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We employ the dynamical mean-field approximation to perform a systematic study of magnetism in
Ga1−xMnxAs. Our model incorporates the effects of the strong spin-orbit coupling on the J= 3

2 GaAs valence
bands and of the exchange interaction between the randomly distributed magnetic ions and the itinerant holes.
The ferromagnetic phase transition temperature Tc is obtained for different values of the impurity-hole cou-
pling Jc and of the hole concentration nh at the Mn doping of x=0.05. We also investigate the temperature
dependence of the local magnetization and spin polarization of the holes. By comparing our results with those
for a single band Hamiltonian, we conclude that the spin-orbit coupling in Ga1−xMnxAs gives rise to frustration
in the ferromagnetic order, strengthening recent findings by Zaránd and Jankó �Phys. Rev. Lett. 89, 047201
�2002��.
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I. INTRODUCTION

The discovery of ferromagnetism in GaAs doped with Mn
has renewed interest in the properties of diluted magnetic
semiconductors.1 Since these materials are good sources of
polarized holes, they may form the basis of spintronics
devices2 that employ both the spin and the charge of the
carrier to convey information.

In Ga1−xMnxAs, the Mn ions are in the Mn2+ state with a
half-filled d shell of total spin S= 5

2 .3,4 Since Mn2+ ions pri-
marily replace Ga3+, they act as effective acceptors by sup-
plying holes as well as localized spins. The valence band of
pure GaAs is p-like so the strong spin-orbit interaction
couples the l=1 angular momentum of the p orbitals to the
electron spin �s= 1

2
�, resulting in a total spin J= l+s= 3

2 for the
valence holes.5 As discussed by Zaránd and Jankó,6 the
strong spin-orbit coupling also induces an anisotropic
carrier-mediated interaction between the Mn ions and, as a
consequence, frustration in their ferromagnetic order. While
the results of Ref. 6 were limited to the metallic regime and
to small values of the Mn-hole coupling, a different approach
suggests the presence of an impurity band in the dilute limit.7

In this article, we employ the dynamical mean-field ap-
proximation �DMFA�8–11 to perform a systematic analysis of
ferromagnetism in Ga1−xMnxAs, including the effects of
strong spin-orbit coupling on the J= 3

2 GaAs valence band.
The DMFA includes the spin-split impurity band through
quantum self-energy corrections, which are not included in
other mean-field theories. Because this method is nonpertur-
bative, it allows us to study both the metallic and impurity-
band regimes as well as both small and large couplings. We
show how the spin-orbit interaction affects the ferromagnetic
critical temperature Tc, the hole polarization, and the Mn
magnetization. By comparing our results with those for a
single band Hamiltonian without spin-orbit coupling, we
conclude that strong spin-orbit coupling in Ga1−xMnxAs pro-
duces frustration for all coupling strengths. For carrier con-

centrations smaller than the doping, both Tc and the polar-
ization of the carriers are reduced for all values of the
coupling. For larger carrier densities and large couplings, we
unexpectedly find that frustration induces a small but finite
Tc, in sharp contrast with the vanishing Tc found when the
spin-orbit is neglected.

II. MODEL

Our starting point is the simplified Hamiltonian proposed

in Ref. 6: H=H0−Jc�Ri
Si · Ĵ�Ri�. The first term includes the

electronic dispersion and the spin-orbit coupling of the J= 3
2

valence holes within the spherical approximation.12 The sec-
ond term is the dominant part of the interaction between the
Mn spins and the valence holes,13 with Jc the exchange cou-

pling and Ĵ�Ri� the total J= 3
2 spin density of the holes at the

site i of a Mn ion with spin Si. The relatively large magni-
tude of the Mn local moment justifies a classical treatment of
its spin.

Within the spherical approximation,12 the Hamiltonian
of pure GaAs is rotationally invariant. Hence, H0 is diagonal
in a chiral basis, H0=�k,��k2 /2m��c̃k�

† c̃k�, where c̃k,�
†

creates a chiral hole with momentum k parallel to its spin

and Ĵ · k̂= ± 3
2 or ± 1

2 . The two band masses mh�0.5m and
ml�0.07m correspond to the heavy and light bands with
�= ± 3

2 and ± 1
2 , respectively �m is the electron mass�.

Unfortunately, the exchange interaction term obtains a
rather complicated momentum-dependent form in the chiral
basis6 that is responsible for the frustrated order of the Mn.
The competition between the strong spin-orbit coupling on
the hole bands, which aligns the hole spin parallel to its
momentum, and the exchange interaction with the local mo-
ment, which aligns the hole and local spins, prevents all of
the carrier density from mediating the magnetic order.

We develop a DMFA algorithm that takes advantage of
the simple diagonal form of H0 in the chiral basis and the
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local form of the exchange interaction in the nonchiral basis.
The coarse-grained Green function matrix in the nonchiral
fermion basis is

Ḡ
ˆ �i�n� =

1

N
�
k

�i�nÎ − �̂�k� + �Î − �̂�i�n��−1, �1�

where N is the number of k points in the first Brillouin zone

and �̂�k�= R̂†�k̂��k2 /2m��R̂�k̂� is the dispersion in the spheri-

cal approximation. Here, R̂ are spin 3
2 rotation matrices that

relate the fermion operator, ck�, to its chiral counterpart,

c̃k�=R���k̂�ck�. The mean-field function Ĝ0�i�n�= �Ḡˆ −1�i�n�
+ �̂�i�n��−1 is required to solve the DMFA impurity problem.
At a nonmagnetic site, the local Green function equals the

mean-field function, Ĝnon= Ĝ0. By treating disorder in a fash-
ion similar to the coherent potential approximation �CPA�14

for a given local spin configuration, we obtain the local

Green function at a magnetic site: Ĝmg�i�n�= �Ĝ0
−1�i�n�

+JcS · Ĵ�−1.

Now Ĝmg�i�n� must be averaged over all possible spin
orientations at the local site and over all possible impurity
configurations on the lattice. The former is implemented by
using the effective action15

Sef f�S� = − �
n

log det�G0�i�n��G0
−1�i�n� + JcS · Ĵ��ei�n0+

�2�

to average over the angular distribution of the local spins:

�Ĝmg�i�n�� =
1

Z 	 d	SĜmg�i�n�exp�− Sef f�S�� , �3�

where Z=
d	S exp�−Sef f�S��. The extra factor of Ĝ0�i�n� in
Eq. �2� does not change the physics, but it is introduced to
aid in convergence. If the Mn ions are randomly distributed
with probability x, the configurationally averaged Green

function reads Ĝavg�i�n�= �Ĝmg�i�n��x+ Ĝ0�i�n��1−x�. A
more elaborate discussion on solving the impurity problem is
given in Appendix A.

Finally, the magnetization of the Mn ions can be calcu-
lated as

Mz =
1

Z 	 d	SSz exp�− �Sef f�S� − 
S · �Hz�� , �4�

where a small magnetic field �Hz is applied to break the
symmetry along a preferential direction, i.e., the z axis. By
fitting the magnetization Mz�T� in the vicinity of the transi-
tion to a static mean-field form, we can extract the value of
Tc for each set of parameters studied. Appendix B contains a
detailed discussion of how Tc is extracted from the magneti-
zation data.

III. RESULTS

We focus on the doping of x=0.05 for which Tc is be-
tween the highest reported.16–22 The spin-orbit coupling is

responsible for the splitting between the J= 3
2 and the J= 1

2
bands and for the chiral nature of the J= 3

2 holes. However,
the chirality can be turned off by making the heavy and light
hole masses equal, while still preserving the split-off gap. In
order to clearly elucidate the role played by the spin-orbit
coupling, we introduce two parameters. One is the hole mass
of an equivalent system composed of two degenerate bands
with the same average kinetic energy as our system:
2meq

3/2=mh
3/2+ml

3/2. The other is the ratio of light and heavy
hole effective masses, �=ml /mh. The chirality can be
switched off by setting �=1 while keeping meq constant.

Figure 1 presents our results for the phase transition tem-
perature Tc as a function of the hole concentration nh for a
fixed Mn concentration, x=0.05, and for various values of Jc
and �. There are two regimes corresponding to small and
large values of the interaction strength, Jc. For large Jc, the
holes form bound states with the Mn impurities, an impurity
band develops inside the GaAs gap, and the properties of the
host are greatly affected. The value of Jc at which the impu-
rity band appears depends upon the value of �.

First consider the nonchiral case with �=1.0 so that the
spin-orbit coupling is turned off within the J= 3

2 bands. For
Jc=1.0 eV the system is far from the impurity-band regime
and Tc has a relatively slow variation with respect to nh. For
Jc=2.0 eV the system is beyond the threshold for the forma-
tion of an impurity band, which then dominates the physics.
The maximum Tc occurs when the impurity band is nearly
half filled �nh�x /2�.23 For Jc=4.0 eV the impurity band is
well established and the maximum Tc is large. Because fer-
romagnetic order restricts the hopping of holes when the im-
purity band is full, Tc vanishes for Jc1.0 eV and nhx.

An antiferromagnetic ground state is energetically more
favorable in the regime nhx �Ref. 23� because the carriers
can then easily hop from one impurity site to another. Mag-
netization curves in Fig. 2 for Jc=2.0 and 4.0 eV and
nhx provide evidence for antiferromagnetism. They fit a
Curie-Weiss functional form, Mz=M0

z / �1+T /T�� with a posi-
tive T� ranging from 40 to 117 K, indicating antiferromag-
netic order for �=1.0 and nhx.

We now consider the chiral case with �=0.14, the ratio
between light and heavy hole masses in GaAs. The effects of
frustration on the ferromagnetic critical temperature are

FIG. 1. The phase transition temperature Tc versus carrier con-
centration nh for Mn doping x=0.05, various Jc values, and effec-
tive mass ratios, �.
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readily seen in Fig. 1. For Jc=1.0 eV, Tc consistently lies
below its nonchiral counterpart. At Jc=2.0 and 4.0 eV, the
difference between the chiral and nonchiral results is even
larger. For nh�x, the nonchiral Tc is always higher than the
chiral Tc. However, for nhx, the chiral results continue to
yield a finite although greatly diminished Tc in the same
regime where Tc vanished when �=1.0. Surprisingly, the fer-
romagnetic Tc survives at large doping due to the intrinsic
frustration in the system. Strong spin-orbit scattering allows
the impurity-band carriers to hop between impurity sites that
are ferromagnetically aligned even when the impurity band
is full, thereby stabilizing the magnetic order. This novel
result indicates that frustration always acts to destabilize the
magnetically ordered phase favored in the absence of frus-
tration.

The formation of an impurity band is responsible for
many of the outstanding properties of this system. Impurity-
band formation appears as a discontinuity of the hole chemi-
cal potential � at nh=x. Figure 3 depicts � vs. nh for
T=0.05 eV �580 K� and for the same values of Jc and � used
in Fig. 1. The presence of an impurity band depends on both

Jc and �. When Jc=1.0, no impurity band is present so the
chiral and nonchiral � are almost identical and neither shows
a discontinuity. When Jc=2.0 eV and �=1.0, the impurity
band has already split from the valence band. At the same
value of Jc=2.0 eV but when �=0.14, the change in slope of
� at nh=x indicates that the impurity band is present but that
it overlaps with the main band. When Jc=4.0 eV and
�=0.14, the hole chemical potential is discontinuous at
nh=x, signaling the splitting of the impurity band from the
valence band. For these larger values of Jc, the nonchiral �
always lies below the chiral value, indicating that the non-
chiral impurity band lies at lower energies than the chiral
one. Since the interaction between the impurity moments is
mediated by the host of holes, the less pronounced impurity
band for �=0.14 is another signature of the frustration pro-
duced by chirality. Notice that for large values of Jc the
impurity band drifts to energy values larger than the semi-
conducting gap. In this case the conduction band might be-
come as relevant as the split-off band in the modeling of
magnetic semiconductors.

Optical conductivity measurements24 show that the
impurity band is split from the valence band at the doping of
x=0.05. This fact and our results for Tc suggest a value of Jc
comparable to the values obtained with photoemission
techniques4 and infrared spectroscopy.3,25

The magnetization also reveals the effects of frustration.
In Fig. 4, the temperature dependence of the magnetization is
plotted for nh=x /2=0.025. Our results are compared with
Curie-Weiss fits for the same Tc values. When Jc=1.0 eV,
the mean-field curves perfectly fit the data not only at large
temperatures but also below Tc. But for larger Jc values and
low temperatures, discrepancies appear between the static
mean-field curves and the DMFA results. For �=1.0, the
magnetization in our model lies above the mean-field
Heisenberg magnetization when T�Tc since the scattering
between the itinerant carriers and the localized spins be-
comes coherent at low temperatures, thereby enhancing the
magnetic order of the local ions. This effect has also been
seen in the double exchange model.26 However, for �=0.14,
frustration reduces the low-temperature coherence between
the carriers and local ions. So when T�Tc, the magnetiza-

FIG. 2. The magnetization versus temperature for �=1.0 and
nhx=0.05 at Jc=2.0 eV and nh=0.055 �dashed line and circles�,
Jc=2.0 eV and nh=0.105 �dot-dashed line and squares�,
Jc=4.0 eV and nh=0.055 �dotted line and diamonds�, and
Jc=4.0 eV and nh=0.105 �solid line and stars�. The curves are the
Curie law fits with positive T� values.

FIG. 3. The chemical potential, �, versus nh for Mn doping
x=0.05 and T=0.05 eV using the same values of Jc and � as in
Fig. 1.

FIG. 4. The magnetization versus temperature for different
chirality modes and different values of Jc at nh=x /2=0.025 and
�Hz=0.004 eV. The curves are the static mean field fits with Tc

values equal to those given by our results: solid curves fit the results
for �=0.14, dashed curves the ones for �=1.
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tion curves lie below the mean-field Heisenberg predictions.
Lastly, we study the carrier spin polarization, P, which is

constructed from appropriate sums of the Green function.
Control of P is important for spintronics applications, since
the spin polarization of the holes is required to transport
information. Figure 5 illustrates the temperature dependence
of the hole polarization when nh=x /2=0.025 for several val-
ues of Jc and �. For all Jc values, chirality suppresses the
polarization. For �=1.0, large Jc, and low temperatures, P
approaches 3

2 since all holes occupy the lowest energy level
with jz= + 3

2 . But due to frustration even for large Jc and low
temperatures, P for �=0.14 is significantly smaller. This
agrees with previous calculations of the zero-temperature po-
larization, where the destructive effects of the spin-orbit in-
teraction were also found.27

IV. CONCLUSIONS

In summary, we have studied the diluted magnetic semi-
conductor Ga1−xMnxAs using a nonperturbative multi-orbital
DMFA algorithm incorporating the effects of the strong spin-
orbit coupling. We have calculated the ferromagnetic critical
temperature, hole chemical potential, local ion magnetiza-
tion, and hole polarization for a broad range of model param-

eters. We find that the spin-orbit coupling leads to frustration
and reduced magnetization when the hole concentration nh is
smaller than the impurity concentration x, in agreement with
previous perturbative calculations.6 In addition, we find that
this behavior persists for large values of Jc, and that frustra-
tion greatly reduces the transition temperature Tc and the
polarization of the carriers for all Jc. Finally, when Jc is
large, we find the surprising result that frustration induces a
region of finite Tc for nhx.

This approach has promising future developments. It can
be extended to study other magnetic semiconductors and re-
alistic devices such as semiconducting heterostructures and
quantum dot systems, which can be tailored to take full ad-
vantage of the intrinsic anisotropy of the ferromagnetic or-
der. More sophisticated approaches, such as the dynamical
cluster approximation �DCA�,28 may be used to go beyond
the single-site approximation and explore the cooperative
and glassy effects of frustration, such as the reduction in the
local magnetization at low temperatures.
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APPENDIX A: THE DMFA SELF-CONSISTENT
TREATMENT OF THE IMPURITY PROBLEM

In this problem, the interacting part of the Hamiltonian in

the nonchiral basis, namely, Hint=�Ri
V̂i=−Jc�Ri

Si · Ĵ�Ri�, is a
local interaction. However, in the chiral basis the interaction

becomes nonlocal, V̂i
ch= V̂i

ch�k ,k��= R̂�k̂�V̂iR̂
†�k̂��.

We treat the self-energy diagrammatics for the impurity
problem in the chiral basis in a fashion similar to the coher-
ent potential approximation �CPA�,14 as illustrated in Fig. 6.

FIG. 5. The hole polarization P versus temperature at
nh=x /2=0.025 and �Hz=0.004 eV.

FIG. 6. �Color online� The ir-
reducible Feynman diagrammatics
for the self-energy in the chiral
basis. xi and xj are single Mn im-
purities residing at sites i and j,
respectively. Solid lines are one-
particle cluster excluded hole
Green function matrices

Ĝ0
ch�k , i�n� in the chiral basis and

dashed lines are impurity-hole in-

teraction matrices V̂ch�k ,k��. Dia-
grams �a�–�d� all correspond to
single impurity scattering. Dia-
grams �e� and �f� are irreducible
self-energy diagrams associated
with scattering off two different
impurity sites and vanish in the
DMFA.
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We need to average over all the possible configurations of
Mn impurity atoms to restore the lattice translational invari-
ance. As a result, each impurity site denoted by xi or xj gets
renormalized by an impurity concentration factor x. For the
moment, we assume that there is an impurity atom on every
site of the lattice and therefore x=1. Solid lines are one-
particle cluster excluded hole Green function matrices
G0

ch�k , i�n� in the chiral basis and dashed lines are impurity-

hole interaction matrices V̂ch�k ,k�� �the index i drops as we
average over the entire impurity configurations on the lat-
tice�. We also sum over all internal momenta while conserv-
ing the total momentum at every internal vertex. Thus, for

instance, the self-energy contribution corresponding to dia-
gram �c� in Fig. 6 reads

�̂�c�
ch �k1,i�n� =

1

N2�k1,k4 �
k2,k3

V̂ch�k1,k2�G0
ch�k2,i�n�

� V̂ch�k2,k3�G0
ch�k3,i�n�V̂ch�k3,k4� .

�A1�

For two-impurity crossing diagrams such as diagram �f� in
Fig. 6, one must subtract the contribution due to sites i= j to
avoid over counting as shown below:

�̂�f�
ch �k1,i�n� =

1

N3�k1,k5 �
k2,k3,k4

V̂ch�k1,k2�G0
ch�k2,i�n�V̂ch�k2,k3�G0

ch�k3,i�n�V̂ch�k3,k4�G0
ch�k4,i�n�V̂ch�k4,k5��k2−k3,k5−k4

−
1

N� �
k2,k3,k4

V̂ch�k1,k2�G0
ch�k2,i�n�V̂ch�k2,k3�G0

ch�k3,i�n�V̂ch�k3,k4�G0
ch�k4,i�n�V̂ch�k4,k5��� . �A2�

In the DMFA, we freely sum over all internal momenta in
the Feynman diagrams relinquishing the total momentum
conservation at internal vertices.9 In order to implement this
in diagram �f� of Fig. 6, it is sufficient to set �k2−k3,k5−k4
→1/N, which leads to

�̂�f��k1,i�n� = 0 ��k2−k3,k5−k4
→

1

N
� . �A3�

Since the above result can be generalized to all multiple
impurity diagrams, we find that only the single impurity dia-
grams survive. In addition, as proven ahead, all the Green
functions and interactions in the self-energy diagrams can
now be mapped back to the nonchiral basis where they are
local.

Knowing that the interactions in the nonchiral basis are
local, we find

G0
ch�k,i�n� = R̂�k̂�G0�k,i�n�R̂†�k̂� . �A4�

Hence, Eq. �A1� can be rewritten as

�̂�c�
ch �k1,i�n� =

1

N2�k1,k4 �
k2,k3

R̂�k̂1�V̂R̂†�k̂2�

� R̂�k̂2�G0�k2,i�n�R̂†�k̂2�R̂�k̂2�V̂R̂†�k̂3�R̂�k̂3�

� G0�k3,i�n�R̂†�k̂3�R̂�k̂3�V̂R̂†�k̂4� . �A5�

Since R̂†�k̂�R̂�k̂�=1

�̂�c�
ch �k1,i�n� = �k1,k4

R̂�k̂1��̂�i�n�R̂†�k̂4� . �A6�

So, to all orders the DMFA self-energy in the chiral basis
can be simply mapped onto the local nonchiral self-energy

by a backward rotation from k̂ axis to z axis. The simplifi-

cation achieved by the DMFA allows us to sum all single
impurity Green function diagrams to infinite orders. The lo-
cal impurity Green function is defined in a CPA manner:

Ĝimp�i�n� = �Ĝ0
−1�i�n� + JcS · Ĵ�−1. �A7�

Ĝimp�i�n� needs to be averaged over all possible impurity
spin orientations at a single impurity site. This task is imple-
mented by Eq. �3�.

Earlier while discussing the impurity scattering self-
energy, we assumed that x=1. If x�1, we need to average
over all possible impurity configurations as well. For sites

with no impurity atoms, Ĝimp�i�n�= Ĝ0�i�n�. Thus, the total
configurationally averaged Green function reads

Ĝavg�i�n� = �Ĝimp�i�n��sx + Ĝ0�i�n��1 − x� . �A8�

We can now recompute the self-energy as

�̂�i�n� = Ĝ0
−1�i�n� − Ĝavg

−1 �i�n� . �A9�

Figure 7 illustrates the complete DMFA algorithm. At the
end of each iteration, we take the difference between the
current self-energy matrix �the zeroth Matsubara frequency,

�̂�i�0�, includes the largest contribution� and the one evalu-
ated in the previous iteration. The loop ends whenever this
difference is less than a desired tolerance.

APPENDIX B: FINDING Tc FROM THE MAGNETIZATION
DATA

The partition function for a simple ferromagnetic mean-
field model without any microscopic physics is
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ZMF =	 d	S exp�
S · Heff� , �B1�

where �S�= 5
2 for the local Mn ions and Heff=�Hz+�M with

M= �S� the magnetization. The self-consistent equation for
the magnetization,

Mz =
1

ZMF
	 d	SSz exp�
S · ��Hz + �M�� , �B2�

becomes

Mz =
1


Hef f
�
�S�Hef f coth�
Hef f�S�� − 1� , �B3�

where Hef f = ��Hz�+�Mz and �=3Tc / �S�2. In the vicinity of
the ferromagnetic phase transition temperature, Tc, the right
side of Eq. �B3� simplifies to

Mz =
�S�2

3

Hef f −

�S�4

45
�
Hef f�3. �B4�

Therefore, close to the transition temperature, Tc, we are
able to obtain an analytical expression for the magnetization
as a function of temperature and magnetic field. We calculate
Tc by fitting our DMFA data for Mz vs. T to these mean field
formulas. The results for Tc were verified by its insensitivity
to the field, with various fields given critical temperatures
close to one another.
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