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Comparison of two-quantum-cluster approximations
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We provide microscopic diagrammatic derivations of the molecular coherent potential approximation
(MCA) and dynamical cluster approximatigpCA) and show that both ard® derivable. The MCADCA)
maps the lattice onto a self-consistently embedded cluster with gpanpdig boundary conditions, and
therefore violateqdpreserves the translational symmetry of the original lattice. As a consequence of the
boundary conditions, the MCEDCA) converges slowlyquickly) with correctionsO(1/L.) [O(1/L2)], where
L. is the linear size of the cluster. These analytical results are demonstrated numerically for the one-
dimensional symmetric Falicov-Kimball model.
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[. INTRODUCTION size reduces to one and become exact as the cluster size
diverges. Both are fully causat'and provided that the clus-
One of the most active areas in condensed matter physiders are chosen correcfiythey maintain the point group
is the search for new methods to treat disordered and corr@ymmetry of the original lattice problem. Here, we provide a
lated systems. In these systems, especially in three dimefRicroscopic diagrammatic derivation of both the MCA and
sions or higher, approximations which neglect long rangedhe DCA, and explore their convergence with increasing
correlations are generally thought to provide a reasonabléluster size.
first approximation for many properties.
Perhaps the most successful of these methods are the co- Il. FORMALISM
herent potential approximatib(CPA) and the dynamical
mean-field approximatiofDMFA),2~° for disordered and
correlated systems, respectively. Although these approxim
tions have different origins, they share a common micro-
scopic definition. Both the DMFARef. 3 and the CPARef. A:E X (katkoks =KD = NS, L\ i, 1)
6) may be defined as theories which completely neglect mo- X R
mentum conservation at all internal diagrammatic Vert'ces\'/vherekl,kz (ks.k,) are the momenta enterirtaving the

When this principle is applied, the diagrammatic EXPansIon, o tex. Muler-Hartmani showed that the DMF theory may
for the irreducible quantities in each approximation collaps

. ; . e derived by completely ignoring momentum conservation
onto that of a self-consistently embedded impurity problem.at each internal vertex by settidg=1. Then, one may freely

Many researchers have actively searched for a technique .
. sum over all of the internal momentum labels, and the graphs
to restore nonlocal corrections to these approaches. Here,

e : ) o ) .
discuss just two approaches which are fully causal and se:?{—Or the generating functionab and its irreducible deriva-

) ) . . tives, contain only local propagators.
consistent: the molecular coherent potential approx[méﬁ_on The DCA and MCA techniques may also be defined by
(MCA) and the dynamical cluster approximation

(DCA) 10-126 Recently the cellular dynamical mean-field their respective Laue functions. Since our object is to define

approach was proposed for ordered correlated Systemscluster methods we divide the original Iatticel‘cbfsitDes_into
while the molecular coherent potential approximation hay/NC clusters(molecule$;, each composed dfc=L. sites,
traditionally been applied to disordered systems. Since botihereD is the dimensionality. We use the coordinat¢o
methods share a common microscopic definition we use thi@bel the origin of the clusters and to label theN, sites
term MCA to refer to both techniques in the following. within a cluster, so that the site indices of the original lattice
While the MCA is traditionally defined in the real space x=X+X. The pointsx form a lattice with a reciprocal space

of the lattice, the DCA is traditionally defined in its recipro- |apeled byk. The reciprocal space corresponding to the sites
cal space. In the MCA, the system lattice is split into a seriex within a cluster shall be labele, with K ,=n,27/L,

of identical molecules. Interactions between the molecules . L KX o
are treated in a mean-field approximation, while interactioné’de lntegerna; Thenk=K+k. Note thate™"=1 since a
within the molecule are explicitly accounted for. In the DCA, component ok must take the forrm,L. with integerm,, .

the reciprocal space of the lattice is split into cells, and mo- In the MCA, we approximate the Laue function by
mentum conservation is neglected for momentum transfers

within each cell while it is(partially) conserved for transfers =3 el X+ (K1 +Kp—Kg—Ky+ky+kp—kg—kg) ()
between the cells. These approximations share many features Me™ &

in common: they both map the lattice problem onto that of a -

self-consistently embedded cluster problem. Both recover th&hus the MCA omits the phase factoe& * resulting from
single site approximatio(CPA or DMFA) when the cluster the position of the cluster in the original lattice but retains

For simple Hubbardlike models, momentum conservation
At each vertex is completely described by the Laue function
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the (far less importantphase factorg'k X associated with 3 (K, Kok —ky)
the position within a cluster. In the DCA we also omit the
phase factore'* X, so that =D e itk Xay (X, X,)el(Ketka) Xz,
X1.X2
Apc= Nc5K1+K2,K3+K4- () (8)

Both the MCA and DCA Laue functions recover the exacty,g the corresponding lattice single-particle propagator
result whenN.— and the DMFA resultA=1, whenN. | aads in matrix notation
=1.
If we apply the MCA Laue function Ed2) to diagrams in ~ nA~ o 4
®, then each Green function leg is replaced by the MCA G(k.2)=[zl—e(k)=Zmc(2)] ©)

coarse-grained Green function ) o A
where the dispersioa(k) and self-energy yc(z) are ma-

G(Xq,X5;x=0) trices in cluster real space with
1 i(Ky+Kqp)-X T T \a-i(Kotkoy) X (% _ Ty — 1 i(Ky+kp)(X1—X2) -
=@K12K2 (I HG (K, KKy —Rp)e 0T Xe [e(®)]x, = e X K)= - X e €Ki
ki ko (10
N2 o being the intracluster Fourier transform of the dispersion. For
= —2~Z G(X1,X3,k;—kj), (4)  the DCA, X (k)=2pc(K) is the proper approximation for
N &y ko the lattice self energy corresponding de,-. The corre-

or in matrix notation for the cluster sité§, and X, sponding lattice single-particle propagator is then given by

- N, . ~
G=—2 G(k). (5) G(K ,k;2)=

1
. 11
N % z—ex+k—2pc(K,2) D

(We haye dropped the fre_quency dependenc_e for notgtion@oth the MCA and DCA are optimized when we equate the
conveniencg.The summations .Of the .cluster sitésremain lattice and cluster self energies. A similar relation holds for
to be performed. Note that the inclusion of the phase faaorﬁ/\/o—particle quantities. Thus with few exceptioionly the

e'“* in the MCA Laue-function Eq(2) leads directly to a jrreducible quantities on the cluster and lattice correspond
cluster approach formulated in real space that violates trangmne-to-one.

lational invariance. Therefore the Green function is a func-  The MCA (DCA) algorithm follows directly: We first

tion of two cluster moment&,,K, or two sitesX;,X,,  make an initial guess for the cluster self-energy malix
respectively. This is used with Eqs(5) and(9) [(6) and(11)] to calculate

. If we qpply the DCA Laue function Eq3), Gree_n func- the coarse-grained Green functi@ The cluster excluded
tion legs in® are replaced by the DCA coarse grained Green . A - _
function Green function G=[G +3yc] HG(K)=[G(K)*
+3pc(K)] 1) is defined to avoid overcounting self-energy
— N ~ corrections on the cluster. It is used to compute a new esti-
CK=x % G(K,k), (6)  mate for the cluster self-energy which is used to reinitialize

the process. Once convergence is reached, the irreducible
since Green functions can be freely summed ovekthec- ~ guantities on the cluster may be used to calculate the corre-
tors within a cell about the cluster momentinAs a result, ~SPonding lattice quantities.

@ is a functional of the coarse arained Green func@m() In order to compare the character of the two different
g cluster approaches as a function of the cluster Bizet is

and thus depends on the cluster momeitanly. instructive to rewrite the corresponding coarse grained Green

To establish a connection between the cluster and the Iat— . >SP 9 grs
. L : unctions Egs(5) and(6) to suitable forms by making use of
tice we minimize the lattice free energy

the independence of the self-enerfy on the integration
F=—kgT(®.—tr{2G]+trIn[G]), (7) variablek. For the MCA coarse grained Green function we

where @ is the generating functional calculated with the

coarse-grained propagatoi,is the lattice self-energy, and - A - A 1

G is the full lattice Green function. The trace indicates sum- G(2)=[zl-€—2mc(2) ~Tuc(2)] 7, (12
mation over frequency, momentum and spin. As we have - n~
discussed elsewhere, only the compact part of the free efVith the “cluster-local” energye,=N./NZge(k). For the
ergy, @, is coarse grainedr is stationary with respect t&  DCA we obtain a similar expression

when 6F/6G=0. This happens for the MCA if we estimate . .

the lattice self energy as G(K,2)=[z—ex—2pc(K,2)—Tpe(K,2)]7%, (13
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o

with the coarse grained averagg=N./NZge(K k). The O4rg
hybridization functiond”y¢c;pc(2) describe the coupling of ';

in
T
1

the cluster to the mean field representing the remainder of 511} w=i0,u=10
the system.

The behavior ofl" for large N is important. For the
MCA, T" averaged over the cluster and frequency =02

T=0.059, n=1

1(QN =) - 1 (QN)
T
|

%

0

_ 1 2D I
Pue= XZX Puc(XaXo) =0 |, (14 o

whereL.=NZP is the linear cluster size. A detailed deriva-
tion of this form will be published elsewhere. However, since 0o 20 30 30
in the MCA the cluster is defined in real space with open N
boundary conditions, this form is evident since only the sites o
on the surface<2D - L2~ ! of the cluster couple to the effec-  FIG. 1. The average integrated hybridization strendthsf the

tive medium. For the DCA we have previously shdthat ~ MCA (squaresand DCA(circles versus the cluster sizd, when

I'(K)~O( 1/N§’D) so that we obtain for the average hybrid- =17 andU=W=1. The solid and dashed lines represent the fits

ization of the DCA cluster to the effective medium 1.1946N2 and 0.336IN,, respectively. Inset: Convergence of the
cluster charge susceptibility f@p= 7. The solid and dashed lines
. 1 1 are quadratic and linear fits, respectively.
Toc=§ 2 FDC<K>~O(—2). (15
c K Le energy. To simulate the effective cluster models of the MCA

. . _an the DCA we use a quantum Monte CaflQMC) ap-
The DCA coarse graining results in a clusterKnspace; roach described in Ref. 11.

thus, the corresponding real space cluster has periodic To check th i lati Edsa 1 h
boundary conditions, and each site in the cluster has the F'O Clet(; t escamgrjl rs z'ac:!onts', chg.)?n% S WZ% ow
same hybridization strength with the host. n H9- © average nybridizaton [UNCHolyc anc” pe

In both the MCA and the DCA, the average hybridizationfor the MCA and DCA, respectively, at the inverse tempera-

strength acts as the small parameter. The approximation petrlfre p=17 for U=W=1. ForNc=1 @th approaches are

formed by the MCA(DCA) is to replace the lattice Green €quivalent to the DMFA and thuSyc=T"pc . For increasing
function G(E):[Zl_;(i)_i(]‘(’,z)]fl (G(K,E,Z):[Z Nc, FMC can be fitted by 0336MC andFDC by 11946N<2:
whenN.>2. Cluster quantities, such as the self energy and
cluster susceptibilities, are expected to converge with in-

creasingN,. like I'. This is illustrated in the inset for the

staggered Q= ) charge susceptibility.(Q) of the cluster.
Since only the compact parts representeddpyof the

—_EKQ—E(K,F,Z)]*) by its coarse grained quantit@
[G(K)] in diagrams for the self-energy. Once the sums

overk are performed, all terms which are lower order ih 1/
thanT" vanish. Thus the MCADCA) is an approximation

with corrections of ordeF ~ O(1/Ly) (~O(1IL2)). lattice free energyEq. (7)] are coarse grained, this scaling is
expected to break down when lattice quantities, such as the
IIl. NUMERICAL RESULTS lattice charge susceptibility, are calculated. The susceptibility

of the cluster x.(Q) cannot diverge for any finiteN;

To illustrate the differences in convergence with clusterwhereas the latticg(Q) diverges at the transition tempera-
size N, we performed MCA and DCA simulations for the ture T, to the charge ordered phase. Note that the residual
symmetric one-dimensiona{1D) Falicov-Kimball model mean field character of both methods can result in finite tran-
(FKM). At half filling the FKM Hamiltonian reads as sition temperature$ >0 for finite Ny<ec. However asN

increases, this residual mean field character decreases gradu-
ally and thus increased fluctuations should drive the solution

H=—t3 (dldi,1the)+US (- 12(-12,  {g'the exact resull 0.

(16) In the DCA(Ref. 11, x(Q) is calculated by first extract-

ing the corresponding vertex function from the cluster simu-

with the number operators’=d'd, andn/=f[f; and the lation. This is then used in a Bethe-Salpeter equation to cal-
Coulomb repulsiorU betweend andf electrons residing on culate x(Q). T, is calculated by extrapolating(Q) * to
the same site. The FKM can be considered as a simplifiedero using the functioy(Q) ~*e<(T—T.)? (see inset to Fig.
Hubbard model with only one spin-speci@s being allowed  2). This procedure is difficult, if not impossible, in the MCA
to hop. However it still shows a complex phase diagramdue to the lack of translational invariance. Here, we calculate
including a Mott transition and Ising-like charge ordering the order parameten(T)=1/NCEi(—1)'(nid) in the symme-
with the corresponding transition temperatdiebeing zero try broken phaseT, is then obtained from extrapolating
in one dimension(1D). The dispersion if1D) e,= 2t cosk; m(T) to zero using the functiom(T)x(T.—T)”. For the
thus fort=1/4 the bandwidttW=1 which we use as unit of DCA this extrapolation is shown by the solid line in the
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Complementary results are found in simulationdioite-
B=w=! ” sizedsystems. In general, systems with open boundary con-
ditions are expected to have a surface contribution in the free
g energy of order®(1/L.).}* This term is absent in systems
go ¢ with periodic boundary conditions. As a result, simulations
0.02- o © ® of finite-sized systems with periodic boundary conditions
o DCA: U=W=1,N =4 - . .
= o 04f To028 04 converge much more quickly than those with open boundary
I g conditions®®

0.03-

o I [ 4

0.01+ 02 &

I A [owm | | IV. SUMMARY
o L4 ® yQn'

e —— 0 By defining appropriate Laue functions, we provide mi-

0 R T R . R croscopic diagrammatic derivations of the MCA and DCA.
0 0.1 02 03 04 0.5 We show that they aré derivable, and that the lattice free

IN, energy is optimized by equating the irreducible quantities on
the lattice to those on the cluster. The MCA maps the lattice
to a cluster with open boundaries and consequently, the clus-
ter violates translational invariance. In contrast, the DCA
cluster has periodic boundary conditions, and therefore pre-
serves the translational invariance of the lattice. This differ-
ence in the boundary conditions translates directly to differ-
ent asymptotic behaviors for large clust&fs. As we find
analytically as well as numerically, the surface contributions

inset to F|g 2 forNC:4_ The values foﬂ'c obtained from in the MCA lead to an aVerage hybr|d|zat|6h0f the cluster

the calculation in the symmetry broken phase and in thd® the mean field that scales likelLl/as compared to the
unbroken phase must agree, since as we have shown aboud.  scaling of the DCA. Sincé acts as the small parameter
both the DCA and MCA areb derivable. This is illustrated for these approximation schemes, the DCA converges much
in Fig. 2 for the DCA. more quickly than the MCA. These effects are more pro-

A comparison of the DCA and MCA estimate af, is nounced near a transition, where the large surface contribu-
presented in Fig. 2T, obtained from MCA(squares is  tion of the MCA stabilizes the mean-field character of the
larger thanT. obtained from DCA(circles. Moreover we transition. Consequently, the DCA result for the transition
find that the DCA result seems to scale to zero almost lintemperaturel, of the 1D symmetric FKM model scales al-
early in 1N, (for large enougiN,), whereas the MCA does most like 1N, to the exact resull,=0, whereas the MCA
not show any scaling form and, in fact, seems to tend to #esult converges very slowly. Since the origin of this differ-
finite value forT, asN.— . This striking difference of the ence lies in the different boundary conditions we expect this
two methods can be attributed to the different boundary conprimacy of the DCA over the MCA to hold generally for any
ditions. The open boundary conditions of the MCA clustermodel of electrons moving on a lattice.
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FIG. 2. The transition temperatuiie for the DCA(circles and
MCA (squareswhenU=W=1 versus the cluster siZ¢.. For all
values ofN; the DCA prediction is closer to the exact resuli(
=0). Inset: Order parameten(T) and inverse charge susceptibility
x(Q) ! versus temperature. The solidashedl line represents a fit
to the functions m(T)=(T,—T)? with B=0.245 [x(T)=(T
—T.) Y with y=1.07].
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