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Pseudogaps in the 2D Hubbard Model
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We study the pseudogaps in the spectra of the 2D Hubbard model using both finite-size and dynamical
cluster approximation (DCA) quantum Monte Carlo calculations. At half-filling, a charge pseudogap,
accompanied by non-Fermi-liquid behavior in the self-energy, is shown to persist in the thermodynamic
limit. The DCA (finite-size) method systematically underestimates (overestimates) the width of the
pseudogap. A spin pseudogap is not seen at half-filling. At finite doping, a divergent d-wave pair sus-

ceptibility is observed.
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Introduction.—For over a decade it has been recognized
that the normal state properties of high-7, superconductors
are unusual and appear to have non-Fermi-liquid charac-
teristics [1]. One of the most remarkable features of the
normal state is a suppression of the density of states at
the Fermi energy in a temperature regime above 7. in un-
derdoped samples. Angular resolved photoemission ex-
periments [2,3] show that this pseudogap in the spectral
function has a d-wave anisotropy, the same symmetry as
the superconducting order parameter in these materials.
This, along with theories that short-range spin fluctuations
mediate pairing in the high-7T, cuprates [4,5], emphasizes
the importance of understanding the normal state, insulat-
ing phase.

It is thought by many that the two-dimensional (2D)
Hubbard model, or closely related models, should capture
the essential physics of the high-7, cuprates [4]. Yet,
despite years of effort, neither the precursor pseudogap
nor d-wave superconducting order have been conclusively
seen in the Hubbard model.

Intuitively, one may expect that the Hubbard model
should show pseudogap behavior. At half-filling, the
ground state of the 2D Hubbard model is an antiferromag-
netic insulator [6,7] and the spectrum is therefore gapped.
However, the Mermin-Wagner theorem precludes any
transition at finite 7', so, as the temperature is lowered,
one may anticipate that a pseudogap will develop [8]. This
question has been previously addressed in the 2D Hubbard
insulator by finite-size lattice quantum Monte Carlo
(QMC) [9,10] and fluctuation exchange approximation
(FLEX) [11] calculations. These results were recently
criticized in [12] and are contradictory and inconclusive
as to the existence of a pseudogap at low temperatures,
due to limitations of these techniques.

By using the recently developed dynamical cluster ap-
proximation (DCA) [13,14], we find that at sufficiently
low temperatures a pseudogap opens in the single particle
spectral weight A(k, w) of the 2D Hubbard model with a
simultaneous destruction of the Fermi-liquid state due to
short-range antiferromagnetic correlations. This occurs in
the weak-to-intermediate coupling regime U < W, where
U is the on-site Coulomb energy and W is the noninteract-

0031-9007/01/86(1)/139(4)$15.00

PACS numbers: 71.10.Fd, 02.70.Lq

ing bandwidth. Off half-filling, we see a divergent d,>— >
pair susceptibility signaling a finite-7,. onset of supercon-
ductivity in the model.

Using finite-size techniques, it is difficult to determine if
a gap persists in the thermodynamic limit. At half-filling,
finite-size QMC calculations display a gap in their spectra
as soon as the correlation length exceeds the lattice size, so
they tend to overestimate the pseudogap as it would appear
in the thermodynamic limit. Finite-size scaling is compli-
cated by the lack of an exact scaling ansatz for the gap and
the cost of performing simulations of large systems. Cal-
culations employing dynamical mean field approximation
(DMFA) [15] in the paramagnetic phase do not display this
behavior since they take place in the thermodynamic limit
rather than on a finite-size lattice. However, the DMFA
lacks the nonlocal spin fluctuations often believed to be
responsible for the pseudogap. The DCA is a fully causal
approach which systematically incorporates nonlocal cor-
rections to the DMFA by mapping the problem onto an
embedded impurity cluster of size N.. N, determines the
order of the approximation and provides a systematic ex-
pansion parameter 1/N,.. While the DCA becomes exact
in the limit of large N, it reduces to the DMFA for N, = 1.
Thus, the DCA differs from the usual finite-size lattice cal-
culations in that it is a reasonable approximation to the lat-
tice problem even for a “cluster” of a single site. Like the
DMEFA, the DCA solution remains in the thermodynamic
limit, but the dynamical correlation length is restricted to
the size of the embedded cluster. Thus the DCA tends to
underestimate the pseudogap.

Method.—The DCA is based on the assumption that the
lattice self-energy is weakly momentum dependent. This
is equivalent to assuming that the dynamical intersite cor-
relations have a short spatial range b < L/2, where L
is the linear dimension of the cluster. Then, according
to Nyquist’s sampling theorem [16], to reproduce these
correlations in the self-energy, we need only to sample
the reciprocal space at intervals of Ak = 277 /L. There-
fore, we could approximate G(K + k) by G(K) within
the cell of size (7/L)P (see Fig. 1) centered on the clus-
ter momentum K (wherever feasible, we suppress the fre-
quency labels) and use this Green function to calculate the
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FIG. 1. N. = 4 cluster cells (shown by different fill patterns)
that partition the first Brillouin zone (dashed line). Each cell is
centered on a cluster momentum K (filled circles). To construct
the DCA cluster, we map a generic momentum in the zone such
as k to the nearest cluster point K = M(k) so thatk = k — K
remains in the cell around K.

self-energy. Knowledge of these Green functions on a finer
scale in momentum is unnecessary, and may be discarded
to reduce the complexity of the problem. Thus the clus-
ter self-energy can be constructed from the coarse-grained
average of the single particle Green function within the
cell centered on the cluster momenta:

G(K) = %ZG(k + k), 1)
k

where N is the number of points of the lattice, N, is the
number of cells in the cluster, and the k summation runs
over the momenta of the cell about the cluster momen-
tum K (see Fig. 1). For short distances r < L/2, the
Fourier transform of the Green function G(r) = G(r) +
O[(rAk)?*], so that short-range correlations are reflected
in the irreducible quantities constructed from G; whereas,
longer-range correlations r > L /2 are cut off by the finite
size of the cluster [13].

This coarse-graining procedure and the relationship of
the DCA to the DMFA is illustrated by a microscopic
diagrammatic derivation of the DCA. For Hubbard-like
models, the properties of the bare vertex are completely
characterized by the Laue function A which expresses the
momentum conservation at each vertex. In a conventional
diagrammatic approach A(ki,k,, ks, ky) = D exp[ir -
(ki — ko + k3 — k4)] = N5k1+k2,k3+k4, where k; and
k; (ks and k4) are the momenta entering (leaving)
each vertex through its legs of G. However, as D — oo,
Miiller-Hartmann showed that the Laue function reduces
to [17]

Ap—w(ki, ko, k3, ks) =1+ O(1/D). (2)
The DMFA assumes the same Laue function,
Apmra (K1, Ko, k3, ks) = 1, even in the context of

finite dimensions. Thus, the conservation of momentum
at internal vertices is neglected. Therefore we may freely
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sum over the internal momenta at each vertex in the
generating functional ®pypa. This leads to a collapse of
the momentum dependent contributions to the functional
®pymrea and only local terms remain.

The DCA systematically restores the momentum conser-
vation at internal vertices. As discussed above, the Bril-
louin zone is divided into N, = LP cells of size (27 /L)P.
Each cell is represented by a cluster momentum K in the
center of the cell. We require that momentum conserva-
tion is (partially) observed for momentum transfers be-
tween cells, i.e., for momentum transfers larger than Ak =
241 /L, but neglected for momentum transfers within a cell,
i.e., less than Ak. This requirement can be established by
using the Laue function [13]

Apca (K1, K2, k3,Ka) = NeOmk,)+M(ks) M(k,)+ M(k,) »
3)

where M(k) is a function which maps k onto the momen-
tum label K of the cell containing k (see Fig. 1).

With this choice of the Laue function the momenta of
each internal leg may be freely summed over the cell. This
is illustrated for the second-order term in the generating
functional in Fig. 2. Thus, each internal leg G(k;) in
a diagram is replaced by the coarse-grained Green func-
tion G[M(k )], defined by Eq. (1). The diagrammatic se-
quences for the generating functional and its derivatives
are unchanged; however, the complexity of the problem
is greatly reduced since N, << N. We showed previously
[13,14] that the DCA estimate of the lattice free energy is
minimized by the approximation 3 (k) =~ %[M(k)], where
6(I>DC A/ 56 = 2

The cluster problem is then solved by the usual tech-
niques such as QMC [18], the noncrossing approximation
[14], or the fluctuation-exchange approximation. Here we
employ a generalization of the Hirsch-Fye QMC algorithm
[19] to solve the cluster problem. The initial Green func-
tion for this procedure is the bare cluster Green function
GK) ! = G(K)"' + 3(K) which must be introduced to
avoid overcounting diagrams. The QMC estimate of the
cluster self-energy is then used to calculate a new estimate
of G(K) by using Eq. (1). The corresponding G(K) is
used to reinitialize the procedure which continues until the
self-energy converges to the desired accuracy.

Results.— We study the conventional 2D Hubbard Ham-
iltonian, characterized by an overlap integral ¢, an on-site
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FIG. 2. The DCA choice of the Laue function Eq. (3) leads
to the replacement of the lattice propagators G(k;),G(k2),...
by coarse-grained propagators G(K), G(K'),... [Eq. (1)] in the
internal legs of ®pca, illustrated for a second-order diagram.
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potential U, and a chemical potential . We set # = 1 and
measure all energies in terms of . We work where the sys-
tem is half-filled, (n) = 1, and also adjust w to dope the
system to {(n) = 0.95. We choose U = 5.2 and 6.0, which
are below the value U = W believed to be necessary to
open a Mott-Hubbard gap.

Figure 3 shows the spectral density A(K, ), and the
real ReX (K, w) and imaginary Im3.(k, w) parts of the self-
energy for the 2D Hubbard model via the DCA with a
paramagnetic host at the Fermi surface X point k = (7, 0)
for a 64-site cluster (N. = 64) at various temperatures.
We obtain the spectral function A(K, @) via the maximum
entropy method [20]. As the temperature is lowered, the
system first builds a Fermi-liquid—-like peak in A(K, ).
By B = 2.6, a pseudogap begins to develop in Ak, w).
The pseudogap builds as the temperature is further
lowered. The spectral function A(K, ) at the half-filled
Fermi surface point kK = (7 /2, 7 /2) (not shown) displays
qualitative features similar to those seen in Fig. 3, but the
pseudogap opens at a slightly lower temperature and the
distance between the peaks is less than that seen at the X
point.

The DCA self-energy spectra in Fig. 3 support the spec-
tral evidence. At the X point, the slope of Re2 (K, w) be-
comes positive below B = 2.6, the temperature at which
we observed the opening of a pseudogap. This signals
the appearance of two new solutions in the quasiparticle
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FIG. 3. The spectral density A(k, ), and the real Re2(k, w)
and imaginary Im3(k, w) parts of the self-energy for the 2D
Hubbard model via the DCA with a paramagnetic host at k =
(7r,0) for a 64-site cluster (N, = 64) at various temperatures.
The on-site Coulomb repulsion U = 5.2, the bandwidth W = 8§,
and the filling (n) = 1. As the temperature is lowered, the
system first builds a Fermi-liquid—like peak in A(k, w). By
B = 2.6, a pseudogap begins to develop in A(k,®) and, si-
multaneously, ReX (K, w) develops a positive slope at v = 0,
a signal of a non-Fermi liquid. The pseudogap deepens as the
temperature is further lowered. The imaginary part of the dy-
namic spin susceptibility, divided by the static spin susceptibility
is shown in the inset. No spin gap is seen.

equation Re[w — ex — 2(K, w)] = 0 in addition to the
strongly damped solution at @ = 0 which is also present
in the noninteracting system. These two new quasiparticle
solutions for the same k vector are the consequence of the
local moment formation; at low temperatures, the local mo-
ments form a short-range antiferromagnetic order which
destroys the quasiparticle peak at @ = 0. At these tem-
peratures, Im3,(k, @) displays a local minimum at @ = 0,
indicating the breakdown of the Fermi-liquid behavior.

We also calculate the angle integrated dynamical spin
susceptibility shown in the inset. It does not have a pseudo-
gap, as expected for the half-filled model, since the spin-
wave spectrum is gapless. Since a (spin) charge gap is
generally defined as one which appears in the (spin) charge
dynamics, we conclude that the pseudogap is only in the
charge response and is due to short-range antiferromag-
netic spin correlations.

Figure 4 shows the spectral density A(k, w) at k =
(7,0) and k = (7 /2,7/2) with T = 0.06, U = 6.0,
N. = 8, and a filling of (n) = 0.95. Once again, a pseudo-
gap opens in A(k, ), but in this case the pseudogap is
highly asymmetric. The inset of Fig. 4 shows the d,2—,2
pair susceptibility and the magnetic susceptibility as a
function of T. T, occurs where the pair susceptibility
diverges, with T, = 0.04. This d-wave superconductivity
persists in simulations of larger clusters. However, due to
the computational cost of these large cluster simulations,
we have not completed a systematic study of the effect of
system size on the superconducting 7.. This will be the
subject of a later study.

The inset of Fig. 4 also shows a sharp drop in the mag-
netic susceptibility at roughly the temperature where the
pseudogap opens, as seen experimentally in the cuprates
[1]. In order to ascertain whether this is a signal of pairing,
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FIG. 4. The spectral density A(k, w) at k = (77,0) and k =
(/2,7/2) with T = 0.06, U = 6.0, N. = 8, and (n) = 0.95.
The inset shows the dy2_ > pair susceptibility (d) and the mag-
netic susceptibility (mag) as a function of 7. The pair suscepti-
bility diverges at a finite 7,.. The magnetic susceptibility drops
suddenly when the pseudogap opens.

141



VOLUME 86, NUMBER 1

PHYSICAL REVIEW LETTERS

1 JANUARY 2001

0.6 1 T
I (@ 03 |
|

FIG. 5. The spectral density A(k,w) at k = (7,0) for the
2D Hubbard model via (a) the DCA and (b) finite-size quan-
tum Monte Carlo at an inverse temperature times the bandwidth
BW = 40, U = 5.2, and a filling {(n) = 1 on various size clus-
ters. The temperature 7™ at which the pseudogap first becomes
apparent in the DCA spectra, as well as the full width A/U
measured from peak to peak divided by U, is plotted in the in-
set. The finite-size QMC overestimates A/U and T*, whereas
the DCA QMC systematically underestimates them.

we examine the magnetic susceptibility in the (n) = 1
model. We see striking downturns at both half-filling
and off half-filling. Since the pair-field susceptibility at
(n) = 1 displays no evidence of a finite-7 divergence,
we infer that a downturn in the magnetic susceptibility at
low-T is due to short-range antiferromagnetic order, not
the formation of pairs.

It is instructive to compare the DCA results with those
obtained by finite-size QMC calculations. Figure 5 shows
the spectral density A(7,0, w) obtained by analytically
continuing both finite-size and DCA QMC data for (n) =
1. In spite of the difference in the two methods, the infor-
mation they provide is complimentary. In the finite-size
results [Fig. 5(b)], we see a similar opening of a pseudo-
gap. However, as the antiferromagnetic (AF) correlations
extend to the longest length on the finite-size lattice, the
system develops a full gap. Thus, the finite-size QMC
overestimates the size of the gap. In the DCA results
[Fig. 5(a)], the pseudogap emerges as soon as N, > 1.
The temperature 7" at which the pseudogap first becomes
apparent in the spectra, as well as the full width A /U mea-
sured from peak to peak, is plotted in the inset. Both T*
and A/U increase with N.. Since the DCA calculation re-
mains in the thermodynamic limit, a full gap due to anti-
ferromagnetic correlations alone cannot open until their
correlation length diverges. However, some combination
of Mott and AFM mechanisms could open a finite-7" gap.
This will be the subject of a future publication. However,
since these correlations are restricted to the size of the clus-
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ter, the DCA systematically underestimates the size of the
gap. Thus, if a pseudogap exists in the DCA for finite N,
it should persist in the limit as N, — .

In summary, we have employed the recently developed
DCA to study the long-open question of whether the half-
filled Hubbard model has a pseudogap due to AF spin
fluctuations. We find conclusive evidence of a pseudogap
in the charge dynamics and have shown unambiguously
that the 7 = 0 phase transition of the half-filled model is
preceded by an opening of a pseudogap in A(kr, ) ac-
companied by pronounced non-Fermi-liquid behavior in
3(kF, ). Off half-filling, the pseudogap becomes highly
anisotropic and is accompanied by a d-wave pairing insta-
bility. We note that Lichtenstein ef al. [21] also use the
DCA with QMC to study the phase diagram of the 2D
Hubbard model. However, they modify the DCA by inter-
polating the self-energy between the K points. As noted
previously [13], this can yield causality violations.
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