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We use a hybrid Monte Carlo algorithm to simulate the thermodynamic properties of a two-dimensional
periodic array of fully frustrated quantum Josephson junctions. We find a variety of metastable configurations
that correspond to spatial domain boundaries that are also present in classical arrays. In previous work, due to
long temporal correlations between configurations in diffusive Monte Carlo algorithms, such metastable states
were interpreted as evidence for a quantum-induced low-temperature first-order transition.

In the literature, there exist many model calculations of
granular superconductors coupled by Josephson tunnel barri-
ers. Early, it was implied'™> that the electrostatic charging
energy associated with ultrasmall metal grains could have a
profound effect on the superconducting properties of the ag-
gregate. This electrostatic charging energy is due to the finite
capacitance of the small metal grains and is therefore asso-
ciated with the transfer of electrons between grains. For sys-
tems in which the conductors are small or mesoscopic, the
effect of this electrostatic energy may be large.

Perhaps the most dramatic such effect was reported by
Jacobs and co-workers*~® who detected a first-order transi-
tion at low temperatures in their simulations of quanfum
Josephson-junction arrays. They claim that this transition
was one from the usual superconducting state to a novel
zero-resistance coherent state dominated by zero-point quan-
tum fluctuations. They refer to this as a “quantum-induced
transition” (QUIT). This effect, which was found using dif-
fusive Monte Carlo calculations, was seen by a maximum in
the specific heat and a nonmonotonic behavior in the helicity
modulus as the temperature went though Tqyry. They re-
ported that the QUIT was far more pronounced in the case
when a transverse magnetic field was applied to obtain a
fully frustrated array.

In this paper, we report a series of calculations that pro-
vide evidence that the QUIT, that they observed, results from
spatial domain boundaries which are also observed in classi-
cal arrays. We attribute the previous evidence for the QUIT
to limitations of the diffusive Monte Carlo algorithm em-
ployed in the work by Jacobs and co-workers. Subsequent to
their studies, substantial advances have been made in Monte
Carlo algorithms. In our simulations, we employ a hybrid
Monte Carlo algorithm”™® in which the field variables are
allowed to evolve globally under a set of Hamilton-Jacobi
equations. By such a sampling procedure, the hybrid Monte
Carlo removes the strong correlations that can exist between
consecutive configurations in a diffusive Monte Carlo algo-
rithm. Using this algorithm, we do not find evidence for a
quantum-induced transition.

Following Jacobs and co-workers, we model a granular
material with ultrasmall grains with a periodic array of Jo-
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sephson junctions with finite coefficients of capacity. The
topology of the array is taken to be a two-dimensional square
lattice with periodic boundary conditions. The Josephson
junctions have an identical temperature-independent cou-
pling comstant and only the diagonal contribution of the
capacitance matrix is included in the electrostatic charging
energy.
The corresponding Hamiltonian has the form

H=<Z) ecni;+ €2~ cos(dipr, ;= i Yiit1)
ij

—cos(; j+1— bi ;- ¥jj+1)}- 1)

The sum is over the neighboring sites, indexed by an i and j,
of a two-dimensional square lattice. The ¢; ; are the phase of
the Ginzburg-Landau superconducting order parameter asso-
ciated with each grain and the #;; measure the number of
Cooper pairs transferred between grains. The Josephson cou-
pling energy associated with each junction is €;, and ¢ is
the electrostatic charging energy associated with each grain.
We choose our unit of energy such that €,=1. The link
integrals ; ;.1 =2/ ®g) [ i*1A.dl, are proportional to the
line integrals of the magnetic vector potential A between
nearest-neighbor sites where @y is the fundamental quantum
of flux. The uniform frustration parameter f, which identifies
the number of flux quanta per plaquette, is equal to the sum
around an elementary plaquerte of the link integrals divided
by 27, that is 27f=3 ;4. We will restrict ourselves to the
fully frustrated case, f=3. In our simulations, the Landau
potential A=Bx¥ is chosen, with B being the applied exter-
nal magnetic field.

The thermodynamic properties associated with H are cal-
culated by using a quantum Monte Carlo algorithm. The for-
malism is based on Feynman’s imaginary-time representa-
tion of the corresponding quantum partition function
Z=[ D ¢pe 51} The discretized expression for the action
S{ ¢} is given by Eq. (3.20) of Ref. 6.

In a conventional Monte Carlo procedure, the expectation
value of a physical quantity (A4) is evaluated by generating a
sequence of configurations of the scalar fields {¢,}, with
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probability P{¢,}. As commonly employed, the sampling
of fields {¢,,} is diffusive. New configurations are generated
by proposing only local, random changes to the field vari-
ables of the present configuration. Strong correlations can
exist between consecutive configurations of the field vari-
ables in a diffusive Monte Carlo algorithm. For example, the
sampling can become trapped in the vicinity of a local mini-
mum of the action and therefore confine the sampling to an
overly limited region of phase space.

The hybrid Monte Carlo method”® was developed to alle-
viate this problem® while retaining the property of detailed
balance. In the hybrid method, a fictitious momentum 7 is
assigned to each of the variables ¢. The dynamics of this
pseudosystem are described by the pseudo-Hamiltonian,
H{m(t), p(1)}=m2(£)/2+S{¢(1)}, and the corresponding
Hamilton-Jacobi equations of motion. We used a Gaussian
distribution for the pseudomomenta 7(0) and approximated
the solutions of these equations by using the leapfrog
algorithm.’® A pseudopartition function, Z p=JDm
X D e~ PHp{mD.¢0} s associated with this pseudo-
Hamiltonian. Because the integrand for each of the fictitious
momenta is Gaussian, the integral over these fictitious mo-
menta is easily performed to yield Z,=(2 ) VAZ. Since
the pseudopartition function differs from the true partition
function by only a multiplicative constant, the expectation
values of the physical observables will be identical for both
the true and pseudosystem.

We probed several possibilities for the choices of the fic-
titious time t=~N,A,, the number of pseudo-time-steps N,,
and the size of the pseudo-time-step A,. Because of the er-
rors associated with any numerical integration scheme, the
pseudoenergy will begin to deviate from its initial value after
some time. The resulting configuration at the end of the
Hamilton-Jacobi evolution {¢,,} is therefore accepted or re-
jected with the probability min(1,e%%r), where &H,
=H{¢,}—H,{$,}. Thus in the hybrid method® errors as-
sociated with the finite-size A, are only of importance in that
they change the acceptance rate of the Monte Carlo configu-
rations, and hence limit the time scale over which a configu-
ration can evolve microcanonically before it has a high prob-
ability of being rejected. The pseudo-time-step A, was
chosen such that the deviation from energy conservation
yielded a Monte Carlo acceptance rate of approximately
95%. Within this constraint, for separate simulations, the
number of pseudo-time-steps N, was varied such that the
pseudotime ¢ spanned several orders of magnitude.

First, we summarize some of the results concerning the
QUIT reported*~® by Jacobs and co-workers. Consider one
of their simulations, an NXN XN, lattice with N=8 and
N,=30 with €;,=1.0, €=0.3. Their evidence for the
QUIT was a discontinuity in the helicity modulus AY, typi-
cal of a first-order phase transition. The helicity modulus Y
measures the response of the array to a long-wavelength
twist along a spatial direction and is directly proportional to
the superfluid density. Unlike a reentrant transition, where
Y —0 as T—0, the value of the helicity modulus Y had a
finite value as T—0. The discontinuity in the helicity modu-
lus AY was far more pronounced for the fully frustrated
system (f=3) than for the unfrustrated system (f=0). For
f=0, they found AY~0.03 at T~0.03, and for f=1 AY
=~0.15 at T'~0.15.
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FIG. 1. The helicity modulus Y as a function of T" for f=3and
€-=0.3 for three spatial lattice sizes (N=8,12,16) and values of
A,. Not evident in Y is a discontinuity, at T<<T_.~0.45, that
would indicate a phase transition at low temperatures from the usual
superconducting state.

Thus, we concentrated entirely on the system with f=3.
We calculated the helicity modulus using the discretized ex-
pression given in Ref. 6. Our principal result is shown in Fig.
1, where we plot the helicity modulus Y for different system
sizes and values of A7. To facilitate comparison, we chose
the most commonly used parameters used by Jacobs and
co-workers. We find that the maximum slope dY/dT in-
creases with system size, as expected for a superconducting
transition. We estimate the superconducting transition tem-
perature, T'.=~0.45, in agreement with Ref. 6. Not evident in
Y is any discontinuity that would indicate a phase transition
at low temperatures from the usual superconducting state. In
particular for 7<<0.15, where the QUIT was previously re-
ported, Y is smooth. In addition, we computed values for the
internai energy for the same sets of parameters (not shown).
Again, not evident is a discontinuity that would indicate a
phase transition at low temperatures from the usual super-
conducting state.

We believe that the discontinuity in the helicity modulus
found by Jacobs and co-workers was caused by metastable
states that appear very long lived with diffusive Monte Carlo
algorithms. The discontinuities are due to their simulations
becoming trapped in a local minimum of the action S{¢}.
We will show that these local minima correspond to meta-
stable configurations that have spatial domain boundaries.
These metastable configurations are also observed in classi-
cal arrays. A diffusive Monte Carlo algorithm does not
readily accommodate the coherent change of phases needed
to evolve away from such a minimum.

In order to learn about the transport in the array, we de-
fined the gauge-invariant quantity ®; ;(7), which is propor-
tional to the supercurrent flowing around the nearest-
neighbor plaquette of junctions with lower-left corner i,j. To
determine the origins of the QUIT metastability, we set
€c=0 and investigate the fully frustrated (f=3) two-
dimensional classical model. Here also, we encountered
metastable configurations. Contributions from these meta-
stable configurations lead to a decrease in the helicity modu-
lus. If the simulation remains trapped in these states, then the
helicity modulus would show a fictitious decrease. In a prop-
erly ergodic simulation, these metastable configurations are
seldomly sampled since they correspond to a relatively large
excitation energy.
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FIG. 2. A low-temperature highly probable equilibrium (left) and
a metastable (right) configuration of the fully frustrated (f= %) clas-
sical two-dimensional Josephson-junction array. Shown are the
¢;,; fields and the density plot of the gauge-invariant plaquette cur-
rent ®; ;. Note the periodic boundary conditions and the two ver-
tical domain boundaries in the right figure.

One of these metastable configurations found in the clas-
sical simulations is shown in Fig. 2 (right side), whereas the
appropriate classical ground state is shown on the left. Here
the black (white) squares correspond to a clockwise (coun-
terclockwise) current flowing around the plaquette. The mag-
nitude of the plaquette current @, ;, is indicated by the grey-
scale. The ground state is a black-white chess-board pattern.
Comparing the two results, it is clear that the metastable
configuration contains domain boundaries characterized by
the exchange of the black and white sublattices. In this ex-
ample, the domain boundaries are separated by four lattice
spacings. A diffusive algorithm will not readily evolve away
such extended defects since large energy barriers must be
overcome.

To determine 'if similar metastable configurations exist in
the quantum model, we considered one of the configurations
characteristic of the proposed QUIT state from the original
work of Jacobs and co-workers. For this configuration, we
found domain boundaries in the spatial plane for each time
slice similar to that found in the classical simulation. This is

FIG. 3. A representative configuration at T7=0.12 (left) and the
QUIT (right) configuration (from Jacobs and co-workers” simula-
tions) for the fully frustrated (f= %_) quantum two-dimensional
Josephson-junction array. The r-averaged ¢ variables are displayed
on top of the density plot of the m-averaged gauge-invariant quan-

tity ®, ;(7). Note the periodic boundary conditions.
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“* FIG. 4. The average plaquette current susceptibility [defined by
Eq. (2)] for €¢=0.3, f=% N=8, and A,=0,5. For these param-
eters, the critical transition is T,~0.45. The q vector corresponds
to sequential horizontal sections of the Brillioun zone, centered at
k=(0,0). That is, the g is determined by sweeping q, and g, from
0 to 2, with ¢, swept faster. The dominant x(q,T) has
q={(1r,9r) corresponding to the emergence of the chess-board pat-
tern shown in Fig. 3 (left), whereas the smaller adjacent peaks cor-
respond to the QUIT configuration Fig. 3 (right).

illustrated in Fig. 3, where we present two imaginary-time-
averaged spatial configurations. The right one is representa- -
tive of the QUIT state. The left, a Jow-temperature highly
probable (LTHP) configuration, is characterized by small
fluctuations of a ground-state configuration.

In a LTHP configuration, we find the order of the currents
in the spatial planes for each time slice 7 to be very similar to
that in the ground state of the classical two-dimensional
Josephson-junction array. Thus the QUIT state is character-
ized by the existence of extended defects similar to those
found in the classical system.

If we started with a configuration obtained from Jacobs
and co-workers that was representative of the QUIT state,
then our simulations evolved into the usual superconducting
state. We found that our simulations became trapped in vari-
ous local minima only when the path through phase space
was short, i.e., either the number of pseudo-time-steps N, or
the total number of Monte Carlo steps were small. The QUIT
state was never robust with respect to an increase in the
number of pseudo-time-steps N,, or an increase in the total
number of Monte Carlo steps. Simulations were also per-

- formed where the N, and the A, were chosen randomly from

within finite bounds. These also did not get trapped in the
QUIT configuration.

Of course, the thermodynamic properties of the system
are not characterized by a few configurations such as those
discussed above. Therefore, to gain quantitative insight into
the effect of these configurations on the thermodynamic
properties, we investigated the average plaquette-current sus-
ceptibility as shown in Fig. 4. The plaquette-current suscep-
tibility is

T .
X(q,T)=17>: > expliq- (R; j—Rys ;)]
i,j3i’ i’
B B o
x f ir f A7 (0, (D)8 (1 +1'))
1} 1}

_<®i,j(7))<®i’,j’<7,))]- (2)
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Here the different peaks correspond to predominance of cer-
tain configurations. For example, the largest peak at the cen-
ter of the graph corresponds to an ordering in the chess-board
pattern illustrated in Fig. 3 (left). As we increase the system
size (not shown), this peak appears to scale with system size,
perhaps indicating an Ising-like transition.!""'? These results
show that in the spatial plane, the ordering of the currents (or
phases) is similar to the classical array. The plaquette-current
_susceptibility peaks at roughly the transition temperature T,
for each system size simulated. The two closest secondary
peaks correspond to the metastable configurations similar to
that pictured in Fig. 3 (right), and the counterpart of this
configuration rotated by 7/2. Unlike the central peak, these
do not scale with the system size, and hence are not indica-
tors of low-temperature order. The presence of several peaks
reinforces our claim that the hybrid Monte Carlo algorithm
samples large, well-separated, regions of phase space.

In this paper, we present results from a quantum Monte
Carlo simulation of a two-dimensional periodic array of ul-
trasmall fully frustrated Josephson junctions. The model in-
cludes both the Josephson energy due to the weak coupling
of the grains and the electrostatic energy due to the charging
of the grains. In our simulations, we employ a hybrid Monte
Carlo algorithm which eliminates most of the correlation be-
tween consecutive cohfigurations of the field variables. We
do not find a previously reported first-order phase transition
at low temperatures.

- Our results indicate that the behavior of these arrays is
qualitatively similar to that of classical arrays. The quantum

effects modify features but do not introduce additional phe-
nomena. In particular, we find a variety of metastable con-
figurations corresponding to spatial domain boundaries that
are also present in classical arrays. We attribute the misiden-
tification of the QUIT in previous work to the simulation
becoming irapped in metastable states near local minima of
the action S{¢}. We cannot rule out the possibility that a
QUIT occurs at lower temperatures than those simulated by
us. However, we conclude that if there is a QUIT, it occurs at
a very low temperature (Tqur<0.05¢;, when €,=0.3).
Another possibility is that the QUIT state has a correlation
length much larger than the lattice sizes studied here or by
Jacobs and co-workers, and would only be observed for
much larger arrays. The metastable configurations reported
by Jacobs and co-workers may be relevant to real systems,
since, as we have shown, these metastable configurations re-
sult from spatial {not temporal) features, and may be stabi-
lized by lattice defects.
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