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Comparison of two-quantum-cluster approximations
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~Received 12 September 2001; published 3 January 2002!

We provide microscopic diagrammatic derivations of the molecular coherent potential approximation
~MCA! and dynamical cluster approximation~DCA! and show that both areF derivable. The MCA~DCA!
maps the lattice onto a self-consistently embedded cluster with open~periodic! boundary conditions, and
therefore violates~preserves! the translational symmetry of the original lattice. As a consequence of the
boundary conditions, the MCA~DCA! converges slowly~quickly! with correctionsO(1/Lc) @O(1/Lc

2)#, where
Lc is the linear size of the cluster. These analytical results are demonstrated numerically for the one-
dimensional symmetric Falicov-Kimball model.

DOI: 10.1103/PhysRevB.65.041104 PACS number~s!: 71.27.1a, 71.10.2w
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I. INTRODUCTION

One of the most active areas in condensed matter phy
is the search for new methods to treat disordered and co
lated systems. In these systems, especially in three dim
sions or higher, approximations which neglect long rang
correlations are generally thought to provide a reasona
first approximation for many properties.

Perhaps the most successful of these methods are th
herent potential approximation1 ~CPA! and the dynamica
mean-field approximation~DMFA!,2–5 for disordered and
correlated systems, respectively. Although these approxi
tions have different origins, they share a common mic
scopic definition. Both the DMFA~Ref. 3! and the CPA~Ref.
6! may be defined as theories which completely neglect m
mentum conservation at all internal diagrammatic vertic
When this principle is applied, the diagrammatic expans
for the irreducible quantities in each approximation collap
onto that of a self-consistently embedded impurity proble

Many researchers have actively searched for a techn
to restore nonlocal corrections to these approaches. Here
discuss just two approaches which are fully causal and s
consistent: the molecular coherent potential approximatio7,8

~MCA! and the dynamical cluster approximatio
~DCA!.10–12,6 Recently the cellular dynamical mean-fie
approach9 was proposed for ordered correlated system
while the molecular coherent potential approximation h
traditionally been applied to disordered systems. Since b
methods share a common microscopic definition we use
term MCA to refer to both techniques in the following.

While the MCA is traditionally defined in the real spac
of the lattice, the DCA is traditionally defined in its recipro
cal space. In the MCA, the system lattice is split into a se
of identical molecules. Interactions between the molecu
are treated in a mean-field approximation, while interactio
within the molecule are explicitly accounted for. In the DC
the reciprocal space of the lattice is split into cells, and m
mentum conservation is neglected for momentum trans
within each cell while it is~partially! conserved for transfer
between the cells. These approximations share many fea
in common: they both map the lattice problem onto that o
self-consistently embedded cluster problem. Both recover
single site approximation~CPA or DMFA! when the cluster
0163-1829/2002/65~4!/041104~4!/$20.00 65 0411
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size reduces to one and become exact as the cluster
diverges. Both are fully causal,7,11 and provided that the clus
ters are chosen correctly,6 they maintain the point group
symmetry of the original lattice problem. Here, we provide
microscopic diagrammatic derivation of both the MCA a
the DCA, and explore their convergence with increas
cluster size.

II. FORMALISM

For simple Hubbardlike models, momentum conservat
at each vertex is completely described by the Laue funct

D5(
x

eix•(k11k22k32k4)5Ndk11k2 ,k31k4
, ~1!

wherek1 ,k2 (k3 ,k4) are the momenta entering~leaving! the
vertex. Müller-Hartmann3 showed that the DMF theory ma
be derived by completely ignoring momentum conservat
at each internal vertex by settingD51. Then, one may freely
sum over all of the internal momentum labels, and the gra
for the generating functionalF and its irreducible deriva-
tives, contain only local propagators.

The DCA and MCA techniques may also be defined
their respective Laue functions. Since our object is to defi
cluster methods we divide the original lattice ofN sites into
N/Nc clusters~molecules!, each composed ofNc5Lc

D sites,

whereD is the dimensionality. We use the coordinatex̃ to
label the origin of the clusters andX to label theNc sites
within a cluster, so that the site indices of the original latti
x5X1 x̃. The pointsx̃ form a lattice with a reciprocal spac
labeled byk̃. The reciprocal space corresponding to the si
X within a cluster shall be labeledK , with Ka5na2p/Lc

and integerna . Thenk5K1 k̃. Note thateiK• x̃51 since a
component ofx̃ must take the formmaLc with integerma .

In the MCA, we approximate the Laue function by

DMC5(
X

eiX•(K11K22K32K41 k̃11 k̃22 k̃32 k̃4). ~2!

Thus the MCA omits the phase factorsei k̃• x̃ resulting from
the position of the cluster in the original lattice but retai
©2002 The American Physical Society04-1
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the ~far less important! phase factorsei k̃•X associated with
the position within a cluster. In the DCA we also omit th
phase factorsei k̃•X, so that

DDC5NcdK11K2 ,K31K4
. ~3!

Both the MCA and DCA Laue functions recover the exa
result whenNc→` and the DMFA result,D51, whenNc
51.

If we apply the MCA Laue function Eq.~2! to diagrams in
F, then each Green function leg is replaced by the M
coarse-grained Green function

Ḡ~X1 ,X2 ; x̃50!

5
1

N2 (
K1 ,K2

k̃1 ,k̃2

ei (K11 k̃1)•X1G~K1 ,K2 ; k̃12 k̃2!e2 i (K21 k̃2)•X2

5
Nc

2

N2 (
k̃1 ,k̃2

G~X1 ,X2 ,k̃12 k̃2!, ~4!

or in matrix notation for the cluster sitesX1 andX2

Ĝ̄5
Nc

N (
k̃

Ĝ~ k̃!. ~5!

~We have dropped the frequency dependence for notati
convenience.! The summations of the cluster sitesX remain
to be performed. Note that the inclusion of the phase fac
ei k̃•X in the MCA Laue-function Eq.~2! leads directly to a
cluster approach formulated in real space that violates tr
lational invariance. Therefore the Green function is a fu
tion of two cluster momentaK1 ,K2 or two sitesX1 ,X2,
respectively.

If we apply the DCA Laue function Eq.~3!, Green func-
tion legs inF are replaced by the DCA coarse grained Gre
function

Ḡ~K !5
Nc

N (
k̃

G~K ,k̃!, ~6!

since Green functions can be freely summed over thek̃ vec-
tors within a cell about the cluster momentumK . As a result,
F is a functional of the coarse grained Green functionḠ(K )
and thus depends on the cluster momentaK only.

To establish a connection between the cluster and the
tice we minimize the lattice free energy

F52kBT~Fc2tr@SG#1tr ln@G# !, ~7!

where Fc is the generating functional calculated with th
coarse-grained propagators,S is the lattice self-energy, an
G is the full lattice Green function. The trace indicates su
mation over frequency, momentum and spin. As we h
discussed elsewhere, only the compact part of the free
ergy,F, is coarse grained.F is stationary with respect toG
whendF/dG50. This happens for the MCA if we estimat
the lattice self energy as
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S~K1 ,K2 ; k̃12 k̃2!

5 (
X1 ,X2

e2 i (K11 k̃1)•X1SMC~X1 ,X2!ei (K21 k̃2)•X2.

~8!

Thus the corresponding lattice single-particle propaga
reads in matrix notation

Ĝ~ k̃,z!5@zI2 ê~ k̃!2ŜMC~z!#21, ~9!

where the dispersionê( k̃) and self-energyŜMC(z) are ma-
trices in cluster real space with

@ ê~ k̃!#X1X2
5e~X12X2 ,k̃!5

1

Nc
(
K

ei ~K21 k̃2!(X12X2)eK1 k̃

~10!

being the intracluster Fourier transform of the dispersion.
the DCA, S(k)5SDC(K ) is the proper approximation fo
the lattice self energy corresponding toFDC . The corre-
sponding lattice single-particle propagator is then given b

G~K ,k̃;z!5
1

z2eK1 k̃2SDC~K ,z!
. ~11!

Both the MCA and DCA are optimized when we equate t
lattice and cluster self energies. A similar relation holds
two-particle quantities. Thus with few exceptions,13 only the
irreducible quantities on the cluster and lattice correspo
one-to-one.

The MCA ~DCA! algorithm follows directly: We first
make an initial guess for the cluster self-energy matrixS.
This is used with Eqs.~5! and~9! @~6! and~11!# to calculate
the coarse-grained Green functionḠ. The cluster excluded

Green function Ĝ5@ Ĝ̄211ŜMC#21
„G(K )5@Ḡ(K )21

1SDC(K )#21
… is defined to avoid overcounting self-energ

corrections on the cluster. It is used to compute a new e
mate for the cluster self-energy which is used to reinitial
the process. Once convergence is reached, the irredu
quantities on the cluster may be used to calculate the co
sponding lattice quantities.

In order to compare the character of the two differe
cluster approaches as a function of the cluster sizeNc it is
instructive to rewrite the corresponding coarse grained Gr
functions Eqs.~5! and~6! to suitable forms by making use o
the independence of the self-energyS on the integration
variable k̃. For the MCA coarse grained Green function w
find

Ĝ̄~z!5@zI2 êo2ŜMC~z!2ĜMC~z!#21, ~12!

with the ‘‘cluster-local’’ energyêo5Nc /N( k̃ê( k̃). For the
DCA we obtain a similar expression

Ḡ~K ,z!5@z2 ēK2SDC~K ,z!2GDC~K ,z!#21 , ~13!
4-2
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with the coarse grained averageēK5Nc /N( k̃e(K ,k̃). The

hybridization functionsĜMC/DC(z) describe the coupling o
the cluster to the mean field representing the remainde
the system.

The behavior ofG for large Nc is important. For the
MCA, G averaged over the cluster and frequency

ḠMC5
1

Nc
(

X1 ,X2

GMC~X1 ,X2!;OS 2D

Lc
D , ~14!

whereLc5Nc
1/D is the linear cluster size. A detailed deriv

tion of this form will be published elsewhere. However, sin
in the MCA the cluster is defined in real space with op
boundary conditions, this form is evident since only the si
on the surface}2D•Lc

D21 of the cluster couple to the effec
tive medium. For the DCA we have previously shown12 that
G(K );O(1/Nc

2/D) so that we obtain for the average hybri
ization of the DCA cluster to the effective medium

ḠDC5
1

Nc
(
K

GDC~K !;OS 1

Lc
2D . ~15!

The DCA coarse graining results in a cluster inK space;
thus, the corresponding real space cluster has peri
boundary conditions, and each site in the cluster has

same hybridization strengthḠ with the host.
In both the MCA and the DCA, the average hybridizati

strength acts as the small parameter. The approximation
formed by the MCA~DCA! is to replace the lattice Gree

function Ĝ( k̃)5@zI2 ê( k̃)2Ŝ( k̃,z)#21
„G(K ,k̃,z)5@z

2eK1 k̃2S(K ,k̃,z)#21
… by its coarse grained quantityĜ̄

@Ḡ(K )# in diagrams for the self-energyS. Once the sums
over k̃ are performed, all terms which are lower order in 1/Lc
than G vanish. Thus the MCA~DCA! is an approximation

with corrections of orderḠ;O(1/Lc) „;O(1/Lc
2)….

III. NUMERICAL RESULTS

To illustrate the differences in convergence with clus
size Nc we performed MCA and DCA simulations for th
symmetric one-dimensional~1D! Falicov-Kimball model
~FKM!. At half filling the FKM Hamiltonian reads as

H52t(
i

~di
†di 111h.c.!1U(

i
~ni

d21/2!~ni
f21/2!,

~16!

with the number operatorsni
d5di

†di and ni
f5 f i

†f i and the
Coulomb repulsionU betweend and f electrons residing on
the same site. The FKM can be considered as a simpli
Hubbard model with only one spin-species~d! being allowed
to hop. However it still shows a complex phase diagr
including a Mott transition and Ising-like charge orderin
with the corresponding transition temperatureTc being zero
in one dimension~1D!. The dispersion in~1D! ek52t cosk;
thus fort51/4 the bandwidthW51 which we use as unit o
04110
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energy. To simulate the effective cluster models of the MC
an the DCA we use a quantum Monte Carlo~QMC! ap-
proach described in Ref. 11.

To check the scaling relations, Eqs.~14! and 15, we show

in Fig. 1 the average hybridization functionsḠMC and ḠDC
for the MCA and DCA, respectively, at the inverse tempe
ture b517 for U5W51. For Nc51 both approaches ar

equivalent to the DMFA and thusḠMC5ḠDC . For increasing

Nc, ḠMC can be fitted by 0.3361/Nc and ḠDC by 1.1946/Nc
2

whenNc.2. Cluster quantities, such as the self energy a
cluster susceptibilities, are expected to converge with

creasingNc like Ḡ. This is illustrated in the inset for the
staggered (Q5p) charge susceptibilityxc(Q) of the cluster.

Since only the compact parts represented byF of the
lattice free energy@Eq. ~7!# are coarse grained, this scaling
expected to break down when lattice quantities, such as
lattice charge susceptibility, are calculated. The susceptib
of the cluster xc(Q) cannot diverge for any finiteNc ;
whereas the latticex(Q) diverges at the transition tempera
ture Tc to the charge ordered phase. Note that the resid
mean field character of both methods can result in finite tr
sition temperaturesTc.0 for finite Nc,`. However asNc
increases, this residual mean field character decreases g
ally and thus increased fluctuations should drive the solu
to the exact resultTc50.

In the DCA~Ref. 11!, x(Q) is calculated by first extract
ing the corresponding vertex function from the cluster sim
lation. This is then used in a Bethe-Salpeter equation to
culate x(Q). Tc is calculated by extrapolatingx(Q)21 to
zero using the functionx(Q)21}(T2Tc)

g ~see inset to Fig.
2!. This procedure is difficult, if not impossible, in the MC
due to the lack of translational invariance. Here, we calcu
the order parameterm(T)51/Nc( i(21)i^ni

d& in the symme-
try broken phase.Tc is then obtained from extrapolatin
m(T) to zero using the functionm(T)}(Tc2T)b. For the
DCA this extrapolation is shown by the solid line in th

FIG. 1. The average integrated hybridization strengthsḠ of the
MCA ~squares! and DCA~circles! versus the cluster sizeNc when
b517 andU5W51. The solid and dashed lines represent the
1.1946/Nc

2 and 0.3361/Nc , respectively. Inset: Convergence of th
cluster charge susceptibility forQ5p. The solid and dashed line
are quadratic and linear fits, respectively.
4-3
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inset to Fig. 2 forNc54. The values forTc obtained from
the calculation in the symmetry broken phase and in
unbroken phase must agree, since as we have shown a
both the DCA and MCA areF derivable. This is illustrated
in Fig. 2 for the DCA.

A comparison of the DCA and MCA estimate ofTc is
presented in Fig. 2.Tc obtained from MCA~squares! is
larger thanTc obtained from DCA~circles!. Moreover we
find that the DCA result seems to scale to zero almost
early in 1/Nc ~for large enoughNc), whereas the MCA does
not show any scaling form and, in fact, seems to tend t
finite value forTc asNc→`. This striking difference of the
two methods can be attributed to the different boundary c
ditions. The open boundary conditions of the MCA clus

result in a large surface contribution so thatḠMC.ḠDC .
This engenders pronounced mean field behavior that s
lizes the finite temperature transition for the cluster si
treated here. For larger clusters we expect the bulk contr
tion to the MCA free energy to dominate so thatTc should
fall to zero.

FIG. 2. The transition temperatureTc for the DCA~circles! and
MCA ~squares! whenU5W51 versus the cluster sizeNc . For all
values ofNc the DCA prediction is closer to the exact result (Tc

50). Inset: Order parameterm(T) and inverse charge susceptibilit
x(Q)21 versus temperature. The solid~dashed! line represents a fit
to the functions m(T)}(Tc2T)b with b50.245 @x(T)}(T
2Tc)

2g with g51.07].
ev
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Complementary results are found in simulations offinite-
sizedsystems. In general, systems with open boundary c
ditions are expected to have a surface contribution in the
energy of orderO(1/Lc).

14 This term is absent in system
with periodic boundary conditions. As a result, simulatio
of finite-sized systems with periodic boundary conditio
converge much more quickly than those with open bound
conditions.15

IV. SUMMARY

By defining appropriate Laue functions, we provide m
croscopic diagrammatic derivations of the MCA and DC
We show that they areF derivable, and that the lattice fre
energy is optimized by equating the irreducible quantities
the lattice to those on the cluster. The MCA maps the latt
to a cluster with open boundaries and consequently, the c
ter violates translational invariance. In contrast, the DC
cluster has periodic boundary conditions, and therefore p
serves the translational invariance of the lattice. This diff
ence in the boundary conditions translates directly to diff
ent asymptotic behaviors for large clustersNc . As we find
analytically as well as numerically, the surface contributio

in the MCA lead to an average hybridizationḠ of the cluster
to the mean field that scales like 1/Lc as compared to the

1/Lc
2 scaling of the DCA. SinceḠ acts as the small paramete

for these approximation schemes, the DCA converges m
more quickly than the MCA. These effects are more p
nounced near a transition, where the large surface contr
tion of the MCA stabilizes the mean-field character of t
transition. Consequently, the DCA result for the transiti
temperatureTc of the 1D symmetric FKM model scales a
most like 1/Nc to the exact resultTc50, whereas the MCA
result converges very slowly. Since the origin of this diffe
ence lies in the different boundary conditions we expect t
primacy of the DCA over the MCA to hold generally for an
model of electrons moving on a lattice.
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