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We find that standard diagrammatic perturbation theory does not exist for the dynamical mean-field theory
of the double-exchange model because the vertex function cannot be expanded in terms of the bare vertex
function and the full Green’s functionGsinldaa. Nevertheless, a functionalF satisfying the condition
dF /dGsinndaa=Ssinndaa can be constructed because the curl of the self-energy with respect to the Green’s
function vanishes:dSsinndaa /dGsinldbb−dSsinldbb /dGsinndaa=0. The connection between the functionalF

and the free energy implies that the theory is thermodynamically consistent, meaning that the same thermo-
dynamic properties may be obtained from either the partition function or the Green’s function. We provide a
concrete example of this consistency by evaluating the magnetic susceptibility and Curie temperature for any
Hund’s coupling using two such approaches.
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The dynamical mean-field theorysDMFTd formulated in
the late 1980s by Müller-Hartmann,1 and Metzner and
Vollhardt2 has developed into one of the most powerful
many-body techniques for studying electronic models such
as the Hubbard3,4 and double-exchange5–9 sDEd models. This
theory is believed to become exact in the limit of infinite
dimensions and to capture the physics of correlated electron
systems even in three dimensions. Recent work on dilute
magnetic semiconductors has used DMFT to study variants
of the DE model10,11 with less than one local moment per
site. In this paper, we reach the surprising conclusion that,
unlike for the DMFT of the Hubbard model,4 a diagrammatic
perturbation theory containing only electronic degrees of
freedom does not exist for the DMFT of the DE model.
Nevertheless, we show that the theory remainsF derivable
in a more restrictive sense, which still implies that the parti-
tion function and Green’s function produce consistent results
for thermodynamic properties such as the magnetic suscep-
tibility and Curie temperature. This provides an example of
an electronic theory that is thermodynamically consistent de-
spite the absence of a weak-coupling, diagrammatic pertur-
bation theory.

The Hamiltonian of the DE model is given by

H = − to
ki,jl

scia
† cja + cja

† ciad − 2JHo
i

si ·Si , s1d

wherecia
† andcia are the creation and destruction operators

for an electron with spina at sitei, si =s1/2dcia
† sabcib is the

electronic spin, andSi =Smi is the spin of the local moment,
which is going to be treated as a classical field. Repeated
spin indices are summed. The DE model is believed to pro-
vide a qualitative description of magnetoresistive materials,12

where the electronic conductivity is promoted by the align-
ment of the local spins belowTC.

Within DMFT, the local effective action aboveTC in zero
field is given by

Aeffsmd = − To
n

c̄0asinndhG0sinnd−1dab + J̃Hsab ·mjc0bsinnd,

s2d

whereJ̃H=JHS, nn=s2n+1dpT, c̄0asinnd andc0asinnd are now
anticommuting Grassman variables, andG0sinnd is the bare
Green’s function containing dynamical information about the
hopping of electrons from other sites onto the site 0. Because
Aeffsmd is quadratic in the Grassman variables, the full local
Green’s functionGsinndab may be readily solved by integrat-
ing over the Grassman variables, with the paramagnetic
result5

GI sinnd = GsinndII = khG0sinnd−1II + J̃HsI ·mj−1lm

=
G0sinnd−1

G0sinnd−2 − J̃H
2

II, s3d

whereII is the unity matrix in 232 spin space. The average
over the orientationsm of the local moment is generally
given by kCsmdlm=edVmPsmdCsmd, where Psmd
~Tr(exps−Aeffsmdd) is the probability for the local moment
to point in them direction. AboveTC, Psmd=1/4p is con-
stant. Consequently, the paramagnetic self-energy is given by

Ssinnd=G0sinnd−1−Gsinnd−1= J̃H
2 G0sinnd. Expanded in pow-

ers of J̃H andGsinnd, we find

Ssinnd = −
1

2Gsinnd
+Î 1

4Gsinnd2 + J̃H
2

= J̃H
2 Gsinnd − J̃H

4 Gsinnd3 + 2J̃H
6 Gsinnd5 + ¯ s4d

On a Bethe lattice, these relations are closed by the analytic
expression4,5
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GI 0sinnd−1 = znII −
W2

16
GI sinnd, s5d

wherezn= inn+m andW is the full bandwidth of the nonin-
teracting, semicircular density of states. We denote the full
spin dependence for later use.

Diagrammatic perturbation theory is customarily formu-
lated in terms of the bare vertex functionGs0dsl ,n;mdba;dk

sketched in Fig. 1sad with vm=2mpT. The bare vertex func-
tion may be associated with the two-particle interaction in
the purely electronic effective action13

Aeff8 = − To
n

c̄0asinndG0sinnd−1c0asinnd −
T3

4 o
l,n,m

c̄0asinn

+ ivmdc0bsinndGs0dsl,n;mdba;dkc̄0ksinldc0dsinl + ivmd.

s6d

Hence, the bare vertex function must satisfy the crossing
symmetries Gs0dsl , l +m;n− ldda;bk=Gs0dsn+m,n; l −ndbk;da=
−Gs0dsl ,n;mdba;dk. There are two ways to calculateGs0d

3sl ,n;mdba;dk. First, we can take theJH→0 limit of the full
irreducible vertexGsl ,n;mdba;dk obtained from the Bethe-
Salpeter equation for the magnetic susceptibility.8,14Alterna-
tively, we can associate the lowest-order,JH

2 contribution to
the partition functionZ=kTr(exps−Aeffsmdd)lm with the con-
tribution to the partition function Z8=Tr(exps−Aeff8 d),
sketched as the compact diagram in Fig. 1sbd fwith internal
lines given by the bare Green’s functionsG0sinndabg. Both
methods yield the same result,

Gs0dsl,n;mdba;dk =
1

3
bJ̃H

2 hsba · sdkdm,0 − sda · sbkdlnj, s7d

which satisfies the crossing symmetries.
However, replacingAeffsmd by Aeff8 produces an inequiva-

lent theory.15 For example, expandingZ andZ8 in powers of
JH yields the results

Z = Z0H1 − J̃H
2 o

n

G0sinnd2

+
1

2
J̃H

4 o
lÞn

G0sinld2G0sinnd2 + OsJ̃H
6 dJ , s8d

Z8 = Z0H1 − J̃H
2 o

n

G0sinnd2

+
5

6
J̃H

4 o
lÞn

G0sinld2G0sinnd2 + OsJ̃H
6 dJ , s9d

which disagree to orderJ̃H
4 . Hence, it is not possible by av-

eraging over the local moments to replace the Hund’s cou-
pling with an effective two-particle interaction between the
electrons. In other words, the Hund’s coupling produces
fourth and higher-order electronic interactions that require
higher-order vertex functions in the electronic action.

A theory is usually said to beF derivable if a functional
FshGI sinndjd, constructed from the sum of compact diagrams
in terms of the full Green’s functions and the bare vertex

functions, can be found to satisfy the conditionSsinndab

=dF /dGsinndab. As discussed by Baym,16 a F-derivable
theory may readily be shown to be thermodynamically con-
sistent, meaning that thermodynamic properties can be
evaluated either from the Green’s function or from the parti-
tion functionZ. Consequently, such a theory is consistent on
the one- and two-particle levels. We emphasize that it is the
theory of a model that may be thermodynamically consistent,
not the model Hamiltonian itself. For aF-derivable theory,
the partition functionZ or free energy −T ln Z may be con-
structed in terms ofF from the relation

− ln Z = F − o
n

TrhSI sinndGI sinndj + o
n

Tr lnhGI sinndj, s10d

which is stationary under variations ofGI sinnd. Whereas
Baym’s original work was intended for systems of interact-
ing fermions and bosons, the notion ofF derivability has
been extended to systems of interacting electrons and spins17

and to disordered alloys.18

From the discussion above, it is clear that even if it exists,
F cannot be constructed in terms of the bare vertex func-
tions. When the action contains only two-particle interactions
such as for the Hubbard model, then the first two terms inF
are represented by the compact diagrams on the right-hand
side of Figs. 1sbd and 1scd with the corresponding self-
energiesSsinndaa=dF /dGsinndaa sketched on the left-hand
side. Not surprisingly, substituting our earlier expression for
the bare vertex function produces the correct first-order self-

energyS8s1dsinnd= J̃H
2 Gsinnd but the wrong second-order self-

energyS8s2dsinnd=−sJ̃H
4 /3dh2GsinndolGsinld2+Gsinnd3j. No-

tice from Eq. s4d that the correct second-order self-energy

Ss2dsinnd=−J̃H
4 Gsinnd3 does not involve a Matsubara summa-

tion. Hence, the DMFT of the DE model is notF derivable
in the strict diagrammatic sense stated above.

Despite the failure of a diagrammatic expansion in powers
of GI s0d, a functionalFshGI sinndjd can still be constructed to
satisfy the conditionSsinndaa=dF /dGsinndaa. Starting from

FIG. 1. sad The bare vertex function;sbd and scd compact dia-
grams that contribute toF for the electronic effective actionAeff8 on
the right with their associated self-energies on the left.

FISHMAN et al. PHYSICAL REVIEW B 71, 180405sRd s2005d

RAPID COMMUNICATIONS

180405-2



Eq. s3d and Dyson’s equation for the self-energy, we find that
dSsinldaa /dGsinndbb=sKI −1dln

ab+dlndabGsinnd−2, where KI is
the Jacobian

Kln
ab =

dGsinndbb

dfG0sinldaag−1

= − dln
1

an
2H2J̃H

2

3
+ bndabJ +

J̃H
2

3alan
s2dab − 1d, s11d

with an=G0sinnd−2− J̃H
2 and bn=G0sinnd−2− J̃H

2 /3. This Jaco-
bian can be inverted with the general result

dSsinldaa

dGsinndbb

= − dln

J̃H
2 an

2

3bn
H 2

2an − 3bn
+ dabG0sinnd2J

−
J̃H

2

3 − 2J̃H
2 o

r

1/br

alan

blbn
s2dab − 1d. s12d

It can be shown14 that the right-hand side equals
−TGsl ,n;m=0daa;bb whereGsl ,n;mdba;dk is the full irreduc-
ible vertex of the Bethe-Salpeter equation. The functionalF
must exist because the curl of the self-energy vanishes:
dSsinndaa /dGsinldbb−dSsinldbb /dGsinndaa=0.

By construction,Fs1d ssecond order inJHd is represented
by the compact diagram in Fig. 1sbd and is given in terms of
the bare vertex function by

Fs1d = −
T

2o
l,r

Gs0dsl,r ;0daa;bbGsinldaaGsinrdbb

= −
J̃H

2

6 Hol,n Gsinldaa„Gsinndaa − Gsinndāā…

− o
n

Gsinndaa
2 − 2o

n

GsinndaaGsinndāāJ , s13d

whereā is the opposite spin toa. After expanding and inte-
grating Eq.s12d,19 we find thatFs2d sfourth order inJHd is
given by

Fs2d =
J̃H

4

9 H−
1

4o
n

Gsinndaa
4 − 2o

n

Gsinndaa
2 Gsinndāā

2

− o
l,n,r

GsinrdaaGsinrdāāGsinldaa„Gsinndaa − Gsinndāā…

+
2

3o
l,n

Gsinndaa
3
„Gsinldaa − Gsinldāā…J . s14d

Unlike Fs1d, Fs2d cannot be represented by a compact dia-
gram involving only the bare vertex functions. So far, all of
our results are valid for any lattice topologysincluding the
Bethe and hypercubic lattices in infinite dimensionsd.

We have verified the thermodynamic consistency of the
DMFT by calculating the magnetic susceptibility from both
the Green’s function and the partition function. With a mag-
netic fieldH =Hz coupled to both the local moments and the
electrons, the effective action becomes

Aeffsmd = − To
n

c̄0asinndHG0sinndab
−1 + SJ̃Hm +

1

2
HzD · sabJ

3c0bsinnd − bHSmz. s15d

In a field, GI 0sinnd is no longer proportional to the identity
matrix in spin space but on a Bethe lattice is still related to
GI sinnd by Eq. s5d.

Parametrizing the bare inverse Green’s function as
GI 0sinnd−1=szn+RndII+QnsI z and using Eq.s5d, we solve for
Rn andQn from the expression

RnII + QnsI z = −
W2

16
khszn + RndII

+ fJ̃Hm + sQn + H/2dzg · sI j−1lm. s16d

To linear order in the field,Rn and Qn satisfy the implicit
relations

Rn = −
W2

16

zn + Rn

szn + Rnd2 − J̃H
2

, s17d

Qn =
Hszn + Rnd − 2J̃HM lmRn

2szn + 2RndUn
−

H

2
, s18d

where

Un = 1 −
32J̃H

2

3W2

Rn
2

szn + Rndszn + 2Rnd
. s19d

After integrating exp(−Aeffsmd) over the Grassman variables,
we find that the probability for the local moment to point
alongm is

Psmd ~ expHo
n

lnS1 −
J̃Hs2Qn + Hdmz

szn + Rnd2 − J̃H
2 D + bHSmzJ

~ expsbJeffM lmmzd. s20d

The last relation is written to lowest order in the local-
moment order parameterM lm=kmzlm and defines the effec-
tive interaction

Jeff =
16TJ̃H

W2 o
n

Rn

szn + Rndszn + 2RndUn
hxlm

−1szn + Rnd − 2J̃HRnj

+ xlm
−1S, s21d

wherexlm=M lm/H is the local-moment susceptibility. Now
M lm is solved from the conditionM lm=JeffM lmb /3, which
contains terms proportional to bothH andM lm on the right-
hand side. The electronic order parameterMel=2ks0zl is ob-
tained from the summationMel=−s32T/W2donQn. The total-
spin susceptibility is then given by the zero-field limit ofx
=sSMlm+Mel/2d /H.

To calculate the susceptibility from the partition function,
we first expandZ to the second order inH andM lm and then
usex=sT/Hd] ln Z/]HuH=0. The latter technique is formally
equivalent to evaluating the susceptibility from the Bethe-
Salpeter equation.8
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These two sets of calculations do indeed produce the
same magnetic susceptibility, which may be written as

x =
1

3T

SeffsTd2

1 − sJ̃H/Wd2G1sTd
+

3T

4W2„G1sTd − G2sTd…

+
8J̃H

2 T

W4 G1sTd, s22d

SeffsTd = S+
3J̃HT

2W2 „G1sTd − G2sTd…, s23d

where the functionsG1sTd andG2sTd are formally given by
the Matsubara sums

G1sTd = −
32

3 o
n

Rn
2

szn + Rndszn + 2RndUn
, s24d

G2sTd = −
32

3 o
n

Rn

szn + RndUn
. s25d

The Curie temperatureTC is solved from the condition

G1sTCd=sW/ J̃Hd2. The identical results produced by these
two calculations of the magnetic susceptibility and Curie
temperature provide a concrete example of the thermody-
namic consistency of the DMFT of the DE model.

Previous results8 in the JH→` limit are reproduced20 by

taking m=sgnsp−1dJ̃H+dm where udmuøW/ s2Î2d and p is
the electron fillingsp=1 means one electron per sited. The
general expression for the magnetic susceptibility shall be
studied in a future publication. We pause here to note that the
effective spinSeffsTd may be either larger or smaller thanS
depending on the sign of the Hund’s couplingJH. The tem-

perature dependence ofSeffsTd and the deviation of 1

−sJ̃H/Wd2G1sTd from T−TC are both caused by electronic
correlations that are absent in a local-moment system.8 The
second and third sets of terms in Eq.s22d correspond to the
Pauli susceptibility of the electrons.

AlthoughFshGI sinndjd has no simple diagrammatic expan-
sion in terms of the bare vertex function and the full Green’s
function, the existence of this functional means that Eq.s10d
may still be used to establish the general thermodynamic
consistency of the DMFT of the DE model. Thus, any ther-
modynamic quantity can be evaluated either from the
Green’s functionson the one-particle leveld or the partition
function scontaining interactions on the two-particle leveld.
Diagrammatics may be recovered for a more sophisticated
model where the classical local moments are replaced by
fully quantum-mechanical operators and we introduce an ad-
ditional propagator corresponding to those local spins. It may
also be possible to develop a more complex diagrammatics
for classical local spins in terms of higher-order vertex func-
tions.

Finally, we note that whereas any conserving theorysin
the sense of Baym and Kadanoff16d is thermodynamically
consistent, it is not true that all thermodynamically consistent
theories are conserving. Indeed, that is the case here since the
DMFT violates the Ward identities associated with charge
and spin conservation.
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