Physics 2101, Exam #3, Spring 2010

March 24, 2010

Name: Key

Section: (Circle one)

1 (Rupnik, MWF 8:40 AM)

5 (Jin, TTh 12:10)

2 (Rupnik, MWF 10:40 AM)

6 (González, TTh 4:40)

3 (Zhang, MWF 12:40 PM)

7(Sprunger, TTh 1:40)

4 (Plummer, TTh 9:10)

- Please be sure to write (print) your name and circle your section above.
- Please turn OFF your cell phone and MP3 player!
- Feel free to detach, use, and keep the formula sheet. No other reference material is allowed during the exam.
- You may use either a scientific or a graphing calculator...
- GOOD LUCK!

SHOW WORK on all problems that are NOT multiple choice

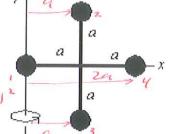
- 1) [5 pts] A flywheel, initially at rest, has a constant angular acceleration. After 9 s the flywheel has rotated 450 rad. Its angular acceleration in rad/s² is:
- a) 11.1
- b) 100
- c) 15.9
- d) 1.77
- e) 50

W=0 t= 9sec DO=450rd

O= Wothat?

$$\alpha = \frac{20}{t^2} = \frac{2(150 \text{ md})}{(9s)^2}$$

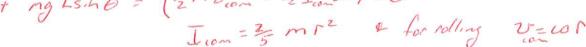
2) [10 pts] Four identical point particles, each with mass m, are arranged in the x, y plane as shown. They are connected by light (massless) sticks, with length a, to form a rigid body. The rotational inertia of this array about



the y axis is:

- d) $8ma^2$
- e) $16ma^{2}$
- Itot = Emiri2

= m(0)2+ ma2+ma2+ my (2a)2



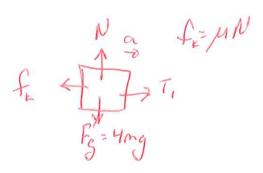
 $5.0 \, \mathrm{m}$

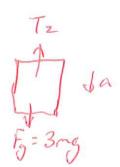
- 3) A bowling ball $(I_{com} = \frac{2}{5}MR^2)$ of radius 11.0 cm and mass 6.00 kg starts from rest and rolls without slipping a distance of 6.00 m down a house roof that is inclined at 30°.
- (a) [10 pts] What is the angular speed of the bowling ball as it leaves the roof?

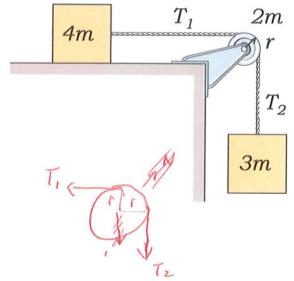
No work done by non-conservative forces
Las Conservation of mechanical energy Erech, initial = Enely, edge -

mg Lsho = 12 1/ (25/12) w2

(b) [5 pts] What is the angular speed of the bowling ball as it hits the ground [hint: what would cause an angular acceleration?


After leaving roof there is no torque so that the angular acceleration is zero.


This wedge = warrand = 59 rad/s


4) Two masses with mass 4m and 3m are set up as shown in the figure, with the mass 4m on a surface with coefficient of kinetic friction $\mu_k = \frac{1}{4}$.

The pulley is a solid disk $(I_{disk} = \frac{1}{2}MR^2)$ of mass 2mand radius r. The system starts accelerating from rest.

(a) [6 pts] Draw free body diagrams for the two masses and the pulley. Label all the forces.

(b) [7 pts] What is the linear acceleration of the system?

a)
$$\frac{2}{7}g$$
b) $\frac{1}{4}g$
c) $\frac{3}{7}g$

d)
$$\frac{1}{2}g$$

e)
$$\frac{4}{7}g$$

(b) [7 pts] What is the linear acceleration of the system?

(a)
$$\frac{2}{7}g$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma \Rightarrow T_1 - u(4my) = 4ma$$

$$T_1 - f_s = 4ma$$

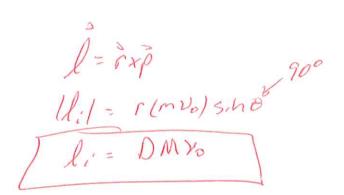
$$T_2 - T_1 = 4ma$$

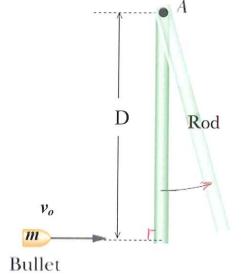
c) [2 pts] Is the tension below the pulley, T_2 , larger, equal to, or smaller than the tension to the left of the pulley, T_1 ? Circle the correct answer.

i)
$$T_1 > T_2$$

ii)
$$T_1 = T_2 = 0$$

i)
$$T_1 > T_2$$
 ii) $T_1 = T_2 = 0$ iii) $T_1 = T_2 \neq 0$ iii) $T_1 < T_2$


iii)
$$T_1 < T_2$$


Tz-T,=ma &

5) A *sticky* bullet of mass m is fired with speed v_0 toward the bottom end of a uniform steel ROD of mass M and length D hanging from a frictionless hinge at A. After a very short impact, the bullet <u>sticks</u> onto the rod. [Rotational inertial of a rod about

its end is $I_{rod,end} = \frac{1}{3}ML^2$]

a) [5 pts] What is the magnitude of the angular momentum of the bullet relative to point A <u>before</u> the impact, in terms of m, v_{θ} , D, and numerical constants, as needed.

b) [10 pts] What is the angular speed ω of the ROD just after the impact, in terms of v_0 , D, m, M, and numerical constants, as needed.

No external torques during collision =>

conservation of angular moralization

Li' = Ef

Dm Vo = Ippt = [mD+ 13MD^2] wf

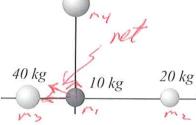
bullet rod

wf = \frac{DmVo}{mD^2+13MD^2} = \frac{mVo}{D} \left(\frac{1}{m+13M}\right)=wf

- c) [5 pts] During the impact (while the bullet is sticking to the rod)
- i) the frictional force between bullet and rod decreases the total angular momentum.
- ii) the total angular momentum remains constant.
- iii) the sum of the angular momentum and rotational kinetic energy remains constant.
- iv) neither angular momentum nor mechanical energy is conserved because of the frictional forces between bullet and rod.
- v) the frictional force between bullet and rod increases the total angular momentum.

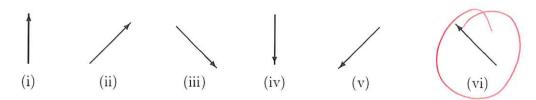
6) The masses and coordinates of three spheres are as follows:

$$x = 2.0 \text{ m}$$

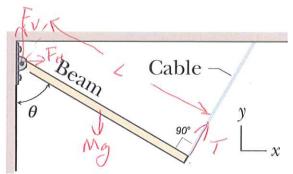

$$= 2.0 \text{ m}$$

$$y = 0 m$$

$$x = -1.0 \text{ m}$$
$$x = 0 \text{ m}$$


$$y = 0 m$$
$$y = 2.0 m$$

a) [8 pts] What is the *magnitude* of the *x*-component of the net force on a 10 kg sphere located at the origin due only to the other three spheres (G = $6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$)?


- 1.31×10⁻⁸ N
- 2.33×10⁻⁸ N (ii)
 - iii) 3.33×10⁻⁸ N
 - iv) 13.3×10⁻⁸ N
 - v) 21.5×10⁻⁸ N

- F = Gm, m = x + Gm, m3 (-x)
 - = 6m, (20kg 40kg X
- = 2.33 x10 8 N }
- b) [2 pts] What is the approximate direction of the net gravitational force on the 10 kg sphere? Circle the correct choice. Hint: draw the forces in scale before answering.

- 7) [5pts] An object weighs 10 N on the earth's surface. What is the weight of the object on a planet that has one-tenth the earth's mass and one half the earth's radius?
- (a) 4 N
- (c) I N
- (e) 20 N (b) 2 N
- (d) 10 N
- Weight = might = m GMp = m G (to ME)

8. The figure shows a uniform beam (rod) of mass M and length L that is supported on the left by a frictionless hinge attached to a wall. Originally, the rod is held stationary by a cable. The rod is at an angle θ with respect to the vertical wall. The cable is perpendicular to the rod.

a) [10 pts] While stationary, what is the magnitude of tension (T) in the cable, in terms of M, L, θ , g, and numerical constants, as needed?

In equilib =)
$$\Sigma F_x = 0$$
 $\Sigma F_y = 0$
 \Rightarrow $\Sigma F_y = 0$
 $\Rightarrow \Sigma F_y$

b) [10 pts] Then, the cable is cut and the beam is no longer in equilibrium. Find the initial *angular* acceleration of the beam about the hinge, in terms of M, L, θ , g, and numerical constants, as needed. [Rotational inertial of a rod about its end is $I_{rod,end} = \frac{1}{3}ML^2$]