Exam 1: Physics 2113 SPRING 2015

8:00PM MON 09 FEB 2015

Name (Last, First): __

Section #:________________________

Instructor’s name:__

Answer all 3 problems & all 4 questions.

Be sure to write your name. Please read the questions carefully.

You may use only scientific or graphing calculators. In particular you may not use the calculator app on your phone or tablet!

You may detach and use the formula sheet provided at the back of this test. No other reference materials are allowed.

You may not answer or use cell phones during the exam. Please note that the official departmental policy for exams is as follows: “During your test, the only electronic device you may have with you at your seat is a scientific or graphing calculator. You may not have your cell phone, tablet, smartphone, smart watch, PDA, pager, digital camera, computer, or any other device capable of taking pictures or video, sending text messages, or accessing the Internet. This means not just on your person, but close enough to you that you could reach it during the test. Any student found with such a device during a test will be assumed to be violating the LSU Honor Code and will be referred to the Dean of Students for Judicial Affairs.” The simplest remedy is to bring nothing to this test but the calculator, and leave your backpack or purse at home. If you have brought your cell phone or tablet with you, please leave it at the front of the room under the watchful eye of your instructor.

Some questions are multiple-choice. You should work these problems starting with the basic equation listed on the formula sheet and write down all the steps. Although the work will not be graded, this will help you make the correct choice and to determine if your thinking is correct.

On problems that are not multiple-choice, be sure to show all of your work, since no credit will be given for an answer without explanation or work. These will be graded in full, and you are expected to show all relevant steps that lead to your answer. Please use complete sentences where explanations are asked for. For numerical answers that require units you must give the correct units for full credit.

YOU GET 60 min (1 hr)
1. (Question) [10 points] Two concentric spherical shells with uniformly distributed masses M_1 and M_2 and radii R_1 and R_2 are situated as shown in the figure.

(a) [5 points] Find the net gravitational force on a mass m located at a radial distance a from the center of the shells. Circle one.

(i) $F = G \frac{M_1 m}{R_1^2}$
(ii) $F = G \frac{(M_1 - M_2) m}{R_1^2}$
(iii) $F = G \frac{M_1 m}{a^2}$
(iv) $F = G \frac{(M_1 - M_2) m}{a^2}$
(v) $F = 0$

(b) [5 points] Find the net gravitational force on a mass m located at a radial distance b from the center of the shells. Circle one.

(i) $F = G \frac{(M_1 + M_2) m}{R_2^2}$
(ii) $F = G \frac{(M_1 - M_2) m}{R_2^2}$
(iii) $F = G \frac{(M_1 + M_2) m}{b^2}$
(iv) $F = G \frac{(M_1 - M_2) m}{b^2}$
(v) $F = 0$

2. (Question) [6 points] You move a ball of mass m away from a sphere of mass M.

(a) [3 points] Does the gravitational potential energy of the system of ball and sphere (circle one):

Increase? Decrease? Remain the same?

(b) [3 points] Is positive work, negative work, or zero work done by you when you move the sphere, which starts off at rest and ends up at rest? Circle one:

Positive work Negative work Zero Work
3. (Problem) [16 points] Zero, a hypothetical planet, has a mass of 3.0×10^{23} kg, a radius of 5.0×10^6 m, and no atmosphere. A 10 kg space probe is to be launched vertically from Zero’s surface.

(a) [8 points] If the probe is launched with an initial kinetic energy of 5.0×10^7 J, calculate its kinetic energy when it is 6.0×10^6 m from the center of Zero. Show your work!

(b) [8 points] If instead the probe is to achieve a maximum distance of 8.0×10^6 m from the center of Zero, calculate the kinetic energy it must be launched with from the surface of Zero. Show your work!
4. **(Question) [10 points]** The figure here shows three arrangements of an electron e and two protons p. The distance $D = 2d$.

(i) **[5 points]** Rank the arrangements according to the *magnitude* of the net electrostatic force on the electron due to the two protons, largest first. Circle one.

- $F_e^{(a)} = F_e^{(b)} = F_e^{(c)}$
- $F_e^{(a)} > F_e^{(b)} > F_e^{(c)}$
- $F_e^{(a)} > F_e^{(c)} > F_e^{(b)}$
- $F_e^{(a)} = F_e^{(b)} > F_e^{(c)}$
- $F_e^{(a)} = F_e^{(c)} > F_e^{(b)}$

(ii) **[5 points]** In situation c, what is the *direction* of the net electrostatic force on the electron due to the two protons (circle one):
5. (Problem) [24 points] In the figure, the particles have charges $q_1 = -1.0 \text{ C}$, $q_2 = -1.0 \text{ C}$, $q_3 = +1.0 \text{ C}$, $q_4 = -1.0 \text{ C}$, and distance $a = 4.0 \text{ cm}$ in a square.

(a) [4 points] On the figure draw $\vec{F}_{3,\text{net}}$, the net electrostatic force vector on particle 3 due to all the other charges.

(b) [7 points] Compute the magnitude of the x component $F^{x}_{3,\text{net}}$ of the net electrostatic force on particle 3 due to all the other charges.

(c) [7 points] Compute magnitude of the y component $F^{y}_{3,\text{net}}$ of the net electrostatic force on particle 3 due to all the other charges.

(d) [6 points] Compute magnitude $F_{3,\text{net}}$ of the total net electrostatic force on particle 3 due to all the other charges.
6. **(Problem) [24 points]** A thin plastic rod forms half of a circle of radius R and is arranged with its center of curvature at the origin O and the center of the rod on the y-axis, as shown. A positive charge with constant linear density λ is uniformly distributed along the rod. A short segment of the rod at random angle θ and containing infinitesimal charge dq is highlighted in the figure.

(a) **[5 points]** On the figure draw the direction of the net electric field vector, due to the rod, at the point of the origin O.

(b) **[6 points]** Derive an expression for the total charge Q on the rod. What is the charge dq in the highlighted segment? Express your answers in terms of R, λ, θ, and any numerical constants, as needed. Show your work.

(c) **[8 points]** Derive expressions for dE_x and dE_y the components of the infinitesimal electric field dE at the origin O produced by the charge dq in the highlighted segment. Do not integrate anything yet. Express your answers in terms of R, λ, θ, and any numerical constants, as needed. Show your work.

(d) **[5 points]** Use your answers from part (c) to determine E, the magnitude of the net electric field at the origin O. Express your answers in terms of R, λ, and any numerical constants, as needed. Show your work. Hint: Does your answer agree with that in the formula sheet?
7. (Question) [10 points] The figure to the right shows two square arrays of charged particles. The squares, which are centered on point P, are misaligned. The particles are separated by either d or $d/2$ along the perimeters of the squares.

(a) [5 points] What is the direction of the net electric field at P? Circle one.

(b) [5 points] What is the magnitude of the net electric field at P? Circle one.

\[
\begin{align*}
(i) \quad & \frac{1}{2\pi \varepsilon_0} \frac{q}{d^2} \\
(ii) \quad & \frac{1}{4\pi \varepsilon_0} \frac{q}{d^2} \\
(iii) \quad & \frac{1}{8\pi \varepsilon_0} \frac{q}{d^2} \\
(iv) \quad & \frac{5}{4\pi \varepsilon_0} \frac{q}{d^2} \\
(v) \quad & \frac{3}{4\pi \varepsilon_0} \frac{q}{d^2}
\end{align*}
\]