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Zinc Impurities in d-Wave Superconductors
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We study the two-dimensional Hubbard model with nonmagnetic Zn impurities modeled by binary
diagonal disorder using quantum Monte Carlo within the dynamical cluster approximation. With
increasing Zn content we find a strong suppression of d-wave superconductivity and an enhancement
of antiferromagnetic spin correlations. Tc vanishes linearly with Zn impurity concentration. The spin
susceptibility changes from pseudogap to Curie-Weiss-like behavior indicating the existence of free
magnetic moments in the Zn doped system. We interpret these results within the resonating-valence-bond
picture.
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Introduction.—Chemical substitution in high-Tc super-
conductors provides a powerful probe into the complex
nature of both the superconducting and normal state of
these materials. Experiments substituting different
impurities for Cu show that nonmagnetic impurities (Zn,
Al) are just as effective in suppressing superconductivity
as magnetic dopants (Ni, Fe) [1]. Based on Anderson’s
theorem [2] these results are taken as strong evidence for
an unconventional pairing state described by an anisotropic
order parameter with nodes on the Fermi surface. Indeed,
recently the characteristic fourfold symmetry of the
dx2�y2-wave order parameter was observed in the
spatial variation of the local density of states near the Zn
impurity using scanning tunneling microscopy [3].

Nuclear magnetic resonance experiments show that even
a nonmagnetic impurity substituted for Cu induces an
effective magnetic moment residing on the neighboring
Cu sites [4]. In addition, the bulk susceptibility in impurity
substituted underdoped cuprate superconductors shows
Curie-Weiss-like behavior irrespective of the magnetic
structure of the dopants [1]. This indicates the existence
of free magnetic moments in the impurity doped CuO2

planes. The formation of these moments with substitution
of nonmagnetic impurities is explained to arise from break-
ing singlets [1,5] in an antiferromagnetically correlated
host by removing Cu spins.

In this Letter we focus on the suppression of super-
conductivity by Zn impurities and the change of the bulk
magnetic susceptibility to a Curie-Weiss-like behavior in
underdoped systems. Despite a wide variety of theoretical
studies addressing these issues, a complete understanding
of the effects of Zn doping has not been achieved. These
approaches are mostly based on the description of impuri-
ties embedded in a BCS host [6] or on generalizations of
the Abrikosov-Gorkov equations for nonmagnetic impuri-
ties in unconventional superconductors using phenomeno-
logical pairing interactions [7]. In order to capture effects
such as moment formation by substitution of nonmagnetic
impurities, it seems necessary to describe correlations and
the scattering from impurities on the same footing within a
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The most widely applied technique developed to de-
scribe disordered systems is the coherent potential approxi-
mation (CPA) [8]. The CPA shares the same microscopic
definition [9] as its equivalent for correlated clean systems,
the dynamical mean-field approximation (DMFA) [10].
Both approaches map the lattice system onto an effective
impurity problem embedded in a host that represents the
remaining degrees of freedom. This single-site approxima-
tion neglects interference effects of the scattering off dif-
ferent impurity sites (crossing diagrams) and correlation
effects become purely local. Therefore, it inhibits a
transition to a state described by a nonlocal (d-wave)
order parameter and thus is not appropriate for our inves-
tigations here.

The dynamical cluster approximation (DCA) [9,11–13]
systematically incorporates nonlocal corrections to the
CPA/DMFA by mapping the lattice system onto an em-
bedded periodic cluster of size Nc. For Nc � 1 the DCA is
equivalent to the CPA/DMFA and by increasing the cluster
size Nc the length scale of possible dynamical correlations
can be gradually increased while the DCA solution remains
in the thermodynamic limit. In the clean limit the DCA
applied to the Hubbard model has been shown to describe
the essential low energy physics of the cuprates [14–16]: It
captures the antiferromagnetic phase near half filling and
the transition to a superconducting phase with dx2�y2-wave
order parameter at finite doping. In the normal state it
exhibits non-Fermi liquid behavior in the form of a pseu-
dogap in the density of states and a suppression of spin
excitations at low temperatures in the underdoped regime.

In this Letter we study the two-dimensional (2D)
Hubbard model including a potential scattering term ac-
cording to the chemistry of Zn impurities using the DCA
for a cluster size Nc � 4. We show that potential scattering
by Zn impurities strongly suppresses superconductivity as
well as spin fluctuations and changes the magnetic suscep-
tibility to a Curie-Weiss-like temperature dependence in
the underdoped region.

Formalism.—The correlated electrons in a CuO2 plane
doped with Zn impurities are described by the 2D Hubbard
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where we used standard notation. The disorder induced by
the Zn sites occurs in the local orbital energies �i which are
independent quenched random variables distributed ac-
cording to some specified distribution P	�i; . . . ; �N
 �QN

i�1 P	�i
, where N is the number of lattice sites. For a
concentration x of Zn impurities we use the binary alloy
distribution

P	�i
 � x�	�i � V=2
 � 	1� x
�	�i � V=2
; (2)

where V is the energy difference between the Cu and Zn 3d
orbitals. For simplicity we use site-independent values for
the hopping integral t and the Coulomb repulsion U.

The microscopic derivation of the DCA algorithm was
discussed in detail for correlated systems in [12,16] and for
disordered systems in [9]. The DCA has a simple physical
interpretation for systems where the intersite correlations
have only short spatial range. The corresponding self-
energy may then be calculated on a coarse grid of Nc �
LDc selected K points only, where Lc is the linear dimen-
sion of the cluster of K points. Knowledge of the momen-
tum dependence on a finer grid may be discarded to reduce
the complexity of the problem. To this end the first
Brillouin zone is divided into Nc cells of size 	2�=Lc
D

around the cluster momenta K. The propagators used to
form the self-energy are coarse grained or averaged over
the momenta K� ~kk surrounding the cluster momentum
K:
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In Eq. (3) we make use of the fact that the approximation of
the lattice self-energy �	k
 by the cluster self-energy
�	K
 optimizes the free energy [12,13]. �	K
 summarizes
the single-particle effects of the interaction term (second
term) and the disorder term (third term) of the
Hamiltonian, Eq. (1). The dispersion �K�~kk denotes the
spectrum of the kinetic part (first term) of Eq. (1). In order
to avoid overcounting of self-energy diagrams on the clus-
ter, the cluster excluded propagator

G	K
�1 � 
GG	K
�1 ��	K
 (4)

is used as the bare propagator for the cluster problem. To
diagonalize the disorder part it is convenient to perform
a Fourier transform to cluster real space Gij �
1=Nc

P
K e

iK�	Xi�Xj
G	K
, where the disorder is diagonal.
The inverse bare cluster propagator for a particular disor-
der configuration f�ig is then given by

�G�1
�1;...;�N �ij � �G�1�ij � �i�ij; (5)

and is used to initialize a quantum Monte Carlo (QMC)
simulation to calculate the effects of the Coulomb inter-
077001-2
action U. The QMC result for the cluster Green function
Gc
�1;...;�N;ij

� Gc
ij�U;G�1;...;�N;ij� thus depends on the par-

ticular disorder configuration f�ig. The disorder averaged
cluster Green function is then obtained from the individual
results by

Gc
ij � hGc

�1;...;�N;ij
i; (6)

where the average f� � �g �
RQ

N
i�1 d�iP	�i
	� � �
 is to be

taken for a system of Nc sites. Note that in principle QMC
calculations for all possible disorder configurations f�ig
have to be carried through. However, contributions from
configurations with m Zn impurities on the cluster (m �
Nc) are weighted by a factor of xm	1� x
	Nc�m
 to the
integral Eq. (6). Therefore it seems reasonable for small
concentrations x < 1=Nc to consider only those configu-
rations with none or only a single Zn impurity on the
cluster and to neglect configurations with more than one
Zn impurity. Then the disorder averaged cluster Green
function Gc

ij is obtained as a weighted sum from the two
configurations as

Gc
ij � xNcGc

1;ij � 	1� xNc
Gc
0;ij; (7)

where Gc
1=0;ij denotes the QMC result for the cluster Green

function for the configuration with one or zero Zn impur-
ities on the cluster, respectively. The prefactors follow with
	1� x
Nc � 1� xNc, xNc	1� x
Nc�1 � xNc for x� 1 in
linear approximation in the impurity concentration x. The
disorder averaged cluster Green function Gc

ij is then trans-
formed back to cluster reciprocal space to calculate a new
estimate of the cluster self-energy

�	K
 � G	K
�1 �Gc	K
�1; (8)

which is then used to repeat the steps starting from Eq. (3)
until convergence is reached.

Results.—We study the superconducting instability and
magnetic properties of the Hamiltonian Eq. (1) in the
intermediate coupling regime at 5% hole doping (n �
0:95) for different Zn impurity concentrations x. We per-
form calculations for Nc � 4, the smallest cluster size that
allows for a transition to a dx2�y2-wave superconducting
state while preserving the lattice translational and point
group symmetries. We set the hopping integral t �
0:25 eV and the Coulomb repulsion U � W � 2 eV,
where W � 8t is the bandwidth of the noninteracting
system. We choose V � 5 eV > W �U to simulate the
nonmagnetic closed shell (d10) configuration of the impur-
ity site.

We searched for superconductivity with s-wave, ex-
tended s-wave, p-, and d-wave order parameters. As we
found for the clean system (x � 0) [14,16], only the
dx2�y2-wave pair-field susceptibility for zero center of
mass momentum diverges at low temperatures. Please
note that the finite transition temperatures we find for the
2D system arise from the residual mean-field character of
the DCA for finite cluster sizes Nc. Preliminary results
indicate that with increasing cluster size this transition
077001-2
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can be stabilized at finite temperatures if an interplanar
coupling between the 2D Hubbard planes is added [16].
Figure 1 illustrates the inverse pair-field susceptibility P�1

d
as a function of temperature T for the impurity concen-
trations x � 0:00 (circles), x � 0:05 (squares), and x �
0:10 (diamonds).

The corresponding critical temperature Tc is then calcu-
lated by extrapolating P�1

d 	T
 to zero using the function
P�1
d / 	T � Tc


! (represented by the solid lines in Fig. 1).
Tc is rapidly suppressed, and the critical exponent ! in-
creases, with increasing Zn content x. Consistent with
experiments [1] this falloff of Tc is linear in x resulting
in a critical impurity concentration xc � 0:10, beyond
which the instability to the superconducting phase disap-
pears. Compared to experiments (xc & 0:05) our calcula-
tion predicts a result about twice as high for the critical
doping. However, considering the simplified description of
the problem using a 2D Hubbard model with the complex-
ity of the Zn impurities reduced to a model of diagonal
disorder, we expect agreement only on a qualitative level.

In order to study the correlation between the suppression
of superconductivity and possible moment formation by
Zn substitution we study the bulk [q � 	0; 0
] and the
antiferromagnetic [q � 	�;�
] spin susceptibilities.
Figure 2 shows the bulk magnetic susceptibility "	T
 as
a function of temperature for the same impurity concen-
trations x used in Fig. 1.

As we demonstrated in [14] and similarly seen in finite
size simulations [17], the clean system exhibits an anomaly
in "	T
 at a characteristic temperature T?, below which
spin excitations are suppressed and "	T
 falls with decreas-
ing temperature. T? thus marks the onset of singlet for-
mation due to strong short-ranged antiferromagnetic spin
correlations. In agreement with experiments [1], the sub-
stitution of impurities leads to a dramatic change of the low
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FIG. 1 (color online). The inverse pair-field susceptibility
versus temperature when Nc � 4, U � W � 2 eV, V � 5 eV
at 5% doping for impurity concentrations x � 0:00 (circles), x �
0:05 (squares), and x � 0:10 (diamonds). The solid lines repre-
sent fits to the function P�1

d / 	T � Tc

!. Inset: Critical tem-

perature Tc as a function of impurity concentration x.
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temperature behavior of the magnetic spin susceptibility.
Despite the nonmagnetic nature of the impurity scattering
term in our simulation, "	T
 displays an upturn at low
temperatures as x is increased. Moreover at x � 0:10,
"	T
 shows Curie-Weiss-like behavior; i.e., it can be fit
by the function "	T
 � "0 � "1T � C=	T ��
, with
� � 0. This clearly indicates the formation of free mag-
netic moments due to the breaking of singlet bonds by the
substitution of nonmagnetic impurities. As illustrated in
the inset in Fig. 1, these magnetic moments are located on
the nearest-neighbor sites (nn 1 and nn 2) of the Zn
impurity. With decreasing temperature, T"ii on these sites
seems to extrapolate to a finite value at T � 0, indicating
the absence of Kondo screening. Moreover, it is interesting
to note that the magnetic moment on the next nearest-
neighbor (nnn) site is smaller than the magnetic moment
on the pure cluster.

The inverse antiferromagnetic spin susceptibility
"AF	T
 for the same parameter set as in Fig. 2 is illustrated
in Fig. 3. For the clean system (x � 0) 5% hole doping
marks the critical doping, beyond which no transition to an
antiferromagnetic state can be found [14]. As can be seen
from the extrapolation of the circles in Fig. 3 the corre-
sponding Néel temperature TN � 0. As the concentration
of impurities is increased we notice that for T * 0:05 "AF

decreases with x. However at lower temperatures (T &

0:05) "�1
AF for finite impurity concentration x falls below

the curve of the clean system and eventually goes through
zero indicating a transition to the antiferromagnetic state.
Therefore it can be inferred that a finite concentration of
impurities, i.e., spin vacancies, acts to enhance antiferro-
magnetic spin correlations.
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FIG. 2. The bulk magnetic susceptibility versus temperature
when Nc � 4, U � W � 2 eV, V � 5 eV at 5% doping for
impurity concentrations x � 0 (circles), x � 0:05 (squares),
and x � 0:10 (diamonds). The solid lines are guides to the
eye. The dashed line represents a fit to the function "	T
 �
"0 � "1T � C=	T ��
. Inset: Time averaged local magnetic
moment on the Zn site, on its nearest (nn 1, nn 2) and next
nearest (nnn) neighbors and on the pure cluster.

077001-3



0

T

0

0.1

0.2

0.3

0.4

χ A
F

-1

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

x=0
x=0.05
x=0.10

FIG. 3 (color online). The inverse antiferromagnetic [q �
	�;�
] spin susceptibility versus temperature when Nc � 4,
U � W � 2 eV, V � 5 eV at 5% doping for impurity concen-
trations x � 0 (circles), x � 0:05 (squares), and x � 0:10 (dia-
monds). The solid lines represent fits to the function
"�1
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It is important to note that recent NMR measurements
on YBa2Cu3O6:7 [18] show a similar enhancement of anti-
ferromagnetic spin correlations around Zn impurities at
low temperatures.

Similar results were also obtained in [19,20] where an
antiferromagnetic Heisenberg model with a spin vacancy
was studied. In the latter report, the enhancement of anti-
ferromagnetic spin correlations was ascribed to pruning of
singlets by the nonmagnetic impurity in a resonating-
valence-bond (RVB) picture. In the RVB picture, the
short-ranged order in the doped model is described as a
collection of nearest-neighbor singlet bonds which fluctu-
ate as a function of time and space. When a Zn impurity is
introduced into the system, the singlet fluctuations on
adjacent sites are suppressed since these sites now have
one less neighbor to form short-ranged bonds with. The
suppression of singlet fluctuations on the sites adjacent to
the Zn dopant thus enhances antiferromagnetic spin corre-
lations on these sites.

We find further evidence of the suppression of beyond
mean-field spin fluctuations by Zn impurities in the de-
crease of the antiferromagnetic critical exponent ! towards
the mean-field result of one with increasing impurity con-
tent x. Concomitant with this behavior the corresponding
exponent ! for the pair-field susceptibility (cf. Fig. 1) in-
creases towards one. From this observation we conclude
that the suppression of superconductivity in Zn doped
systems originates in the suppression of beyond mean-field
spin fluctuations that mediate pairing.

Summary.—In this Letter we have used the 2D Hubbard
model with binary diagonal disorder to study the effects of
nonmagnetic (Zn) impurities on high-temperature super-
conductivity. We find that Zn impurities strongly suppress
077001-4
superconductivity. As evidenced by the increasing mean-
field character of the pair-field and antiferromagnetic sus-
ceptibilities with Zn substitution, spin fluctuations beyond
mean field that mediate pairing get suppressed. Consistent
with experiments, Tc decreases linearly with impurity
concentration. With increasing Zn content we further find
a change of the magnetic susceptibility to Curie-Weiss-like
behavior originating in the existence of free magnetic mo-
ments, which are located in the vicinity of the Zn impurity.

Our results can be understood within the RVB picture.
The nonmagnetic impurities break local singlets and thus
generate unpaired spins. A concomitant suppression of
singlet fluctuations that mediate pairing results from the
pruning of RVB states [20]. Consequently, superconduc-
tivity gets strongly suppressed with increasing Zn content.
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