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A series of weak-coupling perturbation theories that include the lowest-order vertex corrections are applied
to the attractive Holstein model in infinite dimensions. The approximations are chosen to reproduce the iterated
perturbation theory in the limit of half-filling and large phonon frequeftwliere the Holstein model maps onto
the Hubbard modgl Comparison is made with quantum Monte Carlo solutions to test the accuracy of different
approximation schemepS0163-182@08)02541-1

I. INTRODUCTION t*
H=-— (C],Ckot ChoCio)
The theory of superconductivity, as first developed by 2\d (ke
Bardeen, Cooper, and Schrieffegnd then generalized to
strong coupling by Migdaf, Eliashberd’ and otheré;® has + 2, (gx—p)(nj;+n;)
]

proven to be one of the most accurate theories of solid-state

physics. Properties of conventional IoWw- materials are 1 1 p?

typically explained to accuracies of 1% or better. Newly dis- + _MQZZ x24+ = 2 Loy (1)
covered materials, however, which have modefgts, do 2 T R\

not fit into the parameter regimes studied so successfully in

the 1950s and 1960s. These materials, such ad1Becom-  In Eq. (1), ¢/, (c;,) creates(destroy$ an electron at sit¢
pounds, Ba ,K,BiO3, and KsCg, have large phonon energy with spin o, nj,,zc;r(,cj(, is the electron number operator,
scales relative to the inverse electronic density of states, sandx; (p;) is the phonon coordinaténomentum at sitej.

that both the effect of the energy dependence of the bar&€he hopping is chosen to be between the nearest neighbors
electronic density of stategi.e., nonconstant density of (j andk) of a hypercubic lattice il dimensions and the unit
state$, and the effect of vertex corrections may become im-of energy is the rescaled matrix elemeht(so that the ki-
portant in their description. We examine here a series ohetic energy remains finite ad—o). The phonon has a
different weak-coupling perturbation theories that includemassM (chosen to beM =1), a frequency), and a spring
both the effects of nonconstant density of states and of vertegonstantc=M Q2 associated with it. The deformation poten-
corrections to ascertain what methods should be used for reghl is denoted byg and it governs the strength of the cou-
materials calculations of these highkf compounds. Since pling of electrons to phonons. The effective electron-electron
the most popular implementation of Migdal-Eliashberginteraction strengtimediated by the phononss then the
theory is manifestly particle-hole symmetfisecause of the bipolaron binding energy

neglect of the energy dependence of the electronic density of

state$ it is not clear what the most accurate approximation

scheme is when the electron filling is doped away from half U=— g __ g_. )
filling and the energy dependence of the electronic density of MQ?2 K

states becomes important. Our strategy is to solve a model

system(the Holstein modelin the infinite-dimensional limit A chemical potentiaju is employed to adjust the total elec-
via the dynamical mean-field theory. This allows us to com-tron filling with x=U corresponding to half filling in the
pare numerically exact quantum Monte Carlo solutigims exact solution.

2

the thermodynamic limjtwith the different perturbative ap- In the instantaneous limit wherd remains finite and
proximations. and () are large compared to the bandwidiyy, ) —, U

The Holstein modélconsists of conduction electrons that = finite), the Holstein model maps onto the attractive Hub-
interact with local(Einstein phonons: bard model
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t* is taken @—«). Then the many-body problem becomes a
H=-— 2 (chgckUJr clacjg) local problem that retains its complicated dynamics in time.
2Vd (%o The hopping integral is scaled to zero in such a fashion that

U the free-electron kinetic energy remains finite while the self-
—(,u— 5)2 (n”+n”)+UE NN, ()  energy for the single-particle Green’s function and the irre-
] ] ducible vertex functions has no momentum dependence and
with U defined by Eq(2). is a functional of the local Green’s functidf:*? This limit
Two cases of the Holstein Hamiltonian have well- retains the strong-correlation effects that arise from trying to

established perturbative expansions. In the limit where th&imultaneously minimize both the kinetic energy and the po-
phonon frequency becomes sméll—0, butU remains fi- tential energy, and hence has relevance for three-dimensional
nite, Migdal-Eliashberg theofy is known to be an accurate Mmaterials.

approximation. Migdal-Eliashberg theory is a self-consistent Of course, we can also solve the infinite-dimensional Hol-
Hartree-Fock approximation that employs fully dressed phostein model using a quantum Monte Caff@MC) method,

non propagators and neg|ects all vertex corrections. Typ|Wh|Ch contains all effects due to phonon renormalizations,
cally, the energy dependence of the electronic density ofertex corrections, and nonconstant electronic density of
states is also neglected, so the theory is evaluated with gfates. We use these solutions as a benchmark to test the
constant density of state&This latter approximation is al- accuracy of the different approximation methods and to de-
ways particle-hole symmetric and maps onto the limit of halftermine what is the most fruitful approximation for the
filling when the nonconstant density of states is usdthe  €lectron-phonon problem.

second limit is the large phonon frequency lifit— with We employ a Green’s function formalism to solve the

U also remaining finite. In this case, a truncated perturbativénany-body problem. The local Green’s function is defined to
expansion through second or@ier(which includes the be

lowest-order vertex correctipris known to be accurate at

half filling for a large range o) values because it properly

reproduces both the weak-coupling and strong-coupling lim- . B

its of the Hubbard model. It would be nice to construct an Gioc(iwn)=— fo dre'“n”
approximation scheme that continuously connects these two

limits as the phonon frequency is varied. However, no simple

approximation can be found because the set of diagrams thghq s calculated directly from a self-consistent quantum
dress the phonon propagator in the snéalimit do not cor-  nonte Carlo procedure described elsewHér&tatic two-
rectly dress the phonon propagator in the lafpdimit; in  paricle properties can also be determined since the irreduc-
the large-frequency limit the interaction is only between upjpje vertex function is locat* The static susceptibility for

and down spins, but in the small-frequency limit the i”terac'charge-density-wavécDV\/) order is given by
tion is between all spins. But, if one is willing to examine

perturbative expansions that are truncated with respect to the

fluctuating diagrams, then approximations can be constructed 1 _ B
that agree with the two known limits through the order of CPW(q)= —— >, e'q'(Rj*Rk)Tf dr
diagrams included in the expansion. The description of these 2N 0
different methods is both subtle and technical, and will be p
covered in detail in Sec. Il. Here we only want to comment xf d7'[{Njo(T)Nker (7)) =(Nj (7))
that the previous calculations for the electron-phonon prob- 0

lem that were called the iterated perturbation th&gHpT)

Tr(e AT c(7)c’(0))
Tr(e PH)

(4

Rj - Rka'a"

are actually based on a truncated perturbation theory about X (7))]

the Hartree mean-field theory solution, which does not repro- _

duce the Migdal-Eliashbergartree-Fock limit properly. A =T Xe M), (5
mn

more promising approach for dll is to construct a truncated
perturbation theory about the Hartree-Fock mean-field theory
solut|on_, which is done here. In addition, we a_IS(_) examin€,t each ordering wave vectgr[the indicesm andn denote
some simple methods that can be used to repair inconsistefiz.« \hara frequencieisn, =i #T(2n+1)]. Dyson’s equa-
cies that develop in the IPT as the system is doped off of halfj, , 4, e two-particle Green’s function becorfie¥!
filling. This method entails self-consistently renormalizing
the higher-order fluctuations of the Hartree or Fock diagrams
to all orders, which allows for the electron filling on the
lattice to be different from the electron filling of the mean- ;(%EW(Q)Z}%(Q)tSmn—TE }(%(q)r%gw;(gr?w( ), (6)
field theory solution when the higher-order fluctuations are p
included. Unfortunately, we find that all attempts to produce
an accurate perturbation theory that reproduces the IPT in the, cow ) ) o
instantaneous limit are not very accurate for moderate phoith I'mn ™ the irreducible vertex function in the CDW chan-
non frequencies. nel. ~

These perturbative approaches, and the many-body prob- The bare CDW Susceptibilityﬂ(q) in Eq. (6) is defined
lem in general, simplify when the infinite-dimensional liflit in terms of thedressedsingle-particle Green’s function
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_ 1 The transition temperature of the infinite-dimensional
Xn(Q)=-— N > Gu(k)Gy(k+0) Holstein model is then found by calculating the temperature
K at which the relevant susceptibility diverggSDW or SQ.

1 o o 2 This transition temperature is found by locating the tempera-
- __ f dy ture where the scattering matrin the relevant channgl
7)o Tlogtu—2,—Y
. e_Zz Ton=— TanXg (11
XJ dz has unit eigenvalié (note that the local Green'’s functions
e -y _ 2 J1—-x2 X X L
Tont u—2p=X(Q)y—2zV1-X%(q) are always used in the evaluation of the bare susceptibility
@ Xo)-

with all of the wave-vector dependence described by th(?l \,IehZéigﬁjlzdﬁeogotﬁﬁaﬁ)gfne;ﬁa|rranged as fp llows: In Sec.
516 od . ~0 ] ployed to derive the differ-
scalat>!® X(q)=={_;cosq;/d. The integral foryy(X) in  ent truncated perturbative expansions for both the electronic
Eq. (7) can then be performed analyticafiyfor the “check-  self-energy and for the irreducible vertex functions. Particu-
erboard” CDW phasexﬂ(XZ —1)=—G, /(iog+pn—2%,). lar attention is paid to the mapping from the lattice problem
The irreducible vertex functioiﬁg'ﬁw is either directly cal- onto an effective impurity problem, and how to extract a
culated in a perturbative expansidtescribed beloyor is  perturbative expansion that includes the lowest-order fluc-
determined by inverting the Dyson equation in B8).for the  tuations beyond a mean-field theory solution. In Sec. Il we
local charge susceptibilitfQMC). describe the details of the calculational procedure and
A similar procedure is used for the singetvave super- present our results in Sec. IV. Section V contains a summary
conducting(SC) channel. The corresponding definitions areand our conclusions.
as follows. The static susceptibility in the superconducting

channel is defined to be Il. LATTICE-IMPURITY MAPPING

sc 1 R The properties of the Holstein model are calculated by

x>Ha=g > earRTRIT mapping the lattice problem onto the single-impurity Wolff-

Ri~ R Holstein mode!® and solving the impurity self-energy by a
B B truncated perturbation expansion. To define the mapping, we

Xf de d7'(c;;(n)c; (ek (7)ek (7)) begin with the self-energy of the Holstein model, which is
0 0 momentum independent in infinite dimensions, and write the

_ local Green'’s function for the lattice as
=T Xo(@), ®
mn 1

o= (ep— )~ 3(0)’

where €, is the noninteracting electronic band structure for
~ - ~ the lattice(assuming spin degenerany=n,=n/2). The lo-
X @ =X (@) 8= T2 X (DT mexpn(@), (9 cal self-energyS(w) is defined by the functionals.(«)

P =3[Gjoc], WhereX[G,.] represents the sum of all the
with T'SC the corresponding irreducible vertex function to skeleton diagrams generated by the perturbation theory, with
describe the SC channel; the bare pair-field susceptibili as the expansion parametdin a Baym-Kadanoff
becomes expansiof). On the other hand, the same set of skeleton
diagrams appears in the self-energy of an impurity problem
described by the Wolff-Holstein Hamiltonian,

G.oc<w>=§ (12)

for superconducting pairs that carry momentgmDyson’s
equation becomes

~ 1
Xn'(@= 2 Gn(K)G-p-2(—k+q) )
p 1

oo

1 (= e’
T ) THOnT AT 20T Y ) - whereH, describes a band of noninteracting electramsg,
_2 is the number operator for conduction electrons of spiat
e . . . . “. c
% the impurity site, any (po) is the “impurity” phonon co-
io_n_1+u—2__1—X(Q)y—2zy1—X(q) ordinate(momentun. The renormalized electron propagator
at the impurity site can be written as

(10)
with the special valug®’ (X=1)=—Im G,/Im(iw,—3,) for G (@)= 1 (14)
the SC pair that carries no net momentum; and finally the 'me GoHw)—3(w)

irreducible vertex function is also either directly calculated

in a perturbative expansiofdescribed beloyor is deter- Here Gy is the free-electron propagator at the impurity site
mined by inverting the Dyson equation in E(®) for the  (which is often called the effective-medium propagatand
local pair-field susceptibilitf QMC). 2.(w) describes the effects due to the coupling to the local
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phonon. Note that the effective mediu@y, is not equal to
the noninteracting lattice propagator except wken 0.

Since the impurity and the lattice self-energy functionals
3[Gimp] and2[Gyo.] are the same, the self-energies will
also be the same Gy, (w)=Gjoc(w). Thus, the lattice
problem maps onto the impurity problem, provided the ef-
fective medium propagatd®, is adjusted so that the right-
hand sides of Eq9.12) and (14) are equal. In general, the
self-energy functionak[ G,,.] is not known. But equivalent
expansions can also be made for the impurity self-energy by
rearranging the skeleton-diagram expansion. For example, a

functional defined on the effective-medium propagator %
Go(w) can be employed, such that(w)=23,[Gy], where

3 o[Go] represents the sum of all connected graphs generated FIG. 1. Feynman diagrams included in the Hartree expansion.

EH=2
H _
EW

+

+ ...

by Wick's theorem (without any resummatiops If the The top figure shows the Hartree diagram, which is incorporated
into Gy, and the bottom shows the Yosida-Yamada functional

out the Hartree mean-field solution expanded through second or-
r. The wiggly lines are bare phonon propagators and the straight
nes are Hartreémean-field propagators. The fifth diagram that
involves the Fock dressing of the Hartree diagram was not included
in the previous work.

graphs for2[G,.] and 2,[Gy] are summed to all orders,

then the self-energies must agree. Furthermore, the effecti\%z
uniquely determined by i

medium Gy(w) can be
either Gy (w)=G,(w)+3[G] or GyX(w)=Gi(w)
+30[Gol.

Since the exact self-energy for the Wolff-Holstein model

with an arbitrary density of states is not known, our strategithe same equation, but witBr replaced byG,yc. In this
is to make a truncated expansion for the impurity self-energy.ontribution, we consider four different expansions to the
functional %, Go], and define the self-energy for the lat- self-energy and compare the corresponding results to the
tice problem viaE(w)zzapp[GO]. The self-consistency is quantum Monte Carlo solution.
then imposed orGy(w), so thatGjoc(w)=Giyp(w). The Our first approximation is called the Hartree expansion
hope is that a controlled expansion of the impurity self-(H) and it includes a truncated perturbation-theory expan-
energy will lead to an accurate solution of the impurity prob-sjon about the Hartree mean-field solution, including all dia-
lem and of the resultant lattice problem. Here we use thgrams through second order. This expansion should not be
lowest-order Yosida-Yamada expansion, which is known taconfused with the Hartree approximation, which does not
provide reliable answers for the Wolff model describinginciude any of the second-order vertex corrections. These
magnetic impuritie$>** self-energy corrections with respect to the Hartree mean-field
The Yosida-Yamada expansion for the effective impuritysolution are constructed by using the Hartree self-energy dia-
problem(with an unknown density of statets obtained by a  gram shown in Fig. 1, to construct the mean-field propagator
partial resummation of diagrams that allows us to construcht Eq. (15). That is, we take
the self-energy functional in terms of diagrams that involve
either Hartree or Hartree-Fock Green’s functions. That is,

Svp=2p=Uny, (18
one considers the self-energy corrections with respect to th\?vhic:h implies that the Hartree self-energy insertions are in-
mean-field solution, and rewrites the Dyson equation as P 9y

cluded to all orders in the perturbative expansion. Hgrés
the (Hartreg mean-field particle number defined by Efj7)
with Gyr=Gy . Next, the Hartree mean-field Green’s func-
tion is used in evaluating the truncated Yosida-Yamada self-
energy functional to determine the approximate self-energy.
This functional is given in Fig. 1 through second ordetin
where the electronic propagatdeolid lineg are the Hartree
mean-field propagators from E¢L6), the phonon propaga-
Gyt(w)=Gy (@)~ Sye(w). tors (wiggly lines) are bareD(w)=—1[M(Q?— w?)], and

the impurity self-energy that renormalizes the effective field
It is clear that functional§2'\\("$[GMF] defined with different G, in Eq. (14) becomes
mean-field propagators are not the same, and it is not known
a priori which truncated approximation for the impurity self-

S(w)=3y+3% Gyl
energy leads to the most accurate result for the lattice prob-

lem. The mean-field solution has an average electron fillind\0te that this procedure is summing an infinite class of dia-
e defined by grams(the Hartree self-energy insertiondut is truncating

the perturbation theorwith respect to the Hartree mean-
field theory solutiorio include both the Fock and the second-
order fluctuating terms. It turns out that this procedure is
identical in form to what was previously called the IPT
with f(w) =1/ 1+ exp(Bw)] the Fermi factothe factor of 2  approximatior?, since the renormalization of the effective
is from the spin summationThis filling is usually different medium by the Hartree self-enerdip construct the Hartree
from the electron filling on the lattice that is determined by mean-field Green’s functigrcan be absorbed by a redefini-

1
[Gume(@)] 1 =SW[Guel ,

where3 WV is the sum of all self-energy diagrams defined in
terms of the mean-field propagator for the impurity problem
Gume and

Gimp(w)= (15

(16)

2
Nue=—_—1Im deGMF(w)f(w) (17
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just provides a frequency-independent shiftith the excep-
tion being the inclusion of the fifth diagram, which renormal-
izes the Hartree diagram by the Fock self-energy insertion.
The omission of the fifth diagram in the older IPT paper
may be thought to be innocuous because that diagram van- HE %
ishes at half filling and should not greatly affect the results Zyy= 2 * % i
off of half filling. However, when the coupling strength be-
comes large, its effects do become strong, as shown in the FiG. 2. Feynman diagrams included in the Hartree-Fock expan-
next section. To reiterate, the difference between the presesion. The top figure shows the Hartree and Fock diagrams, which
expansion and the older IPT work is that the fluctuating dia-are incorporated intdGyr, and the bottom shows the Yosida-
grams inEvY[GH] are evaluated wittG,, which does not Yamada functional about the Hartree-Fock mean-field solution ex-
include the frequency-independent shift from the fifth dia-panded through second order. The wiggly lines are bare phonon
gram of Fig. 1. The IPT calculation included the frequency-propagators and the straight lines are Hartree-Feokan-field
independent shifts to all orders, and hence evaluated the firgtopagators.
four diagrams of Fig. 1 using a different mean-field propa-
gator thanGy . The inclusion of the Fock self-energy inser- independent diagrarjsvhich sum up tdJ(n—nyg)] in ad-
tion into the Hartree diagram is just one of the subtle, andlition to the frequency-dependent diagrafsanilar to the
often neglected, diagrams that needs to be included in a truiiifth diagram in Fig. 1. Heren is the fully renormalized
cated approximation that includes all diagrams up to a givemparticle number of the lattice that is calculated by EL7)
order. with G|, replacingGy e . These diagrams arise simply from
Our second approximation is called the Hartree-Fockhe fact that in the exact skeleton expansion the Hartree dia-
(HF) expansion and is obtained by using the Hartree-Foclgram is evaluated with the fully dressed Green’s function
self-energy (yielding Un) rather than with the mean-field Green'’s func-
tion (which yieldsUny,g). At half filling, the two fillingsn
Imp=2pr=Unye+ 3¢ (20 and ny are usually equal, but they need not be the same

to define the mean-field propagator in E46) and including (and never aﬂeawgy fr(zmH half filling. W_e introduce a new
all second-order diagrams with respect to the Hartree-FocRelf-energy functionaly,[Gy] (that is based on the
mean-field solutiorfonce again, this should not be confused Y0sida-Yamada functionals defined abptreat has all of the
with the Hartree-Fock approximation that does not includehigher-order renormalizations of the Hartree diagram re-
any of the second-order vertex correctipriShe (Hartree- Moved from it[as shown, through third order in Fig(eB].
Fock mean-field particle numberye is calculated by using Then we have an exact relati®{w)=Un+34\[G,] for

tion of the chemical potentigkince the Hartree self-energy
se-22 + %

Gyr in Eq. (17) and the Fock self-energy e satisfies the self-energy.(w) defined in Eq(14). In this contribution,
the two self-energy functionals!, and Y, differ by one
s (w):ng deGr(w—e€)D(e)f(e) (21) diagram (the fifth diagram in Fig. 1 We can employ this

F HF exact relation to formulate the renormalized-Hartree

xpansion® (also called then-consistent approximation
hich enforces this self-consistency condition on the renor-
alized particle number. That is, for a given g, ny, and

with D(€) the bare phonon propagator again. This mean®
field solution sums both the Hartree and Fock self-energ
insertions to all orders, and would be identical to Migdal-
Eliashberg theory if the dressed phonon propagator was em-

ployed in Eq.(21) rather than the bare propagator. As de-
scribed in the Introduction, we are forced to use the bare
propagator if we want to reproduce the IPT limit in the large- (g
phonon-frequency limit. The Yosida-Yamada functional de- _, ? @ @
b Y-z -4 -2 -2 -4 -

fined onGy is given by the diagrams in Fig. 2 where the Iy~
solid lines are now Hartree-Fock propagators. The self-
energy correction tds, for the HF expansion can then be
written as )

S () =Spe+ S5 Gpel. (22 B % ?%%

The self-energy diagrams given in Figs. 1 and 2 are evalu-
ated on the imaginary axis by using the standard rldas
pllg:lt eXpreSS.l(.)ns.are given in EQLE) of Ref. 9(and the known as then-consistent approximationin which all dressings of
suitable modlflcat|0n§ for the Har_tree—l_:ocilj cdsend the the Hartree diagram are removed from the Yosida-Yamada func-
Mg;subara summations occurrlng 'rEYY[GH] and tional. (b) The renormalized Hartree-Fock expansion, in which all
2 {y[Ge] are performed numerically for both the Hartree dressings of the Hartree and the Fock diagrams are removed from
and the Hartree-Fock expansions. the Yosida-Yamada functional. The wiggly lines are the phonon

If the perturbative expansion for the self-energy is ex-propagators and the straight lines are the corresponding mean-field
tended to higher order in U we find additional frequency-Green’s functiongHartree or Hartree-Fogk

FIG. 3. Modified Yosida-Yamada functional for the renormal-
ized expansions(a) The renormalized-Hartree expansidalso



11618 FREERICKS, ZLATIC CHUNG, AND JARRELL PRB 58

iyy(w), we solve the transcendental equation, (a)
2 f 2 M + 2 + 2
n=——|m2de () — , \}:{
™ P w—(épg—,u,)—Un—Ecy(w)
é?)\
dimensional Hubbard model, this renormalized-Hartree ap-

(23
2 §
proach(RH) expands the region of the validity of the pertur-

bation theory and allows for the description of stronger Z § XM"?
2 3

to determine the impurity electron filling, and to obtain the
correction to the real part of the total self-energy. For the
Anderson and Wolff impurity models, and for the two-

s
correlation$>? The hope is that this renormalized-Hartree + + g + J'}[:
scheme will repair some of the inaccuracies of the truncated w
perturbation theories away from half filling. It is a much
_S|mpler approximation to study than_ a scheme th_at t_”e_s 10 FiG. 4. Ireducible vertex functions fgm) charge-density-wave
interpolate between the weak-coupling and atomic litiits ang (b) superconducting order. The wiggly lines are the bare pho-
(which is significantly more challenging to formulate for the on propagators and the straight lines are the corresponding mean-

eIectrqn-phonon problem . . field propagatorgHartree or Hartree-Fogk
A similar approach can be made for summing higher-

order diagrams in the Hartree-Fock expansion. In this case, (3) Calculate the effective-medium propaga® using
however, am-consistent approximation, that sums only the EQ. (14) with Gjy,,= G -
frequency-independent diagrams to all orders, is likely to be (4) Calculate the mean-field propagator using Ed).
less accurate than one that sums the renormalizations based(5) Calculate the Yosida-Yamada self-energy diagrams as
on both the Hartree and Fock diagrams. Hence, we form théefined by Fig. 1 or Fig. 2, with and without the renormal-
exact relation for the self-energy of E(.4), ization of the first-order diagram@s shown in Fig. B to
determine the total self-energy.
- (6) If the calculation for the self-energy has not con-
E(w)ZUnJrng deGioo(w—€)D(e)f(€) + 2T [Gel, verged, then adjust the chemical potential to produce the
(24)  target electron filling.
(7) Repeat step$2)—(6) until the calculation has con-

and employ it to evaluate the renormalized-Hartree-Fock exverged.

pansion(RHF) where the functionai$$(GHF) is truncated
at second orddsee Fig. 8)]. This approximation is formed Eq. 12
by evaluating both the Hartree and Fock diagrams with the ﬁ X

local Green'’s functionfinstead ofGy¢) but the second-order

diagrams continue to be evaluated Wiy . In this sense it adjust p

is “halfway” between a conserving approximatigwhich
not converged < )

evaluates all diagrams wit,;) and the truncated expan- Eq. 14

sions described above.
The only remaining objects that need to be determined are
the irreducible vertices for the CDW and SC instabilities.
. . . converged

These vertices are calculated with the mean-field Green's Fi / \\\

. . . ig. 4 /
function (either Hartree or Hartree-Focknd have an iden-
tical functional form for all different approximation schemes.
The diagrams included are presented in Fi¢p) 4or the
CDW vertex and Fig. @) for the SC vertex. The solid lines \1: Eq. 11

are Gyr (Gy or Gyg) and the wiggly lines are the bare
phonon propagator. Explicit expressions for these diagrams

Fig.1,2,0r3 Eq. 17 or 19

on the imaginary axis are given in Ed47) and(18) of Ref.
9 with Gq replaced byGyg .

FIG. 5. lterative algorithm for solving the self-consistent pertur-
bation theory. As described in the text, one starts from an initial
self-energy, then constructs the local Green’s function, the

. . effective-medium Green’s function, and then the mean-field
The calculational methods used are straightforward. Thesreen's function. The self-energy is then determined from the

perturbation expansion is carried out on the imaginary axisygsida-Yamada expansion, and if the calculation is not converged,

We employ an iterational algorithm to solve the self- then the chemical potential is updated to adjust the electron filling

consistent equations, which is summarized in Fig. 5. and the process is repeated. If the calculation has converged, then
(1) Start with an initial self-energ®.(w). the irreducible vertex functions are determined from Fig. 4, and the
(2) Use EQ.(12) to calculateG, . largest eigenvalue of the scattering matrix is then calculated.

Ill. CALCULATIONAL METHODS
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(8) Once converged, calculate the irreducible vertex func-accuracy was best when the global moves were chosen com-
tions from Fig. 4 and determine the maximal eigenvalue ofpletely randomly, which is the method used here. These re-
the scattering matrix in both the CDW and SC channels fronsults differ by a few percent from those shown previodsly,
Eqg. (11). where the global moves were coupled to the values of the

(9) Repeat(1)—(8) for another temperatur@ until the ~ Phonon coordinates, and the Trotter time slice was larger.
transition temperaturé. is found.

We use an energy cutoff of 256 Matsubara frequencies, IV. RESULTS AND DISCUSSION
which provides accurate results for temperatufesarger
than 0.01*, and our convergence criterion is that the The parameters of the Hamiltonian in HG) are chosen
Green’s functions do not change by more than one part 0 agree with previous theoretical work, and to represent a
10° from one iteration to the next. We find that the pertur- parameter range where the vertex corrections can cause large
bation theory typically converges in approximately 100 itera-€ffects. As such, we choose the phonon frequency to be on
tions of the main ring in Fig. 5. Sometimes the iterated equathe order of one-tenth of the bandwidth=0.5* (with the
tions develop limit cycles, whose oscillations can beeffective bandwidth of the Gaussian being about two stan-
suppressed by employing standard damping methods that agard deviations above and below the center, or approxi-
erage the i(—1)st andith iterations to produce the starting mately 4*). Most of our calculations are performed for
point for the next iteration. We also found that if the cou-three different values of the interaction strengtii g
pling strength is large enough, then some of the approximate 0.4 U=—0.64, one-sixth of the bandwidthwhich corre-
theories will have multiple solutions far(«) near half fill-  sponds to a fairly weak interaction where there are no pre-
ing. In this case, the symmetry point, with=U, becomes formed pairs, but the transition temperatures are large
unstable (i.e., the compressibility is negativeand the enough that the phase diagram can be determined reliably;
Green’s functions are no longer purely imaginary when thelii) g=0.5 (U= —1.0, one-fourth of the bandwidthwhich
electron filling is half filled. This latter result is an indication is in the moderate interaction regime; afiil) g=0.625 U
of the breakdown of the approximation method at such &= —1.5625, two-fifths of the bandwidthwhich is where the

large coupling strength. system enters the strongly coupled regime, where numerous
There also are some technical details that need to be digpreformed pairs are present abolg.
cussed about the quantum Monte Carlo simulatidriEhe The quasiparticle renormalization factor, the irreducible

results for the transition temperatures were calculated with £DW vertex function, and the irreducible SC vertex function
A7=0.4, and sometimes also with&r=0.2 and then ex- are plotted in Figs. ®—6(c). The vertex functions are aver-
trapolated taA =0 when the correlations were large enoughaged to show just the symmetric frequency component, since
that the Trotter error was noticeable. The self-energies anthat is all that contributes to the eigenvalue of the scattering
irreducible vertex functions were calculated with a fixed matrix for the CDW at half filling, or for the SC at any filling
A7=0.1to ensure a high accuracy. In general, there are threghis is so because the eigenvector with maximal eigenvalue
sources of error to the quantum Monte Carlo simulation: is symmetric with respect to a change in sign of the Matsub-
statistical errorf{ii) iteration error; andiii ) systematic error. ara frequency The coupling strength ig=0.4 and the fill-
The statistical error is the easiest error to control, and is théng is n=1.0, which yields a bare electron-phonon coupling
smallest of the three sources of error. The iteration errostrength of|U|=0.64, or\=p(0)|U|=0.36, which would
arises from performing calculations with the wrong dynami-naively be viewed as quite weak coupling. However, this is
cal mean fieldG, because the calculation has not yet con-not the case, as one can estimate the renormalized value of
verged fully. We typically iterate 8 or 9 times, which pro- from Z(0)—1 which lies at about 0.7. These calculations
vides good convergence for the iterations. The systematimdicate that higher-order diagrams, such as those that fully
error is more difficult to control. It arises from the Trotter dress the phonon propagator, are important even when the
error, and from otherpotentially unknowih sources. One bare coupling has.=0.36. What is interesting is that the
surprising source of error arose from the choice of globaperturbative results seem to have the right shape, but need to
updating moves for the phonon coordinate. Global movedave the frequency axis moved to the right to line up with
that shift the phonon coordinate at every time slice by arthe Monte Carlo data. Furthermore, since the perturbation
amount randomly chosen betweendx/2 and dx/2 were theory underestimates both the renormalization fagtdrich
supplemented by global shifts by an amount ranging betweewill enhanceT.) and the vertex functiofwhich will reduce
+29/(mOQ?) —dx/2 and =2g/(mQ?)+dx/2. These latter T.) one might expect these results to tend to cancel each
moves were chosen to allow the phonon coordinate to shifother out when calculating a phase diagram, which is indeed
between the two minima of the effective phonon potentialwhat we find below. Figures(@—7(c) show the same results
(separated by @[ mQ?]), which form when the system en- for the stronger coupling cage=0.5 andn=1.0(U|=1.0

ters the strong-coupling region, where preformed pairs exisand A =0.56). We can see that the error in the renormaliza-
aboveT.. When one is in the weak-coupling regime, wheretion factor has grown, even though all four perturbative
the effective phonon potential possesses a single-well strugnethods yield similar values. The CDW vertex becomes
ture, we find that the self-energy can differ by a few percenmore attractive at moderate coupling, which is missed by the
depending on whether the global moves are all chosen ramperturbation theory. The SC vertex has the right qualitative
domly, or if the supplemental global shifts are chosen tashape, but is underestimated at low frequencies. When the
move the phonon coordinate to the “other” wélle., if the  coupling strength is increased ¢=0.625 (not shown the
phonon coordinates lie in the right well then the global shiftsituation becomes even worse, with the same qualitative fea-
is chosen to move the system to the left, and vice yeilda&e  tures seen, a growing difference in the renormalization fac-
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FIG. 6. Self-energy and irreducible vertex functions for the Hol- _F|G' 7. Self-energy _a_nd ireducible vertex functions for t_he Hol-
stein model at half filling §=1.0) and weak coupling=0.4. The stein model at half f|||{ngl 4=10) and moderate coupling
temperature is just abovie, at T=1/16. (a) shows the quasiparticle =0.5. The te_mpe_rature IS JUSI. abng atT=1/§_). (@, (b), and(c)
renormalization factor minus 1 as a function of frequency. The four'® the quasiparticle renormallz_atlon factor minus 1, the CDW ver-
different expansion schemegHartree, renormalized Hartree, tex, and the S_C vertex, respectively. Note how t.he agreemen_t Wlth
Hartree-Fock, and renormalized Hartree-Fogke plotted with the perturbation theory worsens as the coupling strength is in-
lines, and the quantum Monte Carlo is plotted with solid dots. Wecreased.
believe the combined errors on the simulation to be on the order of
a few percent(b) is the CDW vertex andc) is the SC vertex. half filling, because of the cancellation of the errors to both
the self-energy and the vertex function. Note that we only
tors, and an underestimation of the size of the vertices.  plot the SC vertex here, because an asymmetric average is

We also include, in Fig. 8, a result at quarter fillilgg needed for the physically relevant piece of the CDW vertex.
=0.5 andg=0.4 at the same temperatufe-1/16 as in Fig. In addition to calculating the single-particle and two-
6. One might have thought that the quarter-filled case woulgbarticle self-energies, we can also investigate the phase dia-
be approximated much better by the perturbation theory begrams of the Holstein model. Based on our results for the
cause the effective coupling strength is lower due to the reself-energy and the vertex functions, it does not appear likely
duction of the electronic density of states at the Fermi levelthat any approximation will be too accurate for the phase
but we see that the shape of the curves is both qualitativelgiagrams, but as theorized above, it is possible that the inac-
and quantitatively similar for Figs. 6 and 8. The guantitativecuracies will cancel out to produce more accurate results for
agreement has improved, but the improvement is not drathe transition temperatures. Such behavior should be viewed
matic. What is surprising is that the calculated transitionas “accidental” agreement with the exact result.
temperature agrees much better with the QMC here than at We begin by calculating the transition temperature to the
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FIG. 10. Phase diagram of the Holstein model away from half
filling for three different coupling strengthg=0.4,g=0.5, andg
=0.625. The lines through the QMC data points are guides to the
eye. Note that the SC transition temperatures are approximated bet-
ter than the CDW transition temperatures, and that the phase dia-
grams are predicted more accurately than would be expected from

FIG. 8. Self-energy and irreducible vertex functions for the Hol- the individual self-energies or vertex functions. As the coupling

stein model at quarter fillingn(=0.5) and weak coupling=0.4.
The temperature is the same as in FigT&; 1/16. (a) is the quasi-
particle renormalization factor minus 1 aifb) is the SC vertex.

strength is increased the’s are all enhanced significantly, and the
location of the CDW-SC phase boundary is predicted less accu-
rately. The renormalized expansions do sometimes improve the

Note how the perturbation theory has improved, but less than whagualitative shape of the phase boundaries to show a maximuah

would have been expected naively.
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FIG. 9. Phase diagram of the Holstein model at half filling. The

half filling, but the perturbative approach is definitely breaking
down as the coupling strength becomes larger than 0.5.

commensuratécheckerboardCDW insulator at half filling

as a function of the interaction strength. The QMC soldfion
showed that the maximal; was on the order of 1/25th of
the bandwidth, occurring whdd was about two-fifths of the
bandwidth. The results for each of the four expansions
shown here is presented in Fig. 9. The horizontal axis is the
interaction strength and the vertical axis is the transition tem-
perature. One can see that the peakTjnversusU is not
produced by the perturbation theory, rather the transition
temperature continues to increase. This differs from what
happened in the so-called IPT approximation where the ap-
proximate curve fofT, did show a peak.The Hartree and
renormalized-Hartree expansions agree with each other and
the IPT approximation untiU is approximately— 1, where
they differ from each other because the thermodynamically
stableH and RH expansions are no longer at the particle-
hole symmetric point withu=U, but rather have different
values of (and no longer have purely imaginary Green's
functions when evaluated along the imaginary pxhis is

the point where the kink appears in tig(g) curve. The
remarkable agreement of the IPT approximation in predict-

four different expansion scheméines) are compared to the quan- NG both the peak position and the peak height accurately is
tum Monte Carlo(dots. Note how all perturbative approximations really just a coincidence, since neither the self-energy nor the
do not show a peak in the CDW transition temperature at halvertex function is reproduced well at that value of the inter-
filling, but rather continue to increase. The Hartree and renormalaction strengtt{see Figs. 6-8 There is a very delicate bal-
ized Hartree expansions are identical until the solution at half fillingance between the self-energy terfwhich tend to reduc@.

(with chemical potentia,=U) becomes unstable for the RH ex- as the interaction increageand the vertex-function terms
pansion, and the Green’s functions acquire real parts.

(which tend to increasg&. as the interaction increagethat
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causesT. to have a peak for the IPT approximation, but V. CONCLUSIONS

continue to increase for the approximations in this contribu-

tion. . . . work? Even at a weak value of the bare interaction strength
We end with a calculation of the phase diagrams off Of 4 _ g 4y poth the self-energy and the irreducible vertex
half f|||_|ng, which show the transition from the chec_kerpoard functions are not approximated accurately by the perturba-
CDW insulator to a SC. These results are plotted in Fig. 10jon theory. This implies that third-ordéand higher-order
The honzon}gl axis is the electron.flllmg and the vertical axisgiagrams are important and cannot be neglected. For ex-
is the transition temperature to either a CDW or SC phaseample, it is possible that a scheme that uses an expansion
The CDW-SC phase boundary lies at the points where th@jith dressed phonon propagators would be more accurate,
phase diagrams have a slope discontinuity. Three values @fhich is work in progress. Nevertheless, the perturbation
interaction strength are included, and both the approximateéheory does appear to produce a more accurate approxima-
solutions and the QMC results are presentdlie lines tion to the phase diagrams than the individual self-energies.
through the QMC data are just a guide to the )eyehe  On the other hand, these results show that there is no simple
agreement foif . is quite good for the weak-coupling value scheme that will allow one to approximate the electron-
g=0.4, with all approximations going through the QMC phonon problem accurately for all values of the phonon fre-
data for the SC phase, and overestimafihgonly slightly ~ quency. So one should not necessarily rely on approxima-
for the CDW phase. Here, the Hartree-Fock expansion iéons that employ purely electronic modefsuch as the
actually worse than the Hartree expansion for the cDwHuUbbard modsglto carry over to the electron-phonon prob-
phase. The calculation also seems to underestimate the lodgM and work well when the phonon frequency is small to

tion of the CDW-SC phase boundary. The case wjth0.5 moderate. Instead, it is more fruitful to work on generaliza-
begins to show how the solutions develop qualitativelytions of the Migdal-Eliashberg theory that work with dressed

wrong behavior near half filling. All but the Hartree-Fock Phonons, but include higher-order nonadiabatic effects such
expansion show a suppressionTofas the filling approaches 28 vertex corrections. Th|_s sh_ould save a lot of time in fpr-
1. Such a suppression was never seen in the QMC simuldnulating accurate approximation methods for real materials
tions, and is likely an artifact of the nonconserving nature oftnat have large enough phonon energy scales that the effects
the approximation&.It continues to be clear that the SC so- of nonconstant density of states and of vertex corrections
lutions are approximated better than the CDW solutions, ang2nnot be neglected. Working with dressed phonons actually
that the approximations behave worst near half filling. InMakes a lot of sense for the electron-phonon problem, be-
particular, it is important to note that the simpleconsistent ~ cause experiments can directly measure the dressed phonon
scheme. which worked so well for the Hubbard model. doesPectral function, so it is readily available for use in real
not appear to work as well for the electron-phonon promen{naterlals calculations. Furthermore, the dre_ssed _phonon
examined here because the phase diagraiand RH con- propagator can be extracted from the QMC simulation and

tinue to have qualitatively incorrect behavior. Finally we ex-USed in the perturbation theory for the electrons, just as is
amine the strongly coupled cage=0.625. Here the renor- QOne.from expenments on real materials. Work along these
malized expansions do a better job at repairing thdiN€S i currently in progress.

qualitatively wrong behavior of & . suppression near half
filling, but they do so by greatly enhancing thg's at and
near half filling from the truncated expansions. It is clear that We would like to thank Paul Miller and Joe Serene for
at this large a value of the coupling strength none of thesaseful discussions. J.K.F. and W.C. acknowledge support for
weak-coupling approaches is doing a good job at predictinghe initial stages of this work from the Office of Naval Re-
the phase diagrams. It is interesting to note that the clossearch Young Investigator Program N000149610828 and
agreement of the Hartree and renormalized-Hartree calcula-K.F. and V.Z. acknowledge support for the final stages of
tions shows that the majority of the shift of the chemicalthis work from the National Science Foundation INT-
potential comes from the Fock dressing of the Hartree dia9722782 and DMR-9627778. M.J. acknowledges support
gram. Surprisingly, the inclusion of this diagram has a largfrom the National Science Foundation DMR-9704021 and
effect on the phase diagram whgu|> 1. DMR-9357199, and from the Ohio Supercomputer Center.

What are the conclusions that can be drawn from this
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