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Abstract

To facilitate the search for new magnetic semiconductors with high transition temperatures TC, we use dynamical mean-field theory to

evaluate TC for a double-exchange system with general angular momentum j ¼ 1=2; 3=2; 5=2; . . . . For simplicity, we assume that there is

one local moment per site and that the Hund’s coupling Jc between the local moments and the charge carriers (with undoped bandwidth

W ) is large. The maximum Curie temperature Tmax
C ðmj ; jÞ for a given mj and j occurs when the mj sub-band is half-filled. For a fixed j,

Tmax
C ðmj ; jÞ is the largest in the lowest or the highest sub-band with mj ¼ �j, where the carriers are most optimally coupled to the local

moments. When jb1, Tmax
C ð�j; jÞ scales like W=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j þ 1
p

, which is the bandwidth of each mj sub-band. For j ¼ 1=2, Tmax
C ð�1=2; 1=2Þ is

suppressed by fluctuations of the carrier spin. Surprisingly, Tmax
C ð�j; jÞ reaches a maximum for j ¼ 3=2, the same angular momentum as

the charge carriers in p-band semiconductors like GaAs and Ge.
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The discovery of dilute-magnetic semiconductors (DMS)
with angular momentum j ¼ 3=2 and transition tempera-
tures above 140K [1–3] raises an intriguing question: what
is the general dependence of TC on the angular momentum
and carrier concentration of a system with exchange
coupling between local moments and charge carriers? To
answer that question, we use dynamical mean-field theory
(DMFT) to calculate the transition temperature of a
generalized double-exchange (DE) model. When the
Hund’s coupling Jc is large enough to break the ð2j þ 1Þ-
degenerate band into well-separated sub-bands, TC is
maximized for j ¼ 3=2, which is the angular momentum
of the carriers in the well-known semiconductors GaAs
and Ge.

Since its development in 1989 by Müller-Hartmann [4]
and Metzner and Vollhardt [5], DMFT has become one of
- see front matter r 2005 Elsevier B.V. All rights reserved.
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the most powerful many-body techniques for studying
electronic models such as the Hubbard [6,7] and DE [8–12]
models. Although DMFT becomes exact only in the limit
of infinite dimensions, it is believed to accurately capture
the physics of correlated electrons even in three dimen-
sions. The utility of DMFT stems from the fact that the
self-energy becomes local (i.e. momentum independent) in
infinite dimensions [4,5]. Consequently, the local action at
site 0 involves a dynamical mean-field G0ðinnÞ associated
with the hopping of electrons onto and off site 0, where the
electrons experience a local interaction either with each
other (as in the Hubbard model) or with an impurity (as in
the DE model).
Recent work on DMS materials has used DMFT to

study variants of the DE model [13,14] with less than one
local moment per site. Since DMFT also becomes exact in
the dilute limit, it is a good starting point in the study of
DMS systems. A generalized DE model with one local
moment per site and large coupling constant Jc provides an
upper limit for the transition temperature of a system with
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exchange coupling between the local moments and charge
carriers of angular momentum j. There are good reasons to
expect that the behavior of nhox holes in the impurity
band of a DMS with xo1 Mn atoms per site is very similar
to that of a DE model with filling p ¼ nh=xo1 [14]. So long
as Jc is sufficiently large to produce a well-defined impurity
band, the qualitative results of this model should be
independent of the precise magnitude of Jc=W [12]. A
generalized DE model with one local moment per site and
large Jc also has the distinct advantage that analytical
results are possible for any angular momentum j of the
charge carriers.

For semiconductors like GaAs, the angular momentum
of the holes is given by the vector sum of the s ¼ 1=2 spin
of the electrons with the l ¼ 1 orbital angular momentum
of the p bands. The j ¼ 3=2 band lies highest in energy
while the spin-orbit split j ¼ 1=2 band lies about 340meV
below [15]. Consequently, almost all of the holes in Mn-
doped GaAs populate the j ¼ 3=2 band, which in turn is
split by crystal fields [16] into a mj ¼ �3=2 sub-band with
heavy holes and a mj ¼ �1=2 sub-band with light holes.
These two bands are degenerate at the G point with k ¼ 0.
More exotic semiconductors with d bands, such as the
chalcogenides [17], may contain carriers with total angular
momentum j ¼ 5=2.

In this paper, we optimize TC assuming that the band
masses of all 2j þ 1 sub-bands are the same. Clearly, this
assumption is violated in GaAs where the ratio r ¼ ml=mh

of the light to heavy band masses is about 0.14. For
different band masses, the electronic kinetic energy is
diagonalized only when the angular momentum j is
quantized along the momentum k [16] with mj ¼ j � k=k.
In related work [14,18], we demonstrate that as r decreases
from one, the magnetic frustration introduced by the
chirality of the electrons [19] suppresses the maximum TC

for j ¼ 3=2. So the calculation presented in this paper
provides an upper limit for the transition temperature of a
magnetic semiconductor.

The Hamiltonian of a generalized DE model with
carriers (holes or electrons) of angular momentum j and
equal masses in all sub-bands is given by

H ¼
X
k

�kc
y

kacka �
Jc

N

X
i;k;k0

eiðk�k0Þ�RiSi � c
y

k0aJabckb, (1)

where c
y

ka and cka are the creation and destruction
operators for an electron with angular-momentum compo-
nent mj ¼ a (a ¼ �j;�j þ 1; . . . ; j) and momentum k, Si ¼

Smi is the spin of the local moment (treated classically) at
site Ri, and ji ¼ c

y

iaJabcib=2 is the electronic angular
momentum at site i where Jab are the ð2j þ 1Þ-dimensional
angular-momentum matrices (Pauli matrices when
j ¼ 1=2). Repeated spin indices are summed. Whereas the
first term in Eq. (1) represents the electronic kinetic energy,
the second term represents the ferromagnetic Hund’s
coupling between the local-moment spin and the electronic
angular momentum. Within DMFT, the local effective
action at any site is given by

Seff ðmÞ

¼ �T
X

n

c̄0aðinnÞfG0ðinnÞ
�1
ab þ

~JcJab �mgc0bðinnÞ, ð2Þ

where ~Jc ¼ JcS, nn ¼ ð2nþ 1ÞpT , c̄0aðinnÞ and c0aðinnÞ are
now anticommuting Grassman variables, and G0ðinnÞab is
the dynamical mean-field discussed earlier.
Because Seff ðmÞ is quadratic in the Grassman variables,

the full local Green’s function GðinnÞab may be readily
solved by integrating over the Grassman variables, with the
result [8] GðinnÞ ¼ hC

�1im, where C ¼ G0ðinnÞ
�1
þ ~Jc J �m is

a ð2j þ 1Þ � ð2j þ 1Þ matrix. The average over the orienta-
tions m of the local moment is generally given by hX ðmÞim
¼
R
dOm PðmÞX ðmÞ, where PðmÞ /

R
c̄;c expð�Seff ðmÞÞ is the

probability for the local moment to point in the m-
direction. Above TC, PðmÞ ¼ 1=4p is constant. For a semi-
circular density of states with full bandwidth W, these
relations are closed by the analytic expression [8,7]

G0ðinnÞ
�1
¼ ðinn þ mÞ I �

W 2

16
GðinnÞ, (3)

where m is the chemical potential corresponding to
filling p (p ¼ 1 means one electron per site so that
0ppp2j þ 1).
Above TC, the interacting density of states is indepen-

dent of the band filling. As ~Jc increases, the ð2j þ 1Þ-
degenerate band splits into 2j þ 1 sub-bands, each labeled
by quantum number mj and centered at energy �2mj

~Jc.
Due to the effect of electronic correlations, the full
bandwidth of each sub-band is lowered from W to
W 0 ¼W=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j þ 1
p

. For j ¼ 1=2, this gives the well-known
[8] narrowing of each sub-band by 1=

ffiffiffi
2
p

. So prior to taking
the limit of large ~Jc for the mj sub-band, we must rewrite
the chemical potential as m ¼ �2mj

~Jc þ dm where
jdmjpW 0=2.
Close to the ferromagnetic transition, the bare inverse

Green’s function may be parametrized as G0ðinnÞ
�1
¼ ðzn �

2mj
~Jc þ RnÞ I þQnJz where zn ¼ inn þ dm. Starting from

Eq. (3) for the full Green’s function, we find that Rn and Qn

are formally given by the expressions

Rn ¼ �
W 2

16ð2j þ 1Þ

Z
c̄;c
hC�1im, (4)

Qn ¼ �
3W 2

64jð2j þ 1Þðj þ 1Þ

Z
c̄;c
hJzC�1im (5)

which use the summation
Pj

mj¼�j m2
j ¼ jð2j þ 1Þð j þ 1Þ=3.

For large Jc and to linear order in the local-moment
order parameter M ¼ hmzim, these relations can be solved
by constructing the unitary matrix Um that diagonalizes
m � J with Umm � JU�1m ¼ Jz. If m ¼ z, then Um ¼ I . When
the chemical potential lies in the mj sub-band, the results
h j;mjjUmJzU�1m j j;mji ¼ 2mjm � z ¼ 2mjmz and
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Fig. 1. The dependence of TC=W on filling p for j ¼ 1=2 (solid) and 3=2
(dashed). For j ¼ 1=2, 0ppp2 while for j ¼ 3=2, 0ppp4.
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DetC

¼ DetðUm C U�1m Þ

¼ ð2 ~JcÞ
2j
ð�1Þjþmj ð j þmjÞ!ð j �mjÞ!

�ðzn þ Rn þ 2mjQnmzÞ ð6Þ

may be used to obtain the solutions

Rn ¼ �
zn

2
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2n �

W 02

4

s
, (7)

Qn ¼
3mjM

2jð j þ 1Þ

Rn

1� 16m2
j R2

n=W 02jð j þ 1Þ
. (8)

After integrating expð�Seff ðmÞÞ over the Grassman vari-
ables, we find that the probability for the local moment to
point along m is

PðmÞ / exp
X

n

log 1þ
2mjQnmz

zn þ Rn

� �( )

/ expðbJeffMmzÞ ð9Þ

which defines the effective interaction Jeff ðTÞ. Finally, TC

is solved from the implicit condition TC ¼ Jeff ðTCÞ=3.
As a Matsubara sum, the Curie temperature is given by

the condition

X
n

R2
n

R2
n � jðj þ 1ÞW 02=16m2

j

¼ 1 (10)

while the filling p is obtained from

p ¼ 2T
X

n

Re
1

zn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2n �W 02=4

q
8><
>:

9>=
>;

þ j �mj þ
1
2
. ð11Þ

Quite naturally, a system with no partially filled sub-band
(p an integer) has a vanishing Curie temperature because
the carriers are unable to hop to neighboring sites without
incurring an infinite cost in coupling energy.

We emphasize that the above derivation of TC does not
assume any specific representation for the angular-
momentum j matrices. Rather, we use only the matrix
elements of Jz: hj;mjjJzjj;m

0
ji ¼ dmj ;m0j

2mj.
For finite ~Jc=W , there are also antiferromagnetic

solutions near integer fillings. These solutions arise because
when the local moments are ferromagnetically aligned,
carriers with the same angular momentum are forbidden to
hop between neighboring sites due to the Pauli exclusion
principle; but when the local moments are antiferromag-
netically aligned, carriers with opposite angular momen-
tum can hop to neighboring sites and back, thereby gaining
kinetic energy. For large ~Jc=W , however, TN scales like
W 2= ~Jc so that TN=W ! 0 as ~Jc=W !1.

For j ¼ 1=2 and 3=2, the dependence of TC on filling p is
plotted in Fig. 1. As expected, TC is particle-hole
symmetric and is the same for systems with p electrons
(2j þ 1� p holes) or p holes (2j þ 1� p electrons) per site.
Notice that TC is also particle-hole symmetric within each
sub-band. Hence, the largest Curie temperature within each
sub-band is obtained when that sub-band is half-filled with
dm ¼ 0. The highest TC occurs in the sub-bands with mj ¼

�j because those holes or electrons are able to most
effectively take advantage of the exchange coupling that
mediates the ferromagnetism between the local moments.
Remarkably, the maximum TC for j ¼ 3=2 in the mj ¼

�1=2 sub-bands is only about 14% of the maximum TC in
the mj ¼ �3=2 sub-bands. Compared to the maximum TC

for j ¼ 1=2 of 0:0219W , the maximum TC for j ¼ 3=2 of
0:0256W is about 16% higher.
For a half-filled sub-band, we obtain an analytic

expression for TC by converting the Matsubara sum into
an integral (assuming that TC=W is small), with the result

Tmax
C ðmj ; jÞ

W
�

1

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j þ 1
p 1�

jðj þ 1Þ �m2
j

2mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þ

p
(

�tan�1
2mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þ

p
jðj þ 1Þ �m2

j

 !)
. ð12Þ

This expression yields values for the Curie temperature that
are only slightly larger than the exact result, Eq. (10). The
maximum TC for mj ¼ �j is then given approximately by

Tmax
C ð�j; jÞ

W
�

1

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2j þ 1
p 1�

1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þ

p
(

�tan�1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj þ 1Þ

p� �)
, ð13Þ

which is plotted versus angular momentum j in Fig. 2. For
large j, Tmax

C ð�j; jÞ=W 0 ! ð1=4pÞf1� p=4jg saturates at
1=4p. Of course, only half-integer j’s are allowed.
To interpret Fig. 2, keep in mind that in the absence of

magnetic impurities, a semiconductor is characterized by
the bandwidth W of the conduction band and by the
angular momentum j of the charge carriers. After doping
with magnetic impurities, the bandwidth W 0 of the
impurity band will be narrowed by electronic correlations
compared with the bandwidth W of the parent compound.
So for a class of undoped materials with the same
bandwidth W , the transition temperature is maximized
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Fig. 2. The transition temperature Tmax
C ð�j; jÞ (in the lowest or highest

sub-band) versus j normalized by either W or W 0.
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when j ¼ 3=2. On the other hand, for a class of doped
materials with the same impurity bandwidth W 0, the
transition temperature is a monotonically increasing
function of j that saturates at the value W 0=4p.

Judging by these results alone, it would seem unlikely
that more exotic semiconductors with j43=2 will have
higher transition temperatures than Mn-doped GaAs or
Ge. But in separate work [14,18], we show that suppression
of TC due to magnetic frustration may be quite a bit larger
than the small difference between the optimized Curie
temperatures for j ¼ 3=2 and 5/2 in Fig. 2. So a magnetic
semiconductor with j ¼ 5=2 and nearly equal band masses
may easily have a higher transition temperature than one
with j ¼ 3=2 and a small value of the ratio of masses,
ml=mh.

A serious but unavoidable weakness of the present
approach is that the spins of the local moments and charge
carriers are not treated on the same footing: whereas the
local moments are treated classically, the charge carriers
are not. When the spin S of the local moment is much
larger than the angular momentum j of the charge carriers,
this approximation should be a very good one. But when S

becomes comparable to j, fluctuations of the local-moment
spin may further suppress the transition temperature due to
the exchange coupling with the charge carriers. Thus, the
optimum magnetic semiconductor has j ¼ 3=2, equal band
masses, and Sbj. The last condition is not satisfied in Mn-
doped GaAs, where j ¼ 3=2 and S ¼ 5=2 [3].

This paper has examined the general dependence of the
transition temperature of a magnetic semiconductor on the
angular momentum and filling of the charge carriers. For a
fixed bandwidth of the parent compound, TC is maximized
when j ¼ 3=2, the same angular momentum carried by the
charge carriers in GaAs and Ge. Our work suggests that
the best way to optimize the transition temperature of
magnetic semiconductors may be to minimize the effects of
magnetic frustration in j ¼ 3=2 materials.
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