isolated, the total linear momentum \vec{P} cannot change

Inelastic collision : KE is not conserved (\sim thermal energy)

$$
\begin{aligned}
\vec{P}_{\text {before }} & =\vec{P}_{\text {affer }} \quad 1-\mathrm{D} \quad 2 \text { particles } \\
\left(m_{1} v_{1 i}+m_{2} v_{2 i}\right) & =\left(m_{1} v_{1 f}+m_{2} v_{2 f}\right)
\end{aligned}
$$

Elastic collision : TOTAL KE is conserved (\sim Conservative forces)

$$
\begin{array}{llr}
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i} & \text { (Eqn. 9-75) } & \begin{array}{c}
\vec{P}_{\text {before }}=\vec{P}_{\text {affer }} \\
K E_{\text {before }}=
\end{array} \quad 1-\mathrm{D} \tag{Eqn.9-75}\\
v_{\text {affer }}=\frac{2 \text { particles }}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i} & \text { (Eqn. 9-76) } & \left(\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}\right)= \\
\left(\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}\right)
\end{array}
$$

Collisions - elastic or inelastic?

(a) Before

(b) After

Assemble a train. Car 2 overtakes and locks onto Car 1 What kind of collision is this?

1) Momentum is always conserved

Momentum conservation: $\quad P_{\text {initial }}=P_{\text {final }}$

$$
m_{1} v_{o 1}+m_{2} v_{o 2}=\left(m_{1}+m_{2}\right) v_{f}
$$

Is energy conserved?
2) Unless it states that it is an elastic collision, you do not know

Does the $\mathrm{KE}_{\text {initial }}=\mathrm{KE}_{\text {final }}$?

$$
K E_{o}=\frac{1}{2} m_{1} v_{o l}^{2}+\frac{1}{2} m_{2} v_{o 2}^{2} \quad K E_{f}=\frac{1}{2}\left(m_{1}+m_{2}\right) v_{f}^{2}
$$

Usually you will find that they are NOT equal !!

Skaters Push Off

Two skaters of $m_{1}=54 \mathrm{~kg}$ and $m_{2}=88 \mathrm{~kg}$ push off and the woman moves off with $v_{f 1}=2.5 \mathrm{~m} / \mathrm{s}$. What is the velocity of the man?

In this (and all) "collisions" momentum is conserved:

$$
\begin{aligned}
& P_{\text {initial }}=P_{\text {final }} \\
& 0=m_{1} v_{1 f}+m_{2} v_{2 f} \quad v_{2 f}=-\frac{m_{1} v_{1 f}}{m_{2}} \\
& \quad v_{2 f}=-\frac{(54 \mathrm{~kg})(2.5 \mathrm{~m} / \mathrm{s})}{88 \mathrm{~kg}}=-1.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(a) Before

Is this "collision" elastic or inelastic?
It has to be inelastic !!

$$
\begin{aligned}
K E_{\text {initial }}=0 \quad K E_{\text {final }} & =\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \\
& =\frac{1}{2}(54)(2.5)^{2}+\frac{1}{2}(88)(-1.5)^{2} \\
& =268 \mathrm{~J}
\end{aligned}
$$

Energy is not conserved here!

Collisions can often have multiple parts

You may, however, have energy conserved before or after the collision

(b) Inelastic collision

Sample problem 9: A bullet of mass m and initial velocity v_{0} collides with and sticks onto a large wooden block of mass M. Find the velocity of $M+m$ immediately after the collision. How high does the combined block + bullet go before coming to rest temporarily.

Collisions - ballistic pendulum

A bullet with with an initial velocity of $896 \mathrm{~m} / \mathrm{s}$ and a mass of 0.01 kg strikes a 2.5 kg block hung from the ceiling. How high do the block/bullet combination go ?

1) Only momentum conservation during collision
2) Conservation of Energy as it swings up under conservative force

$$
\begin{aligned}
& P_{o}=m_{1} v_{o 1}=P_{f}=(0.01 \mathrm{~kg})(896 \mathrm{~m} / \mathrm{s})=8.96^{\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}} \\
& P_{f}=\left(m_{1}+m_{2}\right) v_{f}=8.96^{\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}} \quad v_{f}=\frac{8.96^{\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}}}{2.51 \mathrm{~kg}}=3.57 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Energy conservation:

$$
\begin{aligned}
& K E_{o}=P E_{f}=\frac{1}{2}\left(m_{1}+m_{2}\right) v_{f}^{2}=\left(m_{1}+m_{2}\right) g h \\
& h=\frac{\frac{1}{2} v_{f}^{2}}{g}=0.650 \mathrm{~m}
\end{aligned}
$$

Supplemental HW \#5

A ball of mass \boldsymbol{m} is fastened to a cord of length \boldsymbol{L}. The ball is released when cord is horizontal. At bottom of path, the ball elastically strikes block of mass \boldsymbol{M} initially at rest on frictionless floor.
a) What is the speed of the ball right after the collision?

Bullet Into Block

A 10 g bullet moving directly upward at $1000 / \mathrm{ms}$ strikes and lodges in the center of a 5.0 kg block
 initially at rest. To what maximum height does the block/bullet combination then rise above its initial position?

Supplemental HW\#5: A ball of mass m is fastened to a cord that is L m long and fixed at the end. The ball is released when the cord is horizontal. At the bottom of its
 path, the ball strikes a block of Mass M initially at rest. The collision is elastic find the speed of the ball and the block just after the collision.

SHW\#5: A ball of mass m is fastened to a cord that is $L m$ long and fixed at the far end. The ball is then released when the cord is horizontal. At the bottom of its path, the ball strikes a block of mass M initially at rest on a
 surface with kinetic friction constant μ_{k}. The collision is elastic. Find the speed of the ball, the speed of the block (both just after the collision), and the distance d that the block travels.

$$
v_{f 2}=\frac{2 m}{m+M} \sqrt{2 g L} \Longrightarrow E_{\text {Mech }}=\frac{M v_{2 F}^{2}}{2}=\frac{M}{2}\left(\frac{2 m}{m+M} \sqrt{2 g L}\right)^{2}
$$

When it comes to rest
Check-no gravity, no friction

$$
\begin{aligned}
& E_{\text {Mech }}=\mu_{k} M g d \\
& \mu_{k} M g d=\frac{M}{2}\left(\frac{2 m}{m+M} \sqrt{2 g L}\right)^{2}
\end{aligned}
$$

$$
d=\frac{1}{2 \mu_{k} g}\left(\frac{2 m}{m+M} \sqrt{2 g L}\right)^{2}
$$

SHW\#4. A ball of mass " m ", which is moving with a speed " $v 1$ " in x-direction, strikes another ball of mass " 2 m ", placed at the origin of horizontal planar coordinate system. The lighter ball comes to rest after the collision, whereas the heavier ball breaks in two equal parts. One part moves along y-axis with a speed " 22 ". Find the direction of the motion of other part. [Answer: $\theta=$ tan $-1(v 2 / v 1)$ below horizontal]

Enough for Today Continue on Monday

Momentum and Kinetic Energy in Collisions

Inelastic Collisions in one Dimension

