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A combination of world-line quantum Monte Carlo and maximume-entropy methods is used to calcu-
late the dynamic structure factor S,,(g,®) for one-dimensional antiferromagnets. A comparison to ex-
act results demonstrates that qualitative features of spectra are reproduced, but are broadened. The
broadening is frequency dependent with low-frequency features being reproduced most accurately. Peak
positions are well described. Results for the Heisenberg model with S <2 demonstrate the qualitative
difference between the dynamics of half-integer and integer spins predicted by Haldane. From the posi-
tions of the low-temperature ¢ = peaks quantitative estimates are produced for th¢ $ =1 and 2 gaps.
The g =7 peak position for S =1 increases with temperature in agreement with experiment. When on-
site anisotropy is included for S =1 a gap splitting results that resembles that found for NENP

[Ni(C,H;N,),NO,CIO,].

I. INTRODUCTION

There are several compounds that behave as one-
dimensional antiferromagnets, at least to very low tem-
peratures. Examples include CuCl,-2N(CsHs) (Ref. 1)
and KCuF; (Ref. 2) with spin § =1 and CsNiCI’, NENP
[Ni(C,H;N,),NO,C10,], and VaAgCl, (Ref. 5) with
S§'=1. Much of the motivation for recent experimental
and theoretical studies of one-dimensional antiferromag-
nets is due to Haldane who made the surprising conjec-
ture that one-dimensional integer spin Heisenberg anti-
ferromagnets have excitation gaps while half-integer
spins are gapless in the thermodynamic limit.® This con-
jecture has been verified by both experimental®~> and nu-
merical studies.”™®

Numerical studies are often limited to determining the
lowest eigenvalue for a given set of quantum numbers
(i.e., spin and momentum).”® This is adequate for deter-
mining whether or not an excitation gap exists and, if so,
the gap’s magnitude. However, the line shape observed
in inelastic neutron-scattering experiments is directly re-
lated to S(gq,w), the dynamic structure factor, which
often has spectral intensity for more than one excitation.
This is especially true in one dimension. For example,
the S=i1 antiferromagnetic Heisenberg model has a
broad continuum of excited states accessible from the
ground state for each value of ¢.!° Full diagonalization
and the Lanczos method can be used to exactly calculate
S{g,w) for zero temperature, but these methods are re-
stricted to small system sizes, on the order of 36 sites for
S=1 (Ref. 11) and smaller for larger values of S. The
temperature dependence of S(q,w) presents a further
complication, but, as we will see, is of experimental
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relevance.

Previously we reported results for the dynamical struc-
ture factor, S(g,®), for the one-dimensional = and 1
antiferromagnetic Heisenberg models obtained with a
combination of the world-line quantum Monte Carlo and
maximum entropy methods.!? Our results show the quali-
tative difference between the S=1 and 1 excitation spec-
tra predicted by Haldane. The triplet excitation gap for
S =1 was calculated to be 0.4J, in good quantitative
agreement with the results obtained using other
methods.””® For S =1 our results provide a good
description of the inelastic neutron-scattering line shape
for CuCl,-2N(CsH;). These results are encouraging as
the technique is applicable to large system sizes (we use
up to 128 sites here, up to 64 X 64 sites have been used for
dynamical studies of the two-dimensional S =1 Heisen-
berg antiferromagnet!3). Further, the temperature depen-
dence of S(q,w) can be determined. The primary limita-
tion to this method is the finite resolution with respect to
frequency that can be achieved, i.e., S(g,®) results are
broadened with respect to the exact functional form.
The broadening is large for high frequencies, but is small
for low frequencies allowing for accurate nonperturbative
results in that regime.

In this paper we report improved results for S =21 and
1 and new results for S=3% and 2 and for § =1 with on-
site anisotropy. The most important results are the fol-
lowing. Using system sizes of up to 128 sites we estimate
the S =2 gap to be 0.08J in the thermodynamic limit.
S§=3 and 2 results are shown to approach the classical
limit where S(g,®) is dominated by a single mode which
is gapless at ¢ =m. For S =1 the ¢ = peak position in-
creases with temperature in agreement with experimental
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results. When on-site anisotropy is included for S=1, a
gap splitting for g = results which describes the same
found for NENP. As g decreases the peak splitting also
decreases which is also observed experimentally.

Before presenting these results, we provide a brief
description of the method (a more detailed description
appears elsewhere'?). We compare our results to exact
results for the Ising and xy models in order to gauge the
method’s accuracy. This comparison shows that low-
frequency features are reproduced accurately, but high-
frequency features are substantially broadened. Regard-
less, peak positions are given accurately.

II. METHOD FOR OBTAINING S(q,®)

World-line quantum Monte Carlo simulations'® are
used to stochastically evaluate the imaginary-time corre-
lation function .

So(g, V=18, (g)e H"S,(—q))

=23 e RS R, ISR=0,=0) (D

at a finite set (~50) of evenly spaced r values between 0
and B/2 where B=1/(kpT). (The subscript zz indicates
the direction in spin space for correlations. We omit the
subscript in this general discussion.) The average indicat-
ed by the overbar on the right-hand side of Eq. (1) is tak-
en over ~ 10* configurations of the ~ 10® configurations
generated by the world-line Monte Carlo simulation. As
we shall discuss in more detail, the approximation be-
comes exact in the limit of infinite Monte Carlo sweeps
and zero time slice spacing Ar.

The statistical errors due to finite Monte Carlo sam-
pling are described by the covariance matrix

C(r,7)=[S(q,7)—S(q,n][S(g,7)—S(g, 7). @

There are strong correlations between fluctuations at
different imaginary times 7 and 7', thus nondiagonal ele-
ments (7757') of the covariance matrix are retained. The
eigenvalues of C(7,7’), A;, describe the error bars o; of
statistically independent quantities S;(g), which are linear
combinations of S(q,7) at different values of 7. Explicitly

where N is the number of samples.

There are also systematic, nonstatistical, errors associ-
ated with the world-line Monte Carlo evaluation of Eq.
(1). These errors are of order (A7)%, where A7 is the step
size between 7 values in the Trotter decomposition of the
thermodynamic density matrix.!* Typically we take
Ar=0.257 ! where J is the exchange constant. For the
xy and S =4 antiferromagnetic Heisenberg models we
did not find significant changes in our dynamical results
when using smaller values of Ar.

The imaginary-time correlation function is related to
the dynamic structure factor by

=1 > —or —Bo
S(g,n=-— [ “e~(1+e)S(g,0)dw @)
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or
, Si(q)=fow(ilf)a,9(q,m)dw ,
S;(q)=[ilS(q,7)]

where (i|7), is the w-dependent scalar product of the ith
eigenvector of the covariance matrix and the set of ker-
nels

e (14e P /(2m)

(5)

for the discrete set of T values at which S(g,7) is evalu-
ated. However, the extraction of S{q,) from Eq. (5) is
ill posed for two reasons: (1) an infinite set of functions
S(g,w) satisfies Eq. (5) for the discrete and finite set of
S;(q) results and (2) the Monte Carlo S;(g) values are
correct only to within their error bars o;. In addition,
the transformation matrix between S(q,7) and S{q,w)
becomes exponentially singular as the number of w and 7
points increases in a discretized approximation to Eq. (5).
Thus the direct inversion of Eq. (5) using a finite » grid is
uncontrolled. _ o - _

In order to overcome these difficulties, we employ the
maximum entropy method which provides an approxi-
mate result!®~!® with the biasing necessary to produce a
unique result being towards a predefined *“default model”
m(q,w). Briefly, the maximum entropy method works as
follows. The entropy functional is defined as

113(g,0)]=— [ "8(g,0)in | 2221 ]—S‘(q,w)dw ,

m(q,w)

(6)

which is the information theory quantity describing the
difference between the trial function S{g,w) and m (q,0).
The information contained in the Monte Carlo data is in-

- troduced through the ¥? term given by

. [S;(g)— [ “(iln S(q,0)do)?
¥[S(g,0)]=3 I, J"S ;-

.o'l.

which describes how close S(q,®) comes to reproducing
the Monte Carlo results S;(g) to within the error bars a;.
Finally, the trial function S(gq,») which maximizes the
functional

al —y? (8

is chosen as the approximate result for S(q,).

In Eq. (8) the Lagrange multiplier o determines the rel-
ative weight given to the entropy (I) and y? terms. A
small value of « favors a small ¥?, and thus the result for
S{q,®) provides a close fit to the Monte Carlo results for
S;(g). A large value of « favors a large entropy, which
will then drive the output S(q,®) to the “default model”
m(q,0) (the maximum of I[S(q,0)] occurs for
Stg,w)=m(q,0)).

There is no rigorous prescription for determining a
“correct” value for a in the sense that no value for a will
lead to the exact result. It is desirable that the choice for
« allows for a good fit to the data, but without overfitting
such that spurious statistical error induced features show
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up in S(g,®). In this work ¢ is chosen by maximizing a
probability distribution as is described by Gubernatis
et al.'® When « is chosen this way it typically ranges be-
tween 0.1 and 10. The smaller values of a are chosen
when spectral intensity is concentrated at low frequency.
This leads to a x? value between N, /2 and N, where N,
is the number of imaginary-time data points. Thus,
loosely speaking, the maximum entropy method is
equivalent to fitting the Monte Carlo data to within an
error bar on average while staying as close as possible to
the default model m (¢, ).

III. COMPARISON TO EXACT RESULTS

A. The Ising model
The S =1 Ising Hamiltonian is given by
H=J3 SIS 9)
i
for which the correlation functions can be determined ex-

actly at any temperature. The transverse correlation
function is given by

S (R,T)=S8,,(R,7)=1
=1(e™S*(R)e ™S (R=0)), (11)

{(e™S*(R)e "™HSX*(R =0)) (10)

where S and S~ are spin raising and lowering opera-
tors. This correlation function probes states with single
spin flips relative to equilibriurn. These flips change the
energy by J, 0, or —J, so S,,.(g,w) is nonzero for these
three values of frequency. For a periodic chain with N
sites the exact result for S, (g, ) is

T 1+e—-(N-—2)/§
Se a0 BT /) 1+e N/
X {eB128(w—J)+e B 25(w+T)
+2tanh[(N/2—1)/E]8(@)} ,  (12)
where
£={In[coth(BJ/4)1} ' . (13)

This result is g independent, s¢ the variable g is omitted
in this discussion.

Since the dynamical method used here is inexact, the
final result for S,, (w) will depend on (1) the default mod-
el m(w) used in the entropy functional of Eq. (6), (2) N,
the number of 7 values at which S, () is evaluated, and
(3) the statistical accuracy of these S, (7) values, which is
determined by the number of samples. In order to exam-
ine the sensitivity of our results to {1)—(3), we first
choose a reference simulation with temperature T =J /6
(£~10), N =064 sites and m =48 time slices producing
N_=m/2+1=25 independent 7 values at which to
evaluate S, (7). 10* samples are taken with 100 complete
Monte Carlo lattice sweeps of configuration updates be-
tween each sample.

Figure 1(a) shows two choices for the default model,
m{w). Like S, (@), m(w) is uniquely defined only for
©>0; m(—o) is taken to be e #*m(w). The dashed line
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is a constant from « =0 to an arbitrarily chosen cutoff at
@, =2J. The normalization is set by requiring

o= [ (e P)m(g,0)d0 =S, (r=0)
={(S,2)/2=L1. -.(14)

The solid line is the three-sum-rule default. It satisfies
Eq. (14) and two additional constraints:

1 o _ -
E;fo o (1—e P)Ym(w)do=x,, , (15)
where x,, is the transverse magnetic susceptibility, and
%fowa)(l—e_B"’)m(a))dw=—(S6.S'f) : (16)

Equations (14)—(16) do not uniquely specify m(w). In
the spirit of the rest of this work we require that

fow[—m(w)lnm(a))%—m(m)]da) (17
1.0
(a)
——— 3 sumrule
I8 i flat
~
3 05}
g
0.0 -
-1 0 w/J 1 2
3
(b)
——— 3 sumrule
L2 '
L . flat
Py
3
8
wy
] 1 2
3 0 o) T _

FIG. 1. (a) Two default models m{w) applied to the Ising
model. (b} The subsequent results for S,,(w). Although the de-
fault models are quite different, the final results for S, (w) are
nearly the same. Thus the arbitrariness in the choice of default
model does not pose a practical difficulty for this method.
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TABLE 1. Comparison of exact peak intensities to peak intensities obtained with Monte Carlo and

maximum entropy for the Ising model.

Intensities
_@=0 . e=d A

Exact T=J/6 0.0707 0.7129
Figure 1(b) Flat default 0.065+0.016 0.7174+0.017

Three-sum-rule default 0.0661+0.017 0.716+0.018
Figure 2(a) 0.072510.0005 0.7111+0.0004
Figure 2(b) 0.0714+£0.0006 0.7123+0.0006
Exact T=J/4 0.1649 0.6092
Figure 3 0. Lezg;t,o_.gz; _0. 61240.021 ]

is maximized subject to the constraints of Egs. (14)—(16).

The results for S, (w) are shown in Fig. 1(b). The two
default models produce results that are very similar.
However, there is a “glitch” at w=0 for the result pro-
duced with the three-sum-rule default model. This glitch
is due to the suppression of =0 intensity in the three-
sum-rule default model. We note that the three sum rules
of Egs. (14)-(16) do not contain enough information to
describe more than a single peak, but the S, (7) data con-
tain the additional information necessary to resolve the
two-peak structure.

The peak positions in Fig. 1(b) correspond to the posi-
tions of the delta functions in the exact result. Table I
shows that each peak’s integrated intensity is in good
agreement with the exact weights of the delta functions
with the error bars on the integrated intensities calculat-
ed following Gubernatis et al.'®

The broadening is substantial, on the order of 0.3J. It
is worth considering whether or not we can estimate the
mazximum entropy resolution as this will have bearing on
the interpretation of results where the spectrum is un-
known and nontrivial. To that end we have tried the fol-
lowing: (1) replace the S;(q) data with that which would
be produced by a single mode at energy w, with noise
added according to the covariance matrix and (2) the
width of the subsequent maximum entropy result, using
the same value for a as for the actual spectrum, is the
resolution at wg.

This procedure suggests that the broadening of a
feature at w=J is about 0.1J and 0.02J for @=0. Thus,
this method underestimates the broadening that is actual-
ly observed. Apparently this procedure does not take
into account the increased difficulty of resolving a mul-
tipeaked structure. In Sec. III B, however, we show that
this procedure for estimating the broadening works for a
simpler single-peak structure.

Figure 2(a) shows the improvement made in the results
when the statistical uncertainty of S, (7) values is re-
duced by a factor of 2, which is accomplished by increas-
ing the number of samples from 10* to 4X10% The
broadening of the delta functions decreases substantially.

Data in Table I show that the statistical uncertainties
of the integrated peak intensities from Fig. 2(a) are few
error bars away from the exact values. Such discrepan-
cies can be expected. Systematic errors in the Monte
Carlo simulation are of the order e "¥/6=¢ ~64~0.29

due to the omission of “winding numbers” different from
zero.'”* Nonzero winding numbers describe the traversal
of spin flips around the periodic lattice between 7=0 and
B. Properly including nonzero winding numbers in a
world-line Monte Carlo simulation is difficult except for
very small lattices.

20
(a)
—— 10000 samples
L e 40000 samples
3 . L .
3 o} : ]
0
.1 2
40
(b)
25 1 points .
O 49 1 points
= : :
3 20} 1
g H
. i /\
-4 0 u)/.] 1 2

FIG. 2. (a) For the Ising model increasing the number of
samples from 10* to 4X 10* improves the statistical accuracy of
Syx(T) results. A result for S, () is then produced which is
closer to the exact delta function peaks. (b) Increasing the num-
ber of T values from 25 to 49 also leads to an improved result.
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Figure 2(b) shows the improvement made when 49 7
points are used instead of 25. The broadening is substan-
tially reduced upon increasing the number of 7 points.
The uncertainty in the integrated peak intensities is also
substantially decreased as shown in Table 1.

These results show that reducing the statistical uncer-
tainty and increasing the number of 7 points is more im-
portant for producing good results for S, () than the
choice for the default model, m(w). This is helpful be-
cause increasing the precision and the number of 7 points
are well-controlled aspects of this method, while the
choice for m(w) is essentially arbitrary. The convergence
towards the exact result seems remarkably fast as the
controllable parameters are improved. However, a simi-
lar analysis for the other models in this study showed a
much slower rate of convergence with increasing sample
size and decreasing A7. We suspect that the rapid con-
vergence for the Ising model is due to the relative simpli-
city of its spectrum.

Results for T=J /4 ({ ~3) are compared to those for
T'=J/6 in Fig. 3. Each result is formed with the same
number of 7 points (25) and samples (10*). The peak in-
tensities change (see Table I) in correspondence to the
change in the exact result with the increased spin disor-
der for T=J/4 leading to more @=0 intensity. The
maximum entropy broadening for T=J /4 appears to be
similar, but not identical to that for T=J /6. The tem-
perature dependence of maximum entropy broadening is
even more problematic for the xy model.

B. The xy model

The xy Hamiltonian is given by
H=J 3 (SFS7% +S7SV4y)
i
_J + o= ~qt -
_725} Siv1 8785 . (18)
]

Via the Jordon-Wigner transformation, this Hamiltonian
can be written as?’

J
H=Ez_(ciTct+l+ciT+lci)
H

N-—t
+§ exp [iT 3, cJch —1}(c1‘;c1+cIcN) , (19)
=

where the creation and annihilation operators are Fer-

mion operators. The last term in Eq. (19), which is ab-

sent for open boundary conditions, if of order 1/N com-

pared to the first term. Ignoring the endpoint term, upon

Fourier transforming we obtain the momentum space

form
H=3¢,clc

q

4€qCqr €,=J cOsq . ' (20)

In contrast to the Ising model, the excitation spectrum
of the xy Hamiltonian is continuous in the thermodynam-

ic limit. The dynamic structure factor makes clear this
distinction. For the xy model S,,(q,®) is given by
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3 T T
—— T=J/6
A
Ol B T=J/4
3
5
wnn
1
g b S :
-1 o] 2

FIG. 3. Temperature dependence of S,,(w) for the Ising
model. Upon increasing the temperature from J/6 to J/4 the
peak amplitudes change in accordance with the exact result.
The maximum entropy broadening of the § functions at =0
and J does show some variation between these two tempera-
tures.

S, (g,0)="

= N2 e IS (eg)]

X8[w—(€;4,—€,)], 21

where f(€, ) is the fermi distribution function,

flep=te™+1)7". (22)

Figure 4(a) shows S,,(¢ =m,w) for 64 sites. The delta
function peaks have been broadened by convolution with
a Gaussian of width 0.02J [recall that peak positions are
accurate to only ~J /64 because the last term is ignored
in Eq. (19)].

This dynamical method cannot reproduce the discrete
spectrum of the finite-size system shown in Fig. 4(a); the
information content of that spectrum is large with
respect to any slowly varying default model, m(w). In-
stead the maximum entropy method produces a convolu-
tion of the exact S,,(g,w) with an a priori unknown reso-
lution function. In order to characterize the broadening,
we shall compare to results obtained with a Gaussian
resolution function. Figure 4(b) shows a convolution of
the exact spectrum of Fig. 4(a) with a Gaussian resolution
function of width Aw=0.5J, i.e.,

_ 2 © e o)/ Aes2) T
Sconvoluted(q»w)’—ﬁAw fo dew'e ~lle'—w)/(80/2)]

XSexact(q7w') * (23)
Shown with the broadened spectrum is the exact T'=0,
N > oo result?!
— 20[w—J sin(q)]6[2J sin(g /2)—w]
V'4J%sin*(q /2)—?
where O(x)=0 for x <0 and ©(x)=1 for x>0. One
difference between exact N — « are broadened N =64 re-

S, (g,0) , (24)
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sults is the smearing of the van Hove singularity at @ =2J
into a hump by the convolution process. The smearing of
singular features turns out to be a limitation of the max-
imum entropy method.

In Fig. 5 the maximum entropy result and the convolu-
tion of the exact result for S,,(g,®») are compared. The
Monte Carlo simulations were performed for 64 site lat-
tices with T=J/18. The Trotter step At is 3J ~! yield-
ing 49 independent 7 points for S,,(g,7). 2X10* samples
were taken. We chose the convolution width by requir-
ing the maximum intensities of the convolution and the
Monte Carlo results to be equal. There is poor agreement
between the Gaussian broadened exact result and the
maximum entropy result for ¢ =+ [Fig. 5(a)]. However,
this provides a rough estimate for the accuracy of the
Monte Carlo result (Aw==0.5J). There is better agree-
ment for the spectrum at ¢ = /4 [Fig. 5(b)] where Aw is
the fairly small value 0.07J. The difference between
qg=m, w/4 is that for g=mu/4 the bulk of the spectral
weight lies at lower frequencies than the spectral weight
for g =w. This demonstrates an important aspect of this

(2)

Szz(q = 7r1""’)/‘]—1

w/J 2 8

FIG. 4. (a) The exact discrete spectrum for the xy model with
64 sites. (b) The exact result in the thermodynamic limit versus
the Gaussian convolution of the 64-site result with a broadening
width Aew=0.5J.

J. DEISZ, M. JARRELL, AND D. L. COX 43

dynamical method: better accuracy is achieved for lower
frequency features.

This can be justified as follows. High-frequency spec-
tral weight is suppressed in imaginary time 7 [see Eq. (4)].
Except for small 7 values (7 <@~ '), high-frequency spec-
tral weight is swamped by statistical noise in the Monte
Carlo results for S(q, 7). In contrast, low-frequency con-
tributions are statistically significant for many 7 values.

We have repeated the calculation of Sec. III A, where
we unsuccessfully attempted to extract the maximum en-
tropy broadening by observing the line shape when
single-mode data is substituted for S;(g). For ¢ = this
suggests a frequency-dependent broadening which is 0.3J
for ©=2J. Like the Ising model this underestimates the
broadening actually observed. However, for the narrow
spectrum at g =+ /4, the single mode data is broadened
by 0.08J which corresponds to the broadening which is
used to make the exact result resemble the maximum en-

2 T L T w

Monte Carlo (a)

e Aw =0.5J

73
K ,
Monte Carlo (b)
T »
5 .
= e Aw = 0.07J
3
N
e 37 1
I
=
o
o : : S
0.0 0.5 i0
w/J’

64-site result (Aw=0.5J) for S,(g=mw). The qualitative
features of the broadened spectrum are reproduced by the
Monte Carlo result. (b) S,,(g=w/4,w). A convolution width of
only 0.07J is used and agrees very well with the Monte Carlo re-
sult. This demonstrates the accuracy of this method at low fre-
quencies.
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tropy result. Thus, when the result is a single peak we
are able to estimate the amount of broadening. This will
be useful later when we show that the widths of certain
spectra require a multimode description as maximum en-
tropy broadening of a single mode alone does not explain
the observed width.

The convergence tests used for the Ising model (Fig. 2)
have been duplicated for the xy model, but we do not
display all of the results here. We find that improving the
statistical accuracy or increasing the number of 7 points
decreases the maximum entropy broadening for the xy
model results. However, the improvement in the results
is not as exceptional as was found for the Ising model.
When N_ or the number of samples is doubled, the reduc-
tion in broadening is less than 20%, while the corre-
sponding decrease in the Ising model cafculations is as
much as 90%.

The temperature dependence of the xy model results
are more problematic than for the Ising model. Figure 6
shows a comparison of 77=J /12 and J /18 results. The
exact results [obtained from Eq. (21)] change little for this
change in temperature, but the Monte Carlo results
change substantially. Since the broadening changes are
due to this method, the physical temperature broadening
cannot be deduced. This is discouraging because the pos-
sibility of describing the temperature dependence of line
shapes is of experimental relevance and is one of the main
advantages, in principle, of this method. Hopefully, more
powerful computers or more efficient algorithms or both
will provide the increase in precision needed for treating
the temperature dependence of broadening. The temper-
ature dependence of the Kondo peak in the spectral func-
tion for the impurity Anderson model is well described
with the determinantal Monte Carlo and maximum en-
tropy methods,® thus some optimism is justified.

The in-plane correlation function S,,(q,0)=S,,(g,®)

FIG. 6. Temperature dependence of maximum entropy
broadening for the xy model. S,,(g=1,o) changes substantially
between T'=J/12 and J /18. However, the corresponding exact
results (not shown) change very little. This suggests that the
method is limited with respect to quantitative studies of the

temperature dependence of broadening,
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is also of interest for the xy model. Unlike S,,(q,w),
S.{q,») has not been determined exactly. Relevant
work includes that of McCoy, Barouch, and Abraham,?
Luther and Peschel,?® and Miiller ez al.?*

Shown in Fig. 7 is S,,(¢g=m,0) which has a strong
temperature dependence. Here a strong temperature
dependence is expected because spectral weight is con-
centrated at frequencies lower than the temperature.
This temperature dependence makes it difficult to obtain
the asymptotic (w-—»0) behavior of S, (¢=m,») for
T =0. The suggested form Sy, (g =m,0) <w~ "> (Ref. 24)
is displayed in Fig. 7. Our results are less singular than
©~ 1>, but this can be attributed to finite-temperature
broadening or maximum entropy broadening or both.

IVv. THE HEISENBERG MODEL

The isotropic antiferromagnetic Heisenberg model
Hamiltonian is given by

H=JESI"S[+1, J>O . (25)
i

An exact solution for S,,(g,®) has not been found for the
Heisenberg model for any value of the spin. Here we give
results for spin values S=1, 1, 2, and 2. Results are for
64-site systems with m =96 time slices and T =J /24, ex-

cept where indicated otherwise.

A S=

N

The Schrédinger equation for the one-dimensional
Heisenberg model has been solved in the thermodynamic
limit only for S=1.%° However, an analytic solution for
S,.(q,®) has not been produced because the wave func-
tions are too complicated. des Cloizeaux and Pearson?®
have shown that for each g value there is a continuum of
excited states which contribute to S,(g,0) for T=0.

100

Szz(q =, w)/']—l

1.0

FIG. 7. Dynamic in-phase correlations, S, {(g,») for the xy
model with g=m. As the temperature is lowered a sharper
structure appears and approaches the »~!-* dependence expect-

ed for T=0.
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This continuum has a range given by

%Jsinlql <w, <mJsinlg /2| . (26)

Figure 8 shows the maximum entropy result. At g=m
the full range of excitations from ©=0 to wJ appears in
this spectrum with the spectral weight largest for low fre-
quencies. This result agrees qualitatively with Miiller,
Beck, and Bonner’s ansatz for S,,(q,w).!° S, (g=mm)
peaks at a nonzero frequency because of finite-size effects.

When g decreases, the width of the spectrum decreases.
This also agrees with Miiller, Beck, and Bonner’s an-
satz.’® A comparison of our results for S,,(g =37/4,0)
to this ansatz is made in Fig. 9. A substantial amount of
the spectral intensity falls below the rigorous des
Cloizeaux—Pearson cutoff at w=1.1J because of max-
imum entropy broadening. This suggests that the spec-
tral intensity is largest near the lower cutoff.

In summary, these results suggest that the following
holds true for the one-dimensional § =1 Heisenberg anti-
ferromagnet: (1) spectral weight is found over the entire
range described by Eq. (26) and (2) spectral weight is con-
centrated near the lower bound of that continuum. We
note that in a previous paper'? an explicit comparison
was made between Monte Carlo results and inelastic
neutron-scattering experiments for the S=1 antifer-
romagnet CuCl,2N(Cs;D;s) and good agreement was
shown.

B. §=1

The existence of the Haldane gap for integer-spin one-
dimensional Heisenberg antiferromagnets has been
verified numerically by Nightingale and BIlote’ and
Takahashi® who find a gap of A~0.4J for S=1. A re-
cently developed lattice renormalization-group method
yields a very precise figure of 0.4105J.° Buyers et al.’s

w/J

FIG. 8. S.(q,) for the S =1 Heisenberg model. The g=m
spectrum is broad indicating the spin-wave continuum is acces-
sible. The width of the continuum shrinks as g decreases.
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3
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% 2 ----------- reference 10
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i
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3
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FIG. 9. Monte Carlo result for S,,(¢ =37/4,0) versus the
ansatz of Miiller, Beck, and Bonner for the S=% Heisenberg
model. Maximum entropy broadening places considerable
weight below the rigorous lower cut-off at @=1.1J. This sug-
gests a large concentration of spectral weight near the lower
boundary of the spin-wave continuum as found in the ansatz.

experimental resulis for CsNiCl; agree with these re-
sults.? ,

The gap structure for S=1 is clearly displayed in Fig.
10. There is a striking difference between the g = spec- -
trum for S=1 and for S=1. The §=1 peak position of
0.41J agrees with the expected value for the lowest-lying
ASy=1 excitation. Note that S, (g =m,®) is symmetric
about the point of maximum intensity. This strongly
supports the idea that the spectrum is dominated by a
single mode at @ =0.41J with the peak width due to max-

6.0 T
= g=m —-——g=x/2
T 45 -
% e @ =3[4 o —— g=T]4
T 30t 1
2 y\
3 U 4
o Pt Iy
X 15 ‘ R 1
w A \/I \
/ /\ \
) N
00 . 1 i < .
0 1 2 3 4

w/J

FIG. 10. S.(q,) for the § =1 Heisenberg model. The gap
in the spectrum is clearly observable and has a value of 0.41J.
In contrast to S=1;- §,(g,w) demonstrates single-mode
behavior for g = 7/2. For display purposes we have scaled the
peaks by A(g)=0.020, 0.45, 1.1, and 3.1 for g=1; 37/4, w/2,
and /4, respectively.
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imum entropy broadening. Experimental data on NENP
shows just such behavior for 7/3<¢ <w.2" This con-
trasts with S =1 where there is a continuum of excita-
tions and S,,(¢ =w,®) is asymmetric.

All results for ¢ 27 /2 indicate that they are dominat-
ed by a single mode. S,,(¢g=3w/4,0) peaks near 1.85J,
which is close to the value Takahashi found (1.89J) for
the lowest-energy excitation with momentum g =37/4.%
For g¢=mw/2 the peak frequency 2.73J is also near
Takahashi’s result (2.66J) for the lowest-energy excita-
tion with ¢ =#/2. Since spectral weight should not be
found below the lowest excitation energy for T'—0, the
weight found below must be due to maximum entropy
broadening. This broadening appears to place the same
weight above the lowest-energy excitation as below. It
seems likely, then, that the exact result is dominated by a
single mode at the lowest energy of excitation for a given
value of momentum.

For low g values the numerical results of Takahashi®
suggest that the excitations are the result of two-magnon
processes, that is, the lowest ¢ =0 excitation energy is
2A resulting from the sum of two @ =A, ¢ == magnons.
Affieck and Weston have constructed a small g represen-
tation of S(g,w) assuming two-magnon excitations dom-
inate the spectrum.?® In contrast to what we find for
large g values, Affleck and Weston predict that the spec-
trum spans a range of frequencies for small ¢ with the
maximum intensity at the lower edge of the continuum.

Our results for g =m/4 suggests multimode behavior.
The minimum excitation energy for ¢ =m/4 is 2.04J,% but
our result peaks at 2.24J. Further, following the pro-
cedure described in Sec. III A, we find that single mode
data for w=2.24J can be resolved to within 0.35J, while
the g = /4 peak width is 0.7J. For g =7 /2 we find the
single mode results to be consistent with S(qg,w).

The ¢ = /8 result, shown in Fig. 11, is even more sug-
gestive of multimode behavior. The peak position is

0.3 : ' T ' '
i ‘ actual

T i
= oozl N W single mode
— H H
3 P
o P
~ H H
K H ;
i : :
= otk j
N
[95)

0.0

0

FIG. 11. S,(¢=w/8,w). The asymmetry of the line shape is
evident, indicative of two-magnon excitations dominating this
low g result. For comparison we include the result obtained

when single-mode data is used for S{q,7).
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1.44J, which is above the lowest mode energy 1.32J. The
long high-frequency tail is reminiscent of the spin-wave
continuum observed for =1 at all momentum values.
The g =7 /8 result is clearly distinguishable from the re-
sult that is obtained from single-mode data as is also
shown in Fig. 11.

Another interesting phenomenon is the temperature
dependence of the ¢ = peak position which is plotted in
Fig. 12. The increase in @, With temperature has been
observed in NENP (Ref. 29) and CsNiCl;.*° We were un-
able to resolve a peak for T'=0.5J. This may be due to
maximum entropy broadening. However, the ¢ == peak
for NENP becomes unobservable for 7'>0.4J.2° This
suggests that a well defined peak is found only for T <A.

C. §S=

[S1{%)

Figures 8 and 10 show that the spectra for S=1 and 1
are distinct. As S increases the qualitative difference be-
tween integer and_half-integer spin systems should be-
come less pronounced. For S§'=42 exact diagonalization
studies are limited to small systems (~ 12 sites®!), but our
method is easily applied to 64-site systems.

S.(qg=m,®) for §=2 is shown in Fig. 13. It is remin-
iscent of the § =4 spectrum shown in Fig. 8. Namely,
there is a continuum of excitations that extend to low-
frequency cutoff, but is cutoff by the finite-size gap. The
continuum is narrower for S =2 than for S=1. §=3
has spectral weight extending only to w~J, while S=1
has substantial weight out to @ ~wJ.

These results suggest the following S dependence for
the spectra of spin excitations for one-dimensional half-
integer spin Heisenberg antiferromagnets: The broad
spectra found for §=1 narrow as .S increases. In the
classical limit (S§— o), where half-integer and integer-
spin systems become alike, the spectrum consists of a sin-
gle spin-wave mode at w, =(2S +1)J sing.

1.0 .
08| - C . .
~
3 08 . 1
g | i I
3 04 il ' ' ]
02} .
0.0 L . ' : . :
0.0 0.1 0.2 03 0.4

T/

FIG. 12. Temperature dependence of the ¢ = peak position
for §=1. The upward dependence with temperature agrees

with experimental result for CsNiCl, and NENP.
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FIG. 13. S_(q,») for the S= % Heisenberg model. ¢ =1 has
a continuum of width ~J. Results for lower g values are not
accurate enough to distinguish from classical single-mode
behavior. A4 (q)=0.016, 0.42, 1.0, and 2.5 for ¢ =, 3w/4, w/2,
and /4, respectively.

Our results for S,,(q,0) with ¢ =37/4, /2, and w/4
appear to be symmetric about their peaks. Most likely,
the exact results are asymmetric (like for g =), but as
S'=3 peaks are more narrow than S =1 peaks, the max-
imum entropy method is not accurate enough to detect
the asymmetry. Indeed, we find that the apparent width
of g <7 is accounted for by maximum entropy broaden-
ing. The peak positions are all within 10% of
(28 +1)sing. These S =2 results suggest that within the
accuracy of our method, the S(g,w) spectra for § > 3 will
be indistinguishable from those obtained with classical
simulations.’?

D. §=2

In the classical limit (S — o) S,,(¢,®) is dominated by
a single mode at @, ~(2S +1)sing for which w,—0 for
g=m or 0. S =1 has a fairly large gap A=0.4J. It is of
interest to produce an estimate of the S =2 gap. Haldane
has shown that the size of the gap decreases like S%e ~™
in the limit S — o0 ,° but it is not known how accurate this
is for S =1 and 2.

In Fig. 14 the S=2 gap structure is clearly evident.
For g =1 a very sharp feature is observed at @=0.115J.
The large correlation length for $=2 (§£~80) suggests
that system sizes larger than the 64 sites used here are re-
quired to obtain the thermodynamic value for the gap.
Figure 15 shows the gap Ay versus 1/N where N is the
system size. T'=J/36 for all N and N is taken to be as
large as 128 sites. Our best estimate for A, the §=2
Haldane gap in the thermodynamic limit, is 0.08J as sug-
gested by the extrapolation of our data to 1 /N —-0.

Our estimate for the ratio of the S =2 and 1 gaps is
~0.08J/0.41J =0.20. Haldane’s asymptotic formula
yields

4 exp(—2m)/exp(—m)=0.17

FIG. 14. S,,(q,®) for the S=2 Heisenberg model. The g =m
gap structure is evident along with single-mode behavior.
Lower g values show resulis that are qualitatively similar to
those for S=3/2. A(q)=5.0X107% 0.40, 0.66, and 2.4 for
qg=m, 3w /4, /2, and 7 /4, respectively.

(Ref. 6). Although we have not performed the expensive
calculations to prove so, we expect that the difference in
the results is within the accuracy of our method. For ex-
ample, it is possible that our result is affected by the finite
size of Ar(~0.25J ") used in the Monte Carlo simula-
tions. It is possible to go to higher temperature to use
smaller A7 values, but the ¢ =7 peak position is strongly
temperature dependent!* like that for S =1 as is shown in
Fig. 12.

It would be computationally expensive, although possi-
ble, to use this technique to obtain the gap for S=3
where £> 1000. However, Haldane’s formula appears to
be fairly accurate for S =1 and 2. This formula yields
the fairly small value Ag_;=-0.007J which would be a

0.20 : T

0.05 1

0.00 : : - : : :
0.00 0.01 0.02 0.03 0.04

1/N

FIG. 15. Dependence of the gap Ay on the number of sites,
N, for S=2 and T=J/36. Extrapolating to 1/N—0 yields an
estimate of 0.08J for the gap in the thermodynamic limit.
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challenge to obtain with this or any other method.
Results for momenta ¢ =37/4, /2, and 7/4 in Fig.
14 appear to be nearly identical with the corresponding
S =3 results except that the peaks are shifted approxi-
mately by a factor ~ 2 corresponding to the factor 25 +1
in the classical spin-wave theory prediction for the energy
of the single mode. The qualitative differences between
S =% and 2 for g7 w are apparently too small to be

2
detected with this method.

E. S =1 Heisenberg model with on-site anisotropy

S (g,0)=8,,(¢,0)=S,(q,0) for the isotropic
Heisenberg model. Spin anisotropy is introduced by the
spin-orbit interaction in a noncubic lattice. For weak
spin-orbit coupling an effective Hamiltonian can be writ-
ten in terms of spin degrees of freedom only as orbital de-
grees of freedom typically have higher-energy scales.
One possibility is the Heisenberg Hamiltonian with on-
site anisotropy

H=J38§,;8,,,+D 3 (S7)?. 27
] 1]
The on-site anisotropy term 3; D(S?)? will either favor
having spins lying in the xy plane (D >0) or along the z
direction (D <0). Previous theoretical study of Eq. (27)
includes that of Botet, Jullien, and Kolb*® who performed
exact diagonalization studies on N =12 site systems.
More recent work on larger systems (up to 32 sites) has
been reported by Sakai and Takahashi** and Golinelli,
Jolicoeur, and Lacaze.’’
For S =1 on-site anisotropy has no effect because (S7)?
is always 1. However, this term is relevant for §'> 1.
The S =1 one-dimensional antiferromagnet NENP is be-
lieved to be described by Eq. (27) with J=~4.0 meV and
D=0.2J.7
Motivated by this assignment for NENP we take
D /J=0.2. Figure 16 shows the resulting spectra for

400 g T T
x0.25
. —D=O,z-—x,y,z
300 | i
i ----------- D=02J,t==xv
= 3
3200— ———— D =02J,i=2 A
I
= = gh\
Y 100 | !‘1 .
i
Iy
I
0 P ] J | N ] .
0.0 0.5 1.0 1.
w/J y

FIG. 16. S, (g=m, @) and S,{q =1,w) for the S =1 Heisen-
berg model with on-site anisotropy. A gap splitting is observed
which correlates well with the splitting for NENP. We obtain
A, =0.28J and 0.64J.
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FIG. 17. S..(g=n/4,0) and S,(¢g=w/4,0) for the S =1
Heisenberg model with on-site anisotropy. In contrast to g =,
the peak for S,(¢=w/4,0) lies lower than the peak for
S,.(g=w/4,0). The change in the relative positions of the
peaks correlates with neutron-scattering results for NENP
where the distinct peaks merge for ¢ <0.87 with the small peak
splittings being outside of the experimental resolution.

g=m. S,(g,0)and S,,(q,0)=S,,(q,w) are shown along
with the D =0 result presented earlier. The Haldane gap
structure is clearly preserved when anisotropy is includ-
ed. The in-plane gap is reduced to A,, ~0.28J from the
D =0 value of 0.4J. The out of plane gap is A, =0.64J.
For the same parameters Golinelli, Jolicoeur, and Lacaze
obtain A,,=0.29J and A,=0.69J via extrapolation to
the thermodynamic of results from finite-size lattices.
The  experimental results for NENP  yield
A,,=(0.275+0.02)J and A,=(0.5910.04)J (Ref. 29)
which are in the range of our values for D =0.2J.

In contrast to ¢ =, for g=mu/4, S,,{q,®) has spectral
weight at lower frequency than S,,(q,») (Fig. 17). The
average moment

® 0S;(g,0)dw
{(w)= f—;’ Akl e - (28)
[ sylg.0)do

differs by 10% between j=x and z for g=uw/4 . This
difference is well within the statistical accuracy of quan-
tum Monte Carlo which, using the f-sum rule,*® evalu-
ates {w) directly without recourse to the maximum en-
tropy method. The neutron-scattering results of Ma
et al?’ shows two distinct peaks for ¢ >0.87 and a single
peak otherwise. This likely reflects the merging and
crossing of the peaks as q decreases, which then appear as
a single peak because of finite resolution.

V. SUMMARY AND FUTURE DIRECTIONS

This work combines the world-line quantum Monte
Carlo and maximum entropy methods to obtain dynami-
cal properties of strongly interacting one-dimensional
spin systems. Results for the Ising and xy models results

obtained with this dynamical method were compared to
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exact results. This comparison shows that this dynamical
method produces results that contain the correct qualita-
tive features and represent a convolution of the exact re-
sults with a broadening function of broadening width Aw
which is small at low frequencies, but is larger at high
frequencies. Peak positions are accurately obtained.

The dynamical spin structure factor S,,(g,w) for the
antiferromagnetic Heisenberg model with §=1, 1, 2, and
2 shows the difference between integer and half-integer
spins as predicted by Haldane.® We obtain Haldane gaps
of 0.41J for S =1 and 0.08J for S =2; the S =1 result
agrees with previous results.”® When on-site anisotropy
is added to the S =1 Heisenberg antiferromagnet the cal-
culated gap splitting is equivalent to the splittings for
NENP.? S, (g,0) for S=1 and 2 shows a broad contin-
uum of excitations. This continuum shrinks when § in-
creases from 1 to 3 and suggests the approach of the clas-
sical limit, S — oo, where S,,(¢,) is dominated by a sin-
gle frequency. We observe the ¢ =# peak position for
S=1 to increase with temperature as has been seen ex-
perimentally.

There are several possible avenues for future studies.
Neutron-scattering studies are often performed in the
presence of a static magnetic field. Unfortunately, this
method can obtain S ,(g,®) only when the applied field is
in the z direction because of “minus sign” problems for
the Monte Carlo. Affleck has suggested that the dynami-
cal properties of S =1 chains may be particularly in-
teresting in a field.’”. However, it appears that the most
interesting features in S,,(q,®) appear when the field is in
the x or y directions.

This dynamical method can be applied to a more gen-
eral class of nearest-neighbor Hamiltonians. Bonner has
described the expected behavior for the Heisenberg mod-
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el with anisotropic exchange’?

H=3 J S7S7 | +J, 81871 +I.85874y . 29
- ,

For J,>J,=J, =20 Ising order and subsequently an exci-
tation gap develops for half-integer S, while gapless
behavior persists for all J,=J,2J,>0. For integer S
there is a range about J,=J,=J, where an excitation
gap is present. However, when J, is below a critical
value the gap is absent. All of these features can be stud-
ied with this dynamical method and estimates for the ex-
citation gaps can be produced.

It would be interesting to study systems containing
both half-integer and integer spins. Hagiwara et al. have
studied the S =1 antiferromagnet NENP doped with a
small amount of S=1 Cu*™ impurities.® The spin dy-
namics of an § =} impurity in an § =1 chain is accessi-
ble with this method.

Note added in proof. Resulis similar to those found in
Sec. IV E have been reported by Golinelli, Jolicoeur, and
Lacaze [J. Phys. Condens. Matter 5, 1399 (1993)].
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