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We find that standard diagrammatic perturbation theory does not exist for the dynamical mean-field theory
of the double-exchange model because the vertex function cannot be expanded in terms of the bare vertex
function and the full Green's functiois(iv),,. Nevertheless, a functionab satisfying the condition
8D/ 5G(ivp) aa=2(ivn) 4o CaN be constructed because the curl of the self-energy with respect to the Green’s
function vanishess (i vp) 4ol 8G(i ) gg— 8% (i11) g/ 6G(ivn) 4, =0. The connection between the functiordl
and the free energy implies that the theory is thermodynamically consistent, meaning that the same thermo-
dynamic properties may be obtained from either the partition function or the Green'’s function. We provide a
concrete example of this consistency by evaluating the magnetic susceptibility and Curie temperature for any
Hund’s coupling using two such approaches.
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The dynamical mean-field theofpMFT) formulated in - I~ Foy-1 J . ;
the late 1980s by Miiller-Hartmarinand Metzner and Ae(m) = Tzn‘t Coali v {Goli 1) "0+ InTap - MiCoa(ivn),
Vollhard? has developed into one of the most powerful
many-body techniques for studying electronic models such
as the Hubbard* and double-exchang@ (DE) models. This ~ _ _
theory is believed to become exact in the limit of infinite WN€reJu=JuS, v,=(2n+1)7T, Coq(ivy) andco,(ivy) are now
dimensions and to capture the physics of correlated electronticommuting Grassman variables, a@glivy) is the bare
systems even in three dimensions. Recent work on dilutéreen’s function containing dynamical information about the
magnetic semiconductors has used DMFT to study variant8oPping of electrons from other sites onto the site 0. Because
of the DE modél®! with less than one local moment per Ac(m) is quadratic in the Grassman variables, the full local
site. In this paper, we reach the surprising conclusion thafBreen’s functiorG(i»,) .; may be readily solved by integrat-
unlike for the DMFT of the Hubbard modék diagrammatic ing over the Grassman variables, with the paramagnetic
perturbation theory containing only electronic degrees ofesulp

freedom does not exist for the DMFT of the DE model.

Nevertheless, we show that the theory remaingerivable

(2)

in a more restrictive sense, which still implies that the parti- Glivy) = Gliv)l = {Golivg) ™1+ Jug - m} ),

tion function and Green’s function produce consistent results Golivy) !

for thermodynamic properties such as the magnetic suscep- =, b 3)
tibility and Curie temperature. This provides an example of Golivy) ™ =35

an electronic theory that is thermodynamically consistent de-

spite the absence of a weak-coupling, diagrammatic pertuwherel is the unity matrix in 2<2 spin space. The average
bation theory. over the orientationsn of the local moment is generally

The Hamiltonian of the DE model is given by given by (C(m))y=/dQyP(m)C(m), where P(m)
o« Tr(exp(—Ags(m))) is the probability for the local moment
to point in them direction. AboveT., P(m)=1/4x is con-
H=-t>, (ciTacja + c,-TaCia) - 2JH2 S-S, (1) stant. Consequently, the paramagnetic self-energy is given by
ap i 3 (i) =Gyliv) L= G(i ) 2=J2Gyfivy). Expanded in pow-

wherecfa andc;, are the creation and destruction operatorsers of Jy andG(ivy), we find

for an electron with spim at sitei, 32(1/2)0;;0&60% is the

electronic spin, an&;=39m; is the spin of the local moment, 1 1 _

which is going to be treated as a classical field. Repeated 2(ivy) =-— 5G] + 4G )2 +Jf.

spin indices are summed. The DE model is believed to pro- (ivn) (ive)

vide a qualitative description of magnetoresistive matetfals, :ﬁﬁ'G(i v —T],‘f'G(i v)3 + 23&G(i v)S+e (4)

where the electronic conductivity is promoted by the align-
ment of the local spins belowW,.

Within DMFT, the local effective action abovi- in zero  On a Bethe lattice, these relations are closed by the analytic
field is given by expressiof®
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(a) O, Vn + ®m 3, vi+om

Golivy) =27l - \%/;G(i vn), ©)

wherez,=iv,+u andW is the full bandwidth of the nonin-
teracting, semicircular density of states. We denote the full
spin dependence for later use.

. . . . . (b)
Diagrammatic perturbation theory is customarily formu- ‘
lated in terms of the bare vertex functidi?(l,n;m)Ae:ox ro
sketched in Fig. (8 with w,,=2m=T. The bare vertex func-

K, V|
T©
tion may be associated with the two-particle interaction in \J
the purely electronic effective actih
, — NPT T ©
Agt == T2 Coqli ) Goli ) ™Coglin) = 7 2 Coulivg TN
n I,n,m
sy 1"(0) 1—*(0) l"(U) 1"(0)
+iwm)Copli ) IO, n;m)P* 9%y, (1) Cosliv + i wpy) . o v o e

©) v
FIG. 1. (a) The bare vertex functionih) and (c) compact dia-

%rams that contribute t® for the electronic effective actiof 4 on
the right with their associated self-energies on the left.

Hence, the bare vertex function must satisfy the crossin
symmetries TO(1, 1 +m; n—1)%4E«=TO(n+m,n;| —n)sxoa=
-I'O(l,n;m)f=%_ There are two ways to calculatE©

X (I,n;m)B4o_ First, we can take thé,— 0 limit of the full
irreducible vertexI'(I,n; m)#%% obtained from the Bethe-
Salpeter equation for the magnetic susceptibfiityAlterna-
tively, we can associate the lowest-ord#t, contribution to
the partition functionZ=(Tr(exp(—Asx(M)))),, With the con-
tribution to the partition function Z'=Tr(exp(-Aly)),

functions, can be found to satisfy the conditi@tiv,),g
=60/ 8G(ivy),p As discussed by Baydf, a d-derivable
theory may readily be shown to be thermodynamically con-
sistent, meaning that thermodynamic properties can be
evaluated either from the Green’s function or from the parti-

, o 2R tion functionZ. Consequently, such a theory is consistent on
sketched as the compact diagram in Fig)Iwith intemal 6 gne. and two-particle levels. We emphasize that it is the

lines given by the bare Green’s functiof(iv,).s]. Both theory of a model that may be thermodynamically consistent,
methods yield the same result, not the model Hamiltonian itself. For @-derivable theory,

_ 1 ~ the partition functionZ or free energy ¥ In Z may be con-
TO(1, n;m)pede = gﬁJa{Uﬁa " 050m0~ Tsa" Tpdnts  (7) structed in terms o> from the relation

which satisfies the crossing symmetries. —InZ=® - TH{S(iv)Glivy} + 2 Trin{G(ivy)},  (10)
However, replacind\.z(m) by Al produces an inequiva- n n
lent theory*® For example, expanding andZ’ in powers of  which is stationary under variations d(iv,). Whereas

Jy yields the results Baym's original work was intended for systems of interact-
~ ing fermions and bosons, the notion @f derivability has
Z= Zo{ 1-J4> Gyliv,)? been extended to systems of interacting electrons and'$pins
n and to disordered alloy$.
1~ - From the discussion above, it is clear that even if it exists,
+ EJﬁE Goli m)Gylive)® + O {, (8) @ cannot be constructed in terms of the bare vertex func-
I#n tions. When the action contains only two-particle interactions
such as for the Hubbard model, then the first two term® in
7' = Zo{l _ja S Golivy)? are repregented by the compact diagrams on th_e right-hand
o side of Figs. 1b) and XZc) with the corresponding self-
energies (iv,) 4o = 6P/ 5G(iv,) .. Sketched on the left-hand
e N2 (i, )2 ”6} ide. Not surprising| bstitutin r earlier expression for
+ = Gyliv)2Gy(iv)2 + 038 ¢, (99  side. Not surprisingly, substituting our earlier expression fo
6 the bare vertex function produces the correct first-order self-

~ energys’M(iv,)=J2G(iv,) but the wrong second-order self-
which disagree to ordel,. Hence, it is not possible by av- Qy="" i) = I Clivi) g

eraging over the local moments to replace the Hund’s CougnergyE’(z)(ivn):—(Jﬁ/3){ZG(ivn)2|G(iv|)2+G(i vp)%. No-
pling with an effective two-particle interaction between thetice from Eq.(4) that the correct second-order self-energy
electrons. In other words, the Hund's coupling produces®®(iv,)=-J{G(iv,)* does not involve a Matsubara summa-
fourth and higher-order electronic interactions that requirdion. Hence, the DMFT of the DE model is ndt derivable
higher-order vertex functions in the electronic action. in the strict diagrammatic sense stated above.

A theory is usually said to bé derivable if a functional Despite the failure of a diagrammatic expansion in powers
®({G(iv,)}), constructed from the sum of compact diagramsof I'©, a functional®({G(iv,)}) can still be constructed to
in terms of the full Green’s functions and the bare vertexsatisfy the conditior®(iv,) ,,= P/ 8G(iv,) . Starting from
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Eq. (3) and Dyson’s equation for the self-energy, we find that

S3(i1) gl 0G(iv) = (K + 8,8,4G (i) 2, where K is
the Jacobian

KB = OG(ivy) BB
n é[GO(I Vl)aa]_l
1) 23
== ‘Sln_z
a,

3 3a,a,

with a,=Gyfiv,)"2-J% and b,=Go(iv,) 2-J2/3. This Jaco-
bian can be inverted with the general result

32
+ bnaa,g} + (20,51, (1D)

S(inee __ . ) 2 .,
= - +6,,G
8G(ivg)gg " 3b, [2a,-30, oli )
B aa,

(26,5-1. (12

3- 232> 1/b, Pibn
r

It can be showH that the right-hand side equals
-TT(I,n;m=0)2*£E wherel'(I,n; m)#*% s the full irreduc-
ible vertex of the Bethe-Salpeter equation. The functichal

must exist because the curl of the self-energy vanishes:

O2(1vp) aal 0G(i1) gg— 02(i11) gl OG(i V) 40 =0.

By construction®® (second order i) is represented
by the compact diagram in Fig(ld) and is given in terms of
the bare vertex function by

B = — ;Er POl 1:0)2BBG 1) 1 Gl 1) g
Ble . .
=" E{E G0l G 4) s~ G2
I,n

S G2, - 23 G(ivn>me<ivn>w}, (19

wherea is the opposite spin te. After expanding and inte-
grating Eq.(12),° we find that®@ (fourth order inJy) is
given by

P o1 , . .
@ = EH{" ZE Glivy)t, - 2>, Gliv)2,Glivy
n n

- E G(I Vr)aaG(i Vr)ﬁG(i Vl)aa(G(i Vn)aa - G(I Vn)w

I,n,r

2
+ §|2 G(ivy)2(G(i 1)) o =~ G v.)a—g,)}. (14)
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_ ~ 1
Ae(m) == T% Coal( Vn){Go(i Vn);k + (JHm + EHZ> : Uaﬁ}
X Coplivy) — BHSM. (15

In a field, Gy(iv,) is no longer proportional to the identity
matrix in spin space but on a Bethe lattice is still related to
G(ivy) by Eq.(5).

Parametrizing the bare inverse Green's function as

Go(ivy)1=(z,+R,)1+Qy0, and using Eq(5), we solve for
R, andQ, from the expression

Ryl + Qna,= - \f/_;<{(zn + Rn)l_

+[3gm +(Q, +HI2)Z] - &t V. (16)

To linear order in the fieldR, and Q, satisfy the implicit
relations

Rz BtRy 17

16 (Zn + Rn)2 ‘ﬁﬁ

_H(z+R) ~23MiR, H
O g R, 2

(18

where
3272 R2
U,=1--——+4 : . (19
3WE (2, + R)(zy+ 2R))
After integrating exp-Aq(m)) over the Grassman variables,

we find that the probability for the local moment to point
alongm is

_Ju(2Q, +H)m,
(z,+ Rn)2 _3$|
* eXF:(BJeffM Immz)-

The last relation is written to lowest order in the local-
moment order parametd,,,=(m,),, and defines the effec-
tive interaction

P(m) o ex EIn(l >+,8H8n1

(20)

_16TJy s R

eff W2 (Zn +R )(Znn+ ZRn)U {Xl_n}(zn + Rn) - 23HRH}
+ XimS: (22)

where yim=M;n/H is the local-moment susceptibility. Now
Mim is solved from the conditioM,,=JesMmB/3, which
contains terms proportional to both and M, on the right-

Unlike ®©, ®@ cannot be represented by a compact diaf1and side. The electronic order parameey=2(sy,) is ob-
gram involving only the bare vertex functions. So far, all of tained from the summatioll¢=~(32T/W?)2,,Q,. The total-

our results are valid for any lattice topologincluding the
Bethe and hypercubic lattices in infinite dimensipns

spin susceptibility is then given by the zero-field limit pf
:(SM|m+Me|/2)/H.

We have verified the thermodynamic consistency of the To calculate the susceptibility from the partition function,
DMFT by calculating the magnetic susceptibility from both we first expand to the second order iH andM, and then
the Green’s function and the partition function. With a mag-use y=(T/H)d In Z/ 3H|y=o. The latter technique is formally
netic fieldH =Hz coupled to both the local moments and the equivalent to evaluating the susceptibility from the Bethe-

electrons, the effective action becomes

Salpeter equatiof.
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These two sets of calculations do indeed produce theerature dependence @&.(T) and the deviation of 1

same magnetic susceptibility, which may be written as —(3H/VV)2G1(T) from T-Te are both caused by electronic
1 Si(T)? T correlations that are absent in a local-moment syStdine
X 3T 7 nnze o + W(Gl(-r) ~Go(T) second and third sets of terms in Eg§2) correspond to the
Pauli susceptibility of the electrons.
g’ja-r Although®({G(iv,)}) has no simple diagrammatic expan-
+ WGl(T), (22)  sion in terms of the bare vertex function and the full Green’s

function, the existence of this functional means that #&q)
~ may still be used to establish the general thermodynamic

Su(T) =S+ %(Glﬂ') - Gy(T)), (23) consistenqy of the .DMFT of the DE model. Thus, any ther-

modynamic quantity can be evaluated either from the
Green’s function(on the one-particle levglor the partition
function (containing interactions on the two-particle level
Diagrammatics may be recovered for a more sophisticated
model where the classical local moments are replaced by
fully quantum-mechanical operators and we introduce an ad-
ditional propagator corresponding to those local spins. It may

where the function&;(T) and G,(T) are formally given by
the Matsubara sums

__32 Ra
S5 trrir g, 2

32 R, also be possible to develop a more complex diagrammatics
Gy =-=> ——. (25)  for classical local spins in terms of higher-order vertex func-
3 n (Zn + I:zn)un tions.

The Curie temperaturd is solved from the condition Finally, we note that whereas any conserving the@ny

o 2 _ ) the sense of Baym and Kadandjfis thermodynamically
Gy(Tc)=(W/Jp)“. The identical results produced by these cqnistent, it is not true that all thermodynamically consistent

two calculations of the magnetic susceptibility and Curieihegries are conserving. Indeed, that is the case here since the
temperature provide a concrete example of the thermodypmET violates the Ward identities associated with charge
namic consistency of the DMFT of the DE model. and spin conservation.

Previous resulfsin the J,— < limit are reprgduce%? by It is a pleasure to acknowledge helpful conversations with
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general expression for the magnetic susceptibility shall b®E-AC05-000R22725 with the Oak Ridge National Labora-
studied in a future publication. We pause here to note that thory, managed by UT-Battelle, LLC and by the National Sci-
effective spinS,(T) may be either larger or smaller th&  ence Foundation under Grants No. DMR-0312680 and EPS-
depending on the sign of the Hund’s couplifig The tem- 0132289(ND EPSCOR.
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