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Vertex-corrected perturbation theory for the electron-phonon problem
with nonconstant density of states
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A series of weak-coupling perturbation theories that include the lowest-order vertex corrections are applied
to the attractive Holstein model in infinite dimensions. The approximations are chosen to reproduce the iterated
perturbation theory in the limit of half-filling and large phonon frequency~where the Holstein model maps onto
the Hubbard model!. Comparison is made with quantum Monte Carlo solutions to test the accuracy of different
approximation schemes.@S0163-1829~98!02541-7#
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I. INTRODUCTION

The theory of superconductivity, as first developed
Bardeen, Cooper, and Schrieffer,1 and then generalized t
strong coupling by Migdal,2 Eliashberg,3 and others,4,5 has
proven to be one of the most accurate theories of solid-s
physics. Properties of conventional low-Tc materials are
typically explained to accuracies of 1% or better. Newly d
covered materials, however, which have moderateTc’s, do
not fit into the parameter regimes studied so successfull
the 1950s and 1960s. These materials, such as theA15 com-
pounds, Ba12xKxBiO3, and K3C60 have large phonon energ
scales relative to the inverse electronic density of states
that both the effect of the energy dependence of the b
electronic density of states~i.e., nonconstant density o
states!, and the effect of vertex corrections may become i
portant in their description. We examine here a series
different weak-coupling perturbation theories that inclu
both the effects of nonconstant density of states and of ve
corrections to ascertain what methods should be used for
materials calculations of these higherTc compounds. Since
the most popular implementation of Migdal-Eliashbe
theory is manifestly particle-hole symmetric~because of the
neglect of the energy dependence of the electronic densi
states! it is not clear what the most accurate approximat
scheme is when the electron filling is doped away from h
filling and the energy dependence of the electronic densit
states becomes important. Our strategy is to solve a m
system~the Holstein model! in the infinite-dimensional limit
via the dynamical mean-field theory. This allows us to co
pare numerically exact quantum Monte Carlo solutions~in
the thermodynamic limit! with the different perturbative ap
proximations.

The Holstein model6 consists of conduction electrons th
interact with local~Einstein! phonons:
PRB 580163-1829/98/58~17!/11613~11!/$15.00
y

te

-

in

so
re

-
f

ex
al

of

lf
of
el

-

H52
t*

2Ad
(

^ j ,k&s
~cj s

† cks1cks
† cj s!

1(
j

~gxj2m!~nj↑1nj↓!

1
1

2
MV2(

j
xj

21
1

2 (
j

pj
2

M
. ~1!

In Eq. ~1!, cj s
† (cj s) creates~destroys! an electron at sitej

with spin s, nj s5cj s
† cj s is the electron number operato

andxj (pj ) is the phonon coordinate~momentum! at site j .
The hopping is chosen to be between the nearest neigh
( j andk) of a hypercubic lattice ind dimensions and the uni
of energy is the rescaled matrix elementt* ~so that the ki-
netic energy remains finite asd→`). The phonon has a
massM ~chosen to beM51), a frequencyV, and a spring
constantk[MV2 associated with it. The deformation pote
tial is denoted byg and it governs the strength of the co
pling of electrons to phonons. The effective electron-elect
interaction strength~mediated by the phonons! is then the
bipolaron binding energy

U[2
g2

MV2
52

g2

k
. ~2!

A chemical potentialm is employed to adjust the total elec
tron filling with m5U corresponding to half filling in the
exact solution.

In the instantaneous limit whereU remains finite andg
and V are large compared to the bandwidth (g,V→`, U
5finite), the Holstein model maps onto the attractive Hu
bard model7
11 613 ©1998 The American Physical Society
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H52
t*

2Ad
(

^ j ,k&s
~cj s

† cks1cks
† cj s!

2S m2
U

2 D(
j

~nj↑1nj↓!1U(
j

nj↑nj↓ , ~3!

with U defined by Eq.~2!.
Two cases of the Holstein Hamiltonian have we

established perturbative expansions. In the limit where
phonon frequency becomes smallV→0, but U remains fi-
nite, Migdal-Eliashberg theory2,3 is known to be an accurat
approximation. Migdal-Eliashberg theory is a self-consist
Hartree-Fock approximation that employs fully dressed p
non propagators and neglects all vertex corrections. T
cally, the energy dependence of the electronic density
states is also neglected, so the theory is evaluated wi
constant density of states.~This latter approximation is al
ways particle-hole symmetric and maps onto the limit of h
filling when the nonconstant density of states is used.! The
second limit is the large phonon frequency limitV→` with
U also remaining finite. In this case, a truncated perturba
expansion through second order8,9 ~which includes the
lowest-order vertex correction! is known to be accurate a
half filling for a large range ofU values because it properl
reproduces both the weak-coupling and strong-coupling l
its of the Hubbard model. It would be nice to construct
approximation scheme that continuously connects these
limits as the phonon frequency is varied. However, no sim
approximation can be found because the set of diagrams
dress the phonon propagator in the small-V limit do not cor-
rectly dress the phonon propagator in the large-V limit; in
the large-frequency limit the interaction is only between
and down spins, but in the small-frequency limit the intera
tion is between all spins. But, if one is willing to examin
perturbative expansions that are truncated with respect to
fluctuating diagrams, then approximations can be constru
that agree with the two known limits through the order
diagrams included in the expansion. The description of th
different methods is both subtle and technical, and will
covered in detail in Sec. II. Here we only want to comme
that the previous calculations for the electron-phonon pr
lem that were called the iterated perturbation theory9 ~IPT!
are actually based on a truncated perturbation theory a
the Hartree mean-field theory solution, which does not rep
duce the Migdal-Eliashberg~Hartree-Fock! limit properly. A
more promising approach for allV is to construct a truncate
perturbation theory about the Hartree-Fock mean-field the
solution, which is done here. In addition, we also exam
some simple methods that can be used to repair inconsis
cies that develop in the IPT as the system is doped off of
filling. This method entails self-consistently renormalizin
the higher-order fluctuations of the Hartree or Fock diagra
to all orders, which allows for the electron filling on th
lattice to be different from the electron filling of the mea
field theory solution when the higher-order fluctuations
included. Unfortunately, we find that all attempts to produ
an accurate perturbation theory that reproduces the IPT in
instantaneous limit are not very accurate for moderate p
non frequencies.

These perturbative approaches, and the many-body p
lem in general, simplify when the infinite-dimensional limit10
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is taken (d→`). Then the many-body problem becomes
local problem that retains its complicated dynamics in tim
The hopping integral is scaled to zero in such a fashion
the free-electron kinetic energy remains finite while the se
energy for the single-particle Green’s function and the ir
ducible vertex functions has no momentum dependence
is a functional of the local Green’s function.10–12 This limit
retains the strong-correlation effects that arise from trying
simultaneously minimize both the kinetic energy and the
tential energy, and hence has relevance for three-dimensi
materials.

Of course, we can also solve the infinite-dimensional H
stein model using a quantum Monte Carlo~QMC! method,
which contains all effects due to phonon renormalizatio
vertex corrections, and nonconstant electronic density
states. We use these solutions as a benchmark to tes
accuracy of the different approximation methods and to
termine what is the most fruitful approximation for th
electron-phonon problem.

We employ a Green’s function formalism to solve th
many-body problem. The local Green’s function is defined
be

Gloc~ ivn![2E
0

b

dteivnt
Tr^e2bHTtc~t!c†~0!&

Tr^e2bH&
, ~4!

and is calculated directly from a self-consistent quant
Monte Carlo procedure described elsewhere.13 Static two-
particle properties can also be determined since the irred
ible vertex function is local.14 The static susceptibility for
charge-density-wave~CDW! order is given by

xCDW~q!5
1

2N (
Rj 2Rkss8

eiq•~Rj 2Rk!TE
0

b

dt

3E
0

b

dt8@^nj s~t!nks8~t8!&2^nj s~t!&

3^nks8~t8!&#

5T(
mn

x̃mn
CDW~q!, ~5!

at each ordering wave vectorq @the indicesm andn denote
Matsubara frequenciesivn5 ipT(2n11)]. Dyson’s equa-
tion for the two-particle Green’s function becomes13,14

x̃mn
CDW~q!5x̃m

0 ~q!dmn2T(
p

x̃m
0 ~q!Gmp

CDWx̃pn
CDW~q!, ~6!

with Gmn
CDW the irreducible vertex function in the CDW chan

nel.
The bare CDW susceptibilityx̃n

0(q) in Eq. ~6! is defined
in terms of thedressedsingle-particle Green’s function
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x̃n
0~q![2

1

N (
k

Gn~k!Gn~k1q!

52
1

p
E

2`

`

dy
e2y2

ivn1m2Sn2y

3E
2`

`

dz
e2z2

ivn1m2Sn2X~q!y2zA12X2~q!

~7!

with all of the wave-vector dependence described by
scalar15,16 X(q)[( j 51

d cosqj /d. The integral forx̃m
0 (X) in

Eq. ~7! can then be performed analytically15 for the ‘‘check-
erboard’’ CDW phasex̃n

0(X521)52Gn /( ivn1m2Sn).
The irreducible vertex functionGmn

CDW is either directly cal-
culated in a perturbative expansion~described below! or is
determined by inverting the Dyson equation in Eq.~6! for the
local charge susceptibility~QMC!.

A similar procedure is used for the singlets-wave super-
conducting~SC! channel. The corresponding definitions a
as follows. The static susceptibility in the superconduct
channel is defined to be

xSC~q![
1

N (
Rj 2Rk

eiq•~Rj 2Rk!T

3E
0

b

dtE
0

b

dt8^cj↑~t!cj↓~t!ck↓
† ~t8!ck↑

† ~t8!&

5T(
mn

x̃mn
SC~q!, ~8!

for superconducting pairs that carry momentumq; Dyson’s
equation becomes

x̃mn
SC~q!5x̃m

0 8~q!dmn2T(
p

x̃m
0 8~q!Gmp

SCx̃pn
SC~q!, ~9!

with Gmn
SC the corresponding irreducible vertex function

describe the SC channel; the bare pair-field susceptib
becomes

x̃n
08~q![

1

N (
k

Gn~k!G2n21~2k1q!

5
1

p E
2`

`

dy
e2y2

ivn1m2Sn2yE2`

`

dz

3
e2z2

iv2n211m2S2n212X~q!y2zA12X2~q!

~10!

with the special valuex̃n
08(X51)52Im Gn /Im(ivn2Sn) for

the SC pair that carries no net momentum; and finally
irreducible vertex function is also either directly calculat
in a perturbative expansion~described below! or is deter-
mined by inverting the Dyson equation in Eq.~9! for the
local pair-field susceptibility~QMC!.
e

g

ty

e

The transition temperature of the infinite-dimension
Holstein model is then found by calculating the temperat
at which the relevant susceptibility diverges~CDW or SC!.
This transition temperature is found by locating the tempe
ture where the scattering matrix~in the relevant channel!

Tmn52TGmnx̃n
0 ~11!

has unit eigenvalue17 ~note that the local Green’s function
are always used in the evaluation of the bare susceptib
x̃0).

The remainder of the paper is arranged as follows: In S
II we describe the formalism employed to derive the diffe
ent truncated perturbative expansions for both the electro
self-energy and for the irreducible vertex functions. Partic
lar attention is paid to the mapping from the lattice proble
onto an effective impurity problem, and how to extract
perturbative expansion that includes the lowest-order fl
tuations beyond a mean-field theory solution. In Sec. III
describe the details of the calculational procedure a
present our results in Sec. IV. Section V contains a summ
and our conclusions.

II. LATTICE-IMPURITY MAPPING

The properties of the Holstein model are calculated
mapping the lattice problem onto the single-impurity Wol
Holstein model18,6 and solving the impurity self-energy by
truncated perturbation expansion. To define the mapping
begin with the self-energy of the Holstein model, which
momentum independent in infinite dimensions, and write
local Green’s function for the lattice as

Gloc~v!5(
p

1

v2~ep2m!2S~v!
, ~12!

whereep is the noninteracting electronic band structure
the lattice~assuming spin degeneracyn↑5n↓5n/2). The lo-
cal self-energyS~v! is defined by the functional,S(v)
5S@Gloc#, where S@Gloc# represents the sum of all th
skeleton diagrams generated by the perturbation theory,
U as the expansion parameter~in a Baym-Kadanoff
expansion19!. On the other hand, the same set of skele
diagrams appears in the self-energy of an impurity probl
described by the Wolff-Holstein Hamiltonian,

Himp5H01gx0~n0↑1n0↓!1
p0

2

2M
1

1

2
MV2x0

2 , ~13!

whereH0 describes a band of noninteracting electrons,n0s

is the number operator for conduction electrons of spins at
the impurity site, andx0 (p0) is the ‘‘impurity’’ phonon co-
ordinate~momentum!. The renormalized electron propagat
at the impurity site can be written as

Gimp~v!5
1

G0
21~v!2S~v!

. ~14!

Here G0 is the free-electron propagator at the impurity s
~which is often called the effective-medium propagator!, and
S~v! describes the effects due to the coupling to the lo
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phonon. Note that the effective mediumG0 is not equal to
the noninteracting lattice propagator except whenU50.

Since the impurity and the lattice self-energy function
S@Gimp# and S@Gloc# are the same, the self-energies w
also be the same ifGimp(v)5Gloc(v). Thus, the lattice
problem maps onto the impurity problem, provided the
fective medium propagatorG0 is adjusted so that the right
hand sides of Eqs.~12! and ~14! are equal. In general, th
self-energy functionalS@Gloc# is not known. But equivalen
expansions can also be made for the impurity self-energy
rearranging the skeleton-diagram expansion. For examp
functional defined on the effective-medium propaga
G0(v) can be employed, such thatS(v)5S0@G0#, where
S0@G0# represents the sum of all connected graphs gener
by Wick’s theorem ~without any resummations!. If the
graphs forS@Gloc# and S0@G0# are summed to all orders
then the self-energies must agree. Furthermore, the effe
medium G0(v) can be uniquely determined b
either G0

21(v)5Gloc
21(v)1S@G# or G0

21(v)5Gloc
21(v)

1S0@G0#.
Since the exact self-energy for the Wolff-Holstein mod

with an arbitrary density of states is not known, our strate
is to make a truncated expansion for the impurity self-ene
functionalSapp@G0#, and define the self-energy for the la
tice problem viaS(v)5Sapp@G0#. The self-consistency is
then imposed onG0(v), so thatGloc(v)5Gimp(v). The
hope is that a controlled expansion of the impurity se
energy will lead to an accurate solution of the impurity pro
lem and of the resultant lattice problem. Here we use
lowest-order Yosida-Yamada expansion, which is known
provide reliable answers for the Wolff model describi
magnetic impurities.20,21

The Yosida-Yamada expansion for the effective impur
problem~with an unknown density of states! is obtained by a
partial resummation of diagrams that allows us to constr
the self-energy functional in terms of diagrams that invo
either Hartree or Hartree-Fock Green’s functions. That
one considers the self-energy corrections with respect to
mean-field solution, and rewrites the Dyson equation as

Gimp~v!5
1

@GMF~v!#212SYY
MF@GMF#

, ~15!

whereSYY
MF is the sum of all self-energy diagrams defined

terms of the mean-field propagator for the impurity proble
GMF and

GMF
21 ~v!5G0

21~v!2SMF~v! . ~16!

It is clear that functionalsSYY
MF@GMF# defined with different

mean-field propagators are not the same, and it is not kn
a priori which truncated approximation for the impurity se
energy leads to the most accurate result for the lattice p
lem. The mean-field solution has an average electron fil
nMF defined by

nMF52
2

p
Im E dvGMF~v! f ~v! ~17!

with f (w)51/@11exp(bv)# the Fermi factor~the factor of 2
is from the spin summation!. This filling is usually different
from the electron filling on the lattice that is determined
s
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the same equation, but withGMF replaced byGloc . In this
contribution, we consider four different expansions to t
self-energy and compare the corresponding results to
quantum Monte Carlo solution.

Our first approximation is called the Hartree expans
(H) and it includes a truncated perturbation-theory exp
sion about the Hartree mean-field solution, including all d
grams through second order. This expansion should no
confused with the Hartree approximation, which does
include any of the second-order vertex corrections. Th
self-energy corrections with respect to the Hartree mean-fi
solution are constructed by using the Hartree self-energy
gram shown in Fig. 1, to construct the mean-field propaga
of Eq. ~15!. That is, we take

SMF5SH5UnH , ~18!

which implies that the Hartree self-energy insertions are
cluded to all orders in the perturbative expansion. HerenH is
the ~Hartree! mean-field particle number defined by Eq.~17!
with GMF5GH . Next, the Hartree mean-field Green’s fun
tion is used in evaluating the truncated Yosida-Yamada s
energy functional to determine the approximate self-ener
This functional is given in Fig. 1 through second order inU
where the electronic propagators~solid lines! are the Hartree
mean-field propagators from Eq.~16!, the phonon propaga
tors ~wiggly lines! are bareD(v)521/@M (V22v2)#, and
the impurity self-energy that renormalizes the effective fie
G0 in Eq. ~14! becomes

S~v!5SH1SYY
H @GH#. ~19!

Note that this procedure is summing an infinite class of d
grams~the Hartree self-energy insertions!, but is truncating
the perturbation theorywith respect to the Hartree mean
field theory solutionto include both the Fock and the secon
order fluctuating terms. It turns out that this procedure
identical in form to what was previously called the IP
approximation,9 since the renormalization of the effectiv
medium by the Hartree self-energy~to construct the Hartree
mean-field Green’s function! can be absorbed by a redefin

FIG. 1. Feynman diagrams included in the Hartree expans
The top figure shows the Hartree diagram, which is incorpora
into GMF , and the bottom shows the Yosida-Yamada functio
about the Hartree mean-field solution expanded through secon
der. The wiggly lines are bare phonon propagators and the stra
lines are Hartree~mean-field! propagators. The fifth diagram tha
involves the Fock dressing of the Hartree diagram was not inclu
in the previous work.
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tion of the chemical potential~since the Hartree self-energ
just provides a frequency-independent shift!, with the excep-
tion being the inclusion of the fifth diagram, which renorma
izes the Hartree diagram by the Fock self-energy insert
The omission of the fifth diagram in the older IPT pape9

may be thought to be innocuous because that diagram
ishes at half filling and should not greatly affect the resu
off of half filling. However, when the coupling strength b
comes large, its effects do become strong, as shown in
next section. To reiterate, the difference between the pre
expansion and the older IPT work is that the fluctuating d
grams inSYY

H @GH# are evaluated withGH which does not
include the frequency-independent shift from the fifth d
gram of Fig. 1. The IPT calculation included the frequenc
independent shifts to all orders, and hence evaluated the
four diagrams of Fig. 1 using a different mean-field prop
gator thanGH . The inclusion of the Fock self-energy inse
tion into the Hartree diagram is just one of the subtle, a
often neglected, diagrams that needs to be included in a t
cated approximation that includes all diagrams up to a gi
order.

Our second approximation is called the Hartree-Fo
~HF! expansion and is obtained by using the Hartree-F
self-energy

SMF5SHF5UnHF1SF ~20!

to define the mean-field propagator in Eq.~16! and including
all second-order diagrams with respect to the Hartree-F
mean-field solution~once again, this should not be confus
with the Hartree-Fock approximation that does not inclu
any of the second-order vertex corrections!. The ~Hartree-
Fock! mean-field particle numbernHF is calculated by using
GHF in Eq. ~17! and the Fock self-energySF satisfies

SF~v!5g2E deGHF~v2e!D~e! f ~e! ~21!

with D(e) the bare phonon propagator again. This me
field solution sums both the Hartree and Fock self-ene
insertions to all orders, and would be identical to Migd
Eliashberg theory if the dressed phonon propagator was
ployed in Eq.~21! rather than the bare propagator. As d
scribed in the Introduction, we are forced to use the b
propagator if we want to reproduce the IPT limit in the larg
phonon-frequency limit. The Yosida-Yamada functional d
fined onGHF is given by the diagrams in Fig. 2 where th
solid lines are now Hartree-Fock propagators. The s
energy correction toG0 for the HF expansion can then b
written as

S~v!5SHF1SYY
HF@GHF#. ~22!

The self-energy diagrams given in Figs. 1 and 2 are ev
ated on the imaginary axis by using the standard rules@ex-
plicit expressions are given in Eq.~16! of Ref. 9 ~and the
suitable modifications for the Hartree-Fock case!# and the
Matsubara summations occurring inSYY

H @GH# and
SYY

HF@GHF# are performed numerically for both the Hartre
and the Hartree-Fock expansions.

If the perturbative expansion for the self-energy is e
tended to higher order in U we find additional frequenc
n.

n-
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independent diagrams@which sum up toU(n2nMF)] in ad-
dition to the frequency-dependent diagrams~similar to the
fifth diagram in Fig. 1!. Here n is the fully renormalized
particle number of the lattice that is calculated by Eq.~17!
with Gloc replacingGMF . These diagrams arise simply from
the fact that in the exact skeleton expansion the Hartree
gram is evaluated with the fully dressed Green’s funct
~yielding Un) rather than with the mean-field Green’s fun
tion ~which yieldsUnMF). At half filling, the two fillings n
and nMF are usually equal, but they need not be the sa
~and never are! away from half filling. We introduce a new

self-energy functionalS̃YY
H @GH# ~that is based on the

Yosida-Yamada functionals defined above! that has all of the
higher-order renormalizations of the Hartree diagram
moved from it@as shown, through third order in Fig. 3~a!#.

Then we have an exact relationS(v)5Un1S̃YY
H @GH# for

the self-energyS~v! defined in Eq.~14!. In this contribution,

the two self-energy functionalsSYY
H and S̃YY

H differ by one
diagram~the fifth diagram in Fig. 1!. We can employ this
exact relation to formulate the renormalized-Hartr
expansions22 ~also called then-consistent approximation!,
which enforces this self-consistency condition on the ren
malized particle number. That is, for a givenm, g, nH , and

FIG. 2. Feynman diagrams included in the Hartree-Fock exp
sion. The top figure shows the Hartree and Fock diagrams, w
are incorporated intoGMF , and the bottom shows the Yosida
Yamada functional about the Hartree-Fock mean-field solution
panded through second order. The wiggly lines are bare pho
propagators and the straight lines are Hartree-Fock~mean-field!
propagators.

FIG. 3. Modified Yosida-Yamada functional for the renorma
ized expansions.~a! The renormalized-Hartree expansion~also
known as then-consistent approximation!, in which all dressings of
the Hartree diagram are removed from the Yosida-Yamada fu
tional. ~b! The renormalized Hartree-Fock expansion, in which
dressings of the Hartree and the Fock diagrams are removed
the Yosida-Yamada functional. The wiggly lines are the phon
propagators and the straight lines are the corresponding mean
Green’s functions~Hartree or Hartree-Fock!.
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S̃YY
H (v), we solve the transcendental equation,

n52
2

p
Im (

p
E dv

f ~v!

v2~eps2m!2Un2S̃YY
H ~v!

,

~23!

to determine the impurity electron fillingn, and to obtain the
correction to the real part of the total self-energy. For
Anderson and Wolff impurity models, and for the two
dimensional Hubbard model, this renormalized-Hartree
proach~RH! expands the region of the validity of the pertu
bation theory and allows for the description of strong
correlations.22,23 The hope is that this renormalized-Hartr
scheme will repair some of the inaccuracies of the trunca
perturbation theories away from half filling. It is a muc
simpler approximation to study than a scheme that tries
interpolate between the weak-coupling and atomic limit24

~which is significantly more challenging to formulate for th
electron-phonon problem!.

A similar approach can be made for summing high
order diagrams in the Hartree-Fock expansion. In this c
however, ann-consistent approximation, that sums only t
frequency-independent diagrams to all orders, is likely to
less accurate than one that sums the renormalizations b
on both the Hartree and Fock diagrams. Hence, we form
exact relation for the self-energy of Eq.~14!,

S~v!5Un1g2E deGloc~v2e!D~e! f ~e!1S̃YY
HF@GHF#,

~24!

and employ it to evaluate the renormalized-Hartree-Fock

pansion~RHF! where the functionalS̃YY
HF(GHF) is truncated

at second order@see Fig. 3~b!#. This approximation is formed
by evaluating both the Hartree and Fock diagrams with
local Green’s function~instead ofGHF) but the second-orde
diagrams continue to be evaluated withGHF . In this sense it
is ‘‘halfway’’ between a conserving approximation~which
evaluates all diagrams withGloc) and the truncated expan
sions described above.

The only remaining objects that need to be determined
the irreducible vertices for the CDW and SC instabilitie
These vertices are calculated with the mean-field Gree
function ~either Hartree or Hartree-Fock! and have an iden
tical functional form for all different approximation scheme
The diagrams included are presented in Fig. 4~a! for the
CDW vertex and Fig. 4~b! for the SC vertex. The solid line
are GMF (GH or GHF) and the wiggly lines are the bar
phonon propagator. Explicit expressions for these diagra
on the imaginary axis are given in Eqs.~17! and~18! of Ref.
9 with G0 replaced byGMF .

III. CALCULATIONAL METHODS

The calculational methods used are straightforward. T
perturbation expansion is carried out on the imaginary a
We employ an iterational algorithm to solve the se
consistent equations, which is summarized in Fig. 5.

~1! Start with an initial self-energyS~v!.
~2! Use Eq.~12! to calculateGloc .
e

-

r

d

to

-
e,

e
sed
e

x-

e

re
.
’s

.

s

e
s.

~3! Calculate the effective-medium propagatorG0 using
Eq. ~14! with Gimp5Gloc .

~4! Calculate the mean-field propagator using Eq.~16!.
~5! Calculate the Yosida-Yamada self-energy diagrams

defined by Fig. 1 or Fig. 2, with and without the renorma
ization of the first-order diagrams~as shown in Fig. 3!, to
determine the total self-energy.

~6! If the calculation for the self-energy has not co
verged, then adjust the chemical potential to produce
target electron filling.

~7! Repeat steps~2!–~6! until the calculation has con
verged.

FIG. 4. Irreducible vertex functions for~a! charge-density-wave
and ~b! superconducting order. The wiggly lines are the bare p
non propagators and the straight lines are the corresponding m
field propagators~Hartree or Hartree-Fock!.

FIG. 5. Iterative algorithm for solving the self-consistent pertu
bation theory. As described in the text, one starts from an ini
self-energy, then constructs the local Green’s function,
effective-medium Green’s function, and then the mean-fi
Green’s function. The self-energy is then determined from
Yosida-Yamada expansion, and if the calculation is not converg
then the chemical potential is updated to adjust the electron fil
and the process is repeated. If the calculation has converged,
the irreducible vertex functions are determined from Fig. 4, and
largest eigenvalue of the scattering matrix is then calculated.
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~8! Once converged, calculate the irreducible vertex fu
tions from Fig. 4 and determine the maximal eigenvalue
the scattering matrix in both the CDW and SC channels fr
Eq. ~11!.

~9! Repeat~1!–~8! for another temperatureT until the
transition temperatureTc is found.

We use an energy cutoff of 256 Matsubara frequenc
which provides accurate results for temperaturesT larger
than 0.01t* , and our convergence criterion is that th
Green’s functions do not change by more than one par
109 from one iteration to the next. We find that the pertu
bation theory typically converges in approximately 100 ite
tions of the main ring in Fig. 5. Sometimes the iterated eq
tions develop limit cycles, whose oscillations can
suppressed by employing standard damping methods tha
erage the (i 21)st andi th iterations to produce the startin
point for the next iteration. We also found that if the co
pling strength is large enough, then some of the approxim
theories will have multiple solutions forn(m) near half fill-
ing. In this case, the symmetry point, withm5U, becomes
unstable ~i.e., the compressibility is negative!, and the
Green’s functions are no longer purely imaginary when
electron filling is half filled. This latter result is an indicatio
of the breakdown of the approximation method at such
large coupling strength.

There also are some technical details that need to be
cussed about the quantum Monte Carlo simulations.13 The
results for the transition temperatures were calculated wi
Dt50.4, and sometimes also with aDt50.2 and then ex-
trapolated toDt50 when the correlations were large enou
that the Trotter error was noticeable. The self-energies
irreducible vertex functions were calculated with a fix
Dt50.1 to ensure a high accuracy. In general, there are t
sources of error to the quantum Monte Carlo simulation:~i!
statistical error;~ii ! iteration error; and~iii ! systematic error.
The statistical error is the easiest error to control, and is
smallest of the three sources of error. The iteration e
arises from performing calculations with the wrong dynam
cal mean fieldG0 because the calculation has not yet co
verged fully. We typically iterate 8 or 9 times, which pro
vides good convergence for the iterations. The system
error is more difficult to control. It arises from the Trotte
error, and from other~potentially unknown! sources. One
surprising source of error arose from the choice of glo
updating moves for the phonon coordinate. Global mo
that shift the phonon coordinate at every time slice by
amount randomly chosen between2dx/2 and dx/2 were
supplemented by global shifts by an amount ranging betw
62g/(mV2)2dx/2 and 62g/(mV2)1dx/2. These latter
moves were chosen to allow the phonon coordinate to s
between the two minima of the effective phonon poten
~separated by 2g/@mV2#), which form when the system en
ters the strong-coupling region, where preformed pairs e
aboveTc . When one is in the weak-coupling regime, whe
the effective phonon potential possesses a single-well st
ture, we find that the self-energy can differ by a few perc
depending on whether the global moves are all chosen
domly, or if the supplemental global shifts are chosen
move the phonon coordinate to the ‘‘other’’ well~i.e., if the
phonon coordinates lie in the right well then the global sh
is chosen to move the system to the left, and vice versa!. The
-
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accuracy was best when the global moves were chosen c
pletely randomly, which is the method used here. These
sults differ by a few percent from those shown previousl9

where the global moves were coupled to the values of
phonon coordinates, and the Trotter time slice was large

IV. RESULTS AND DISCUSSION

The parameters of the Hamiltonian in Eq.~1! are chosen
to agree with previous theoretical work, and to represen
parameter range where the vertex corrections can cause
effects. As such, we choose the phonon frequency to be
the order of one-tenth of the bandwidthV50.5t* ~with the
effective bandwidth of the Gaussian being about two st
dard deviations above and below the center, or appro
mately 4t* ). Most of our calculations are performed fo
three different values of the interaction strength:~i! g
50.4 (U520.64, one-sixth of the bandwidth!, which corre-
sponds to a fairly weak interaction where there are no p
formed pairs, but the transition temperatures are la
enough that the phase diagram can be determined relia
~ii ! g50.5 (U521.0, one-fourth of the bandwidth!, which
is in the moderate interaction regime; and~iii ! g50.625 (U
521.5625, two-fifths of the bandwidth!, which is where the
system enters the strongly coupled regime, where nume
preformed pairs are present aboveTc .

The quasiparticle renormalization factor, the irreducib
CDW vertex function, and the irreducible SC vertex functi
are plotted in Figs. 6~a!–6~c!. The vertex functions are aver
aged to show just the symmetric frequency component, s
that is all that contributes to the eigenvalue of the scatter
matrix for the CDW at half filling, or for the SC at any filling
~this is so because the eigenvector with maximal eigenva
is symmetric with respect to a change in sign of the Mats
ara frequency!. The coupling strength isg50.4 and the fill-
ing is n51.0, which yields a bare electron-phonon coupli
strength ofuUu50.64, orl5r(0)uUu50.36, which would
naively be viewed as quite weak coupling. However, this
not the case, as one can estimate the renormalized valuel
from Z(0)21 which lies at about 0.7. These calculatio
indicate that higher-order diagrams, such as those that f
dress the phonon propagator, are important even when
bare coupling hasl50.36. What is interesting is that th
perturbative results seem to have the right shape, but nee
have the frequency axis moved to the right to line up w
the Monte Carlo data. Furthermore, since the perturba
theory underestimates both the renormalization factor~which
will enhanceTc) and the vertex function~which will reduce
Tc) one might expect these results to tend to cancel e
other out when calculating a phase diagram, which is ind
what we find below. Figures 7~a!–7~c! show the same result
for the stronger coupling caseg50.5 andn51.0 (uUu51.0
andl50.56). We can see that the error in the renormali
tion factor has grown, even though all four perturbati
methods yield similar values. The CDW vertex becom
more attractive at moderate coupling, which is missed by
perturbation theory. The SC vertex has the right qualitat
shape, but is underestimated at low frequencies. When
coupling strength is increased tog50.625 ~not shown! the
situation becomes even worse, with the same qualitative
tures seen, a growing difference in the renormalization f
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tors, and an underestimation of the size of the vertices.
We also include, in Fig. 8, a result at quarter fillingn

50.5 andg50.4 at the same temperatureT51/16 as in Fig.
6. One might have thought that the quarter-filled case wo
be approximated much better by the perturbation theory
cause the effective coupling strength is lower due to the
duction of the electronic density of states at the Fermi lev
but we see that the shape of the curves is both qualitati
and quantitatively similar for Figs. 6 and 8. The quantitat
agreement has improved, but the improvement is not d
matic. What is surprising is that the calculated transit
temperature agrees much better with the QMC here tha

FIG. 6. Self-energy and irreducible vertex functions for the H
stein model at half filling (n51.0) and weak couplingg50.4. The
temperature is just aboveTc at T51/16. ~a! shows the quasiparticle
renormalization factor minus 1 as a function of frequency. The f
different expansion schemes~Hartree, renormalized Hartree
Hartree-Fock, and renormalized Hartree-Fock! are plotted with
lines, and the quantum Monte Carlo is plotted with solid dots.
believe the combined errors on the simulation to be on the orde
a few percent.~b! is the CDW vertex and~c! is the SC vertex.
ld
e-
-

l,
ly

a-
n
at

half filling, because of the cancellation of the errors to bo
the self-energy and the vertex function. Note that we o
plot the SC vertex here, because an asymmetric averag
needed for the physically relevant piece of the CDW vert

In addition to calculating the single-particle and tw
particle self-energies, we can also investigate the phase
grams of the Holstein model. Based on our results for
self-energy and the vertex functions, it does not appear lik
that any approximation will be too accurate for the pha
diagrams, but as theorized above, it is possible that the in
curacies will cancel out to produce more accurate results
the transition temperatures. Such behavior should be vie
as ‘‘accidental’’ agreement with the exact result.

We begin by calculating the transition temperature to

-

r

e
of

FIG. 7. Self-energy and irreducible vertex functions for the H
stein model at half filling (n51.0) and moderate couplingg
50.5. The temperature is just aboveTc at T51/9. ~a!, ~b!, and~c!
are the quasiparticle renormalization factor minus 1, the CDW v
tex, and the SC vertex, respectively. Note how the agreement
the perturbation theory worsens as the coupling strength is
creased.
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FIG. 8. Self-energy and irreducible vertex functions for the H
stein model at quarter filling (n50.5) and weak couplingg50.4.
The temperature is the same as in Fig. 6,T51/16. ~a! is the quasi-
particle renormalization factor minus 1 and~b! is the SC vertex.
Note how the perturbation theory has improved, but less than w
would have been expected naively.

FIG. 9. Phase diagram of the Holstein model at half filling. T
four different expansion schemes~lines! are compared to the quan
tum Monte Carlo~dots!. Note how all perturbative approximation
do not show a peak in the CDW transition temperature at h
filling, but rather continue to increase. The Hartree and renorm
ized Hartree expansions are identical until the solution at half fill
~with chemical potentialm5U) becomes unstable for the RH ex
pansion, and the Green’s functions acquire real parts.
commensurate~checkerboard! CDW insulator at half filling
as a function of the interaction strength. The QMC solutio13

showed that the maximalTc was on the order of 1/25th o
the bandwidth, occurring whenU was about two-fifths of the
bandwidth. The results for each of the four expansio
shown here is presented in Fig. 9. The horizontal axis is
interaction strength and the vertical axis is the transition te
perature. One can see that the peak inTc versusU is not
produced by the perturbation theory, rather the transit
temperature continues to increase. This differs from w
happened in the so-called IPT approximation where the
proximate curve forTc did show a peak.9 The Hartree and
renormalized-Hartree expansions agree with each other
the IPT approximation untilU is approximately21, where
they differ from each other because the thermodynamic
stableH and RH expansions are no longer at the partic
hole symmetric point withm5U, but rather have differen
values ofm ~and no longer have purely imaginary Green
functions when evaluated along the imaginary axis!. This is
the point where the kink appears in theTc(g) curve. The
remarkable agreement of the IPT approximation in pred
ing both the peak position and the peak height accuratel
really just a coincidence, since neither the self-energy nor
vertex function is reproduced well at that value of the int
action strength~see Figs. 6–8!. There is a very delicate bal
ance between the self-energy terms~which tend to reduceTc
as the interaction increases! and the vertex-function term
~which tend to increaseTc as the interaction increases! that

-

at

lf
l-

g

FIG. 10. Phase diagram of the Holstein model away from h
filling for three different coupling strengthsg50.4,g50.5, andg
50.625. The lines through the QMC data points are guides to
eye. Note that the SC transition temperatures are approximated
ter than the CDW transition temperatures, and that the phase
grams are predicted more accurately than would be expected
the individual self-energies or vertex functions. As the coupli
strength is increased theTc’s are all enhanced significantly, and th
location of the CDW-SC phase boundary is predicted less ac
rately. The renormalized expansions do sometimes improve
qualitative shape of the phase boundaries to show a maximumTc at
half filling, but the perturbative approach is definitely breaki
down as the coupling strength becomes larger than 0.5.
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causesTc to have a peak for the IPT approximation, b
continue to increase for the approximations in this contri
tion.

We end with a calculation of the phase diagrams off
half filling, which show the transition from the checkerboa
CDW insulator to a SC. These results are plotted in Fig.
The horizontal axis is the electron filling and the vertical a
is the transition temperature to either a CDW or SC pha
The CDW-SC phase boundary lies at the points where
phase diagrams have a slope discontinuity. Three value
interaction strength are included, and both the approxim
solutions and the QMC results are presented~the lines
through the QMC data are just a guide to the eye!. The
agreement forTc is quite good for the weak-coupling valu
g50.4, with all approximations going through the QM
data for the SC phase, and overestimatingTc only slightly
for the CDW phase. Here, the Hartree-Fock expansion
actually worse than the Hartree expansion for the CD
phase. The calculation also seems to underestimate the
tion of the CDW-SC phase boundary. The case withg50.5
begins to show how the solutions develop qualitativ
wrong behavior near half filling. All but the Hartree-Foc
expansion show a suppression ofTc as the filling approache
1. Such a suppression was never seen in the QMC sim
tions, and is likely an artifact of the nonconserving nature
the approximations.9 It continues to be clear that the SC s
lutions are approximated better than the CDW solutions,
that the approximations behave worst near half filling.
particular, it is important to note that the simplen-consistent
scheme, which worked so well for the Hubbard model, d
not appear to work as well for the electron-phonon probl
examined here because the phase diagrams (H and RH! con-
tinue to have qualitatively incorrect behavior. Finally we e
amine the strongly coupled caseg50.625. Here the renor
malized expansions do a better job at repairing
qualitatively wrong behavior of aTc suppression near ha
filling, but they do so by greatly enhancing theTc’s at and
near half filling from the truncated expansions. It is clear t
at this large a value of the coupling strength none of th
weak-coupling approaches is doing a good job at predic
the phase diagrams. It is interesting to note that the c
agreement of the Hartree and renormalized-Hartree calc
tions shows that the majority of the shift of the chemic
potential comes from the Fock dressing of the Hartree d
gram. Surprisingly, the inclusion of this diagram has a la
effect on the phase diagram whenuUu.1.
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V. CONCLUSIONS

What are the conclusions that can be drawn from t
work? Even at a weak value of the bare interaction stren
(g50.4) both the self-energy and the irreducible vert
functions are not approximated accurately by the pertur
tion theory. This implies that third-order~and higher-order!
diagrams are important and cannot be neglected. For
ample, it is possible that a scheme that uses an expan
with dressed phonon propagators would be more accur
which is work in progress. Nevertheless, the perturbat
theory does appear to produce a more accurate approx
tion to the phase diagrams than the individual self-energ
On the other hand, these results show that there is no sim
scheme that will allow one to approximate the electro
phonon problem accurately for all values of the phonon f
quency. So one should not necessarily rely on approxim
tions that employ purely electronic models~such as the
Hubbard model! to carry over to the electron-phonon pro
lem and work well when the phonon frequency is small
moderate. Instead, it is more fruitful to work on generaliz
tions of the Migdal-Eliashberg theory that work with dress
phonons, but include higher-order nonadiabatic effects s
as vertex corrections. This should save a lot of time in f
mulating accurate approximation methods for real mater
that have large enough phonon energy scales that the ef
of nonconstant density of states and of vertex correcti
cannot be neglected. Working with dressed phonons actu
makes a lot of sense for the electron-phonon problem,
cause experiments can directly measure the dressed ph
spectral function, so it is readily available for use in re
materials calculations. Furthermore, the dressed pho
propagator can be extracted from the QMC simulation a
used in the perturbation theory for the electrons, just a
done from experiments on real materials. Work along th
lines is currently in progress.
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14V. Zlatić and B. Horvatic´, Solid State Commun.75, 263 ~1990!.
15U. Brandt and C. Mielsch, Z. Phys. B75, 365 ~1989!.
16E. Müller-Hartmann, Z. Phys. B74, 507 ~1989!; 76, 211 ~1989!;

B. Menge and E. Mu¨ller-Hartmann,ibid. 82, 237 ~1991!.
17C. S. Owen and D. J. Scalapino, Physica~Utrecht! 55, 691

~1971!.
18P. W. Wolff, Phys. Rev.124, 1030~1961!; H. R. Krishnamurty, J.
W. Wilkins, and K. G. Wilson, Phys. Rev. B21, 1003~1980!.

19G. Baym and L. P. Kadanoff, Phys. Rev.124, 287 ~1961!; G.
Baym, ibid. 127, 1391 ~1962!; N. E. Bickers and D. J. Scala
pino, Ann. Phys.~N.Y.! 193, 206 ~1989!.

20K. Yosida and K. Yamada, Prog. Theor. Phys.46, 244~1970!; K.
Yamada,ibid. 53, 970 ~1975!; K. Yosida and K. Yamada,ibid.
53, 1286 ~1975!; K. Yamada,ibid. 54, 316 ~1975!; 55, 1345
~1976!; 62, 354 ~1979!.
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