PHYS 7212

ADVANCED TOPICS IN MATHEMATICAL METHODS OF THEORETICAL PHYSICS II

(PREREQUISITE: PHYS 4112 OR EQUIVALENT)

SPRING 2016

CLASS: 12:30PM–01:30PM MWF NICH 435

Prof. Jonathan P. Dowling

Office Hours: 01:30PM–2:00PM MWF in NICH 453

Grader: TBD


REQUIRED BOOK:

Elements of Green's Functions and Propagation: Potentials, Diffusion, and Waves
by
Gabriel Barton
Oxford University Press (1989) and Reprinted (2005)
ISBN13: 9780198519980, ISBN10: 0198519982


OTHER USEFUL BOOKS:

The Green Function Method in Statistical Mechanics
by
V.L. Bonch-Bruevich and S.V. Tyablikov



Nonequilibrium Green’s Functions
by
    Karsten Balzer, Michael Bonitz


REQUIRED SOFTWARE:
Acrobat Reader 9.1 (PDF) & Mathematica 10.3 (NB)
Available in PAWS 
Tigerware!

NRL PLASMA FORMULARY
GRAD, DIV, CURL, AND ALL THAT!



COURSE GRADE:
100% Homework

SYLLABUS


BARTON

Part I: Introduction
Chapter 01: The Dirac Delta Function
Chapter 02:  Ordinary Differential Equations
Chapter 03: Partial Differential Equations

Part II: Potentials
Chapter 04: Poisson's Equation I — Introduction
Chapter 05: Poisson's Equation II — Dirichlet Boundary Conditions
Chapter 06: Poisson's Equation III — Neumann Boundary Conditions

Chapter 07: Poisson's Equation IV — Points of Principle

Part III: Diffusion
Chapter 08: The Diffusion Equation I — Unbounded Space
Chapter 09: The Diffusion Equation II — General Theory and Schrödinger's Equation

Part IV: Waves
Chapter 10: The Wave Equation I — General Theory
Chapter 11: The Wave Equation II — Unbounded Space
Chapter 12: The Wave Equation III — Retarded and Advanced Solutions, Radiating Sources, Boundaries and Reflections

Part V: The Helmholtz Equation
Chapter 13: Kirchoff Wave-Diffraction Theory

HOMEWORK         ASSIGNED         DUE  5:00PM         _______SOLUTIONS__________________________________
HW01                            WED 13 JAN    FRI 29 JAN                           HW01SOL           
HW02                            MON 25 JAN    FRI 05 FEB                           HW02SOL
HW03                            MON 01 FEB    MON 15 FEB                        HW03SOL
HW04                            FRI 12 FEB       MON 22  FEB                       HW04SOL
HW05                            FRI 19 FEB       FRI 11 MAR                         HW05SOL
HW06                            FRI 26 FEB       FRI 18 MAR                         HW06SOL
HW07                            FRI 04 MAR     FRI  01 APR
HW08                            FRI 11 MAR     MON 11 APR
HW09                            FRI 18 MAR     MON 18 APR
HW10                            FRI 01 APR       MON 25 APR
HW11                            FRI 29 APR       FRI 06 MAY


LECTURE NOTES                                                                                                                        


BARTON

CH1.1-1.3
CH1.4

CH2.1-2.2      SEC.2.2.13.NB   SEC.2.2.13.NB.PDF
CH2.3
CH2.4

CH3.1-3
CH3.4-5

CH4.1-3
CH4.4-5

CH5.1.1-5.3.2
CH5.3.3-5.5

CH6.0-6.3
CH6.4

CH8.1-8.3
CH8.4
CH8.5

CH9.1-9.2.4
CH9.2.5                     CH9.2.5.nb
CH9.4.1-9.4.3           CH9.4.3.nb
CH9.4.4                     CH9.4.4nb

CH10.1-10.3.2
CH10.3.3-10.4.1
CH10.5.1-2.PDF         CH10.5.1-2.NB
CH10.5.3
CH10.5.3.X

CH11.1-11.2
CH11.3-11.4

CH12.1-12.5.8

SPECIAL EVENTS
WED 13 JAN:   FIRST DAY OF CLASS
MON 18 JAN:   MLK HOLIDAY
MON 08 FEB:  MARDI GRAS HOLIDAY
MON 21 MAR:   SPRING BREAK
WED 23 MAR:   SPRING BREAK
FRI 25 MAR:      SPRING BREAK
FRI 29 APR:     LAST DAY CLASS