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Transport coefficients of dilute magnetic alloys: A quantum Monte Carlo study
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Using a new, highly accurate, method of analytic continuation, we provide the first quantitatively
correct calculation of the resistivity and thermal conductivity of dilute spin-;- magnetic (Anderson
and Kondo) alloys over the entire range of interest T << T to T >>T. We find that our results are
consistent with previous approximate theories in their regions of applicability. Our results are the
first calculation of transport for any strongly correlated electronic many-body system obtained by

direct analytic continuation of Monte Carlo data.

The properties of a metal with a dilute concentration
of magnetic impurities has been an enduring problem in
condensed-matter physics, and the spin-} Anderson im-
purity model is the central paradigm for this and related
strongly correlated electronic and magnetic systems. As
such, it has been studied for over 30 years in a variety of
contexts. In this paper we provide the first qualitatively
correct calculation of the transport coefficients of a dilute
system of Anderson impurities embedded in a metallic
host. Experimentally, anomalies are found in the trans-
port of such systems. The anomaly in the resistivity is
the best known: as the temperature is lowered the resis-
tivity displays a minimum, then increases, and finally sat-
urates as T'—0. Qualitatively, this resistivity minimum
is well understood. As the temperature is lowered toward
a characteristic energy scale Ty, the scattering rate of
electrons from the magnetic impurities diverges logarith-
mically. As the temperature is lowered further, the con-
duction electrons begin to screen the magnetic impurity,
forming a local singlet, and the resistivity saturates. Few
theories explain this behavior qualitatively over the entire
range of interest and none are quantitatively correct.

In this paper we provide the first quantitatively correct
calculation of transport for the spin-; Anderson model.
Our calculation encompasses the entire range of interest
T<<Tg to T>>Tg, including the crossover regime
T =Tg. Our results are consistent with previous approx-
imate results in their regions of validity when their ad-
justable parameters are set by our results. Thus, our re-
sults may serve as benchmarks for these approximations.
In addition, we believe that these are the first calculations
of transport by direct analytic continuation of quantum
Monte Carlo data for any strongly correlated electronic
many-body system. Thus, another feature of this work is
that it demonstrates that such calculations are feasible.

We assume that a small finite concentration of uncorre-
lated magnetic impurities are embedded in a metallic
host. We model the impurities with an infinite-
bandwidth symmetric Anderson model which is charac-
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terized by a hybridization width T =7N(0)V?* [where Vis
the hybridization matrix element, and N(0) is the density
of states at the Fermi surface], and an on-site repulsion
U. The Kondo temperature Ty is a function of U and T'.
In the limit U >>T, a spin-1 magnetic moment forms on
the impurity orbital which couples antiferromagnetically
to the conduction electrons with an exchange
=—8T'/7N(0)U.

In Fig. 1 we fitted our results for the static susceptibili-
ty to the numerical renormalization-group results of
Krishnamurthy et al.! This fit allows us to determine
Tk. The transport coefficients are universal functions of
T /Ty for sufficiently large ¥ =U/#T" and low T/Tyg.
This universality is reflected in the resistivity, as shown in
Fig. 2 where p(T=1.5Tx)/p(T=0) saturates to a
universal constant as u is increased. In Fig. 3, the resis-
tivity is plotted as a function of T /T, and is compared
with previous approximate results. Results for the
thermal conductivity are shown in Fig. 4.

There have been many theoretical attempts to solve the
Kondo transport problem, of which we will mention a
few. Kondo,? using a high-temperature expansion to
third order in J, was able to describe the resistivity
minimum, but not the low-temperature saturation.
Hamann,® using a third-order (in J) self-consistent ap-
proach due to Nagaoka and Suhl* found the result

_ plT=0) o
p(T) 3
—— In(T /Tgy) 7
([T /Ty ) P+ 728(S +1)}1/2

(n

This result qualitatively describes the resistivity for all
temperatures; however, it is only quantitatively correct at
high temperatures T > Tx. Nozitres® argued that, at low
temperatures T <<Tx, the Kondo impurity system be-
comes a Fermi liquid, so that

p(T)/p(0)=1—aT/T¢ ),
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FIG. 1. Tx(T)/g? (symbols) vs In(T /Txp) (lower scale) for
various values of u=U/nT. The solid line is the numerical
renormalization-group result of Krishnamurthy et al vs
In(T/Tg) (upper scale). The correction to
Txr=0.364(2T°U /m)'"%e /T, for each value of u, may be
determined by scaling Ty until the data fits the Krish-
namurthy result. For each 1/u, this correction term is plotted
in the inset where the crosses are our results, and the open cir-
cles are the results of Hirsch et al. (Ref. 8). In the inset, the
solid line is the result T /Txy =(1+1/2u).

and the thermal conductivity «(T)=yT. Using a 1/N
perturbation theory in the total degeneracy N of the mag-
netic impurity, Bickers et al.® calculated all the thermo-
dynamic and transport properties in the limit of infinite
U (no particle-hole symmetry is possible in such a limit)
and large N. Finally, Horvati¢ et al.,’” using a self-
consistent approach to second order in U, calculated the
single-particle spectrum and the transport coefficients for
the Anderson impurity.

Our calculations are based upon a Monte Carlo algo-
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FIG. 2. p(T)/p(0) vs u=U/nl’ when T/Tx=1.5 and
I'=0.5. The open diamonds are from the perturbation theory
of Horvatic et al. (Ref. 7). For u 1.0 there was no significant
difference between the perturbation theory and Monte Carlo re-
sults. The universality of the Monte Carlo data is indicated by
the fact that, for u# > 1.5, the value of the resistivity saturates to
a constant whereas the perturbation-theory result continues to

rise monotonically.

FIG. 3. p(T)/p(0) vs T/Tx for different values of u. The
solid line is from the self-consistent high-temperature calcula-
tion of Hamaan et al. (Ref. 3), Eq. (1). It is fit to our results by
varying Ty so that the curves agree when p(Tky}/p(0)=0.5.
As expected, this result fails at low temperatures. The dotted
line is the Fermi-liquid result of Nozieres (Ref. '5)
p(T)/p(0)=1—aT/Tx)*, with «=0.83+0.06" determined
from a fit to the data as shown in the inset. The resistivity is
roughly logarithmic for 0.5< T /T <4.0.

rithm developed by Hirsch and Fye.® The problem is cast
into a discrete path-integral formalism in imaginary time
7;, where ;=1 A7, Ar=p/L, and L is the number of
time slices. In order to minimize systematic discretiza-
tion errors, we took (A7)2I'U<0.19, and studied B
values as large as 200, 2<U<6, and 0.3<I'<0.6.
Larger values of 8 were avoided since the computer time
required by the algorithm scales like L®. For measure-
ments of the impurity single-particle Greens function
G(1), the systematic errors associated with the finite
value of A7 were estimated to be typically <0.5%, and
the statistical errors were typically <0.3%. 7

The aim of analytic continuation is to construct the
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FIG. 4. [K(T)/T}/(/T)g=o vs T /Ty different values of u.
Note that at low temperatures, « is linear in 7, indicative of a

Fermi liquid, as argued by Nozieres (Ref. 5).
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single-particle spectrum 4(w) from the G(r) data. Pre-
vious methods employed a least-squares® or dynamical'®
approach to find the best smooth function which is con-
sistent with the data. Using the maxlmum-entropy
method,'' " we find the 4(w) which is consistent with
the data and has maximum entropy. This method has
several advantages. First, it allows A4(w) to have sharp
features if they are consistent with the data. Second, we
are able to propagate statistical errors through the
method, so that we can provide error bars for the trans-
port coefficients. Third, the maximum-entropy pro-
cedure allows us to incorporate perturbation-theory data
of Horvati¢ et al.” [which we identify as m(w)] as a de-
fault model for 4(w). Thus, for large w, where the per-
turbation theory becomes exact and the Monte Carlo
provides no information due to the finite value of A7, the
maximum-entropy algorithm assigns 4(w)=m(w). This
feature significantly reduces the calculated error of the
transport coefficients. Finally, there are no adjustable pa-
rameters. ‘ '

The transport coefficients may be calculated from
A(w). The measurements we make are macroscopic,
thus, in our calculation, we will average over all possible
spacial configurations of a dilute uncorrelated system of
impurities. In such a system, as shown by Bickers et al.,’
averaging over the locations of the impurities removes
the vertex correction terms from the diagrammatic ex-
pansions for the transport coefficients. Thus, the trans-
port depends only upon the single-particle scattering in-
formation contained in 4(w). The re31st1v1ty becomes

(0) -
i — [ L4 Yoo, o

while the thermal conductivity is 7

[% g o1tdo,  ®
dw -

3
TY/T=—
«(T)/ (k/T), T

where df /0w is the derivative of the Fermi function eval-
uated at w. The Lorentz number (not plotted here) is the
product k(T)p(T)/T, and in the symmetric limit the
thermopower is zero.

At low temperatures, the factor of 3f/dw restricts
these integrals to sampling the low-frequency features of
A Yw) which are universal for large u =U/#T" and
small 7. However, for higher temperatures or smaller u,
the nonuniversal features of 4 ~!(w) are sampled. In ad-
dition, the large-w features have larger statistical error, as
shown previously by some of the authors.!> Thus, we ex-
pect our results to be more universal for small T and
large u. Furthermore, we expect «, which samples higher
o features, to be less universal and have larger error bars
than p.

An accurate determination of T is essential to demon-
strate the universality of the transport coefficients. As
shown in Fig. 1, we determine the corrections to
Haldane’s perturbation-theory expression for Ty,

Ty =0.364(2T°U /7r)!/2 ~"U /80

(Refs. 1 and 15). This is done by fitting our susceptibility
results to the universal susceptibility curve of Krish-
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namurthy et al.! obtained from a numerical
renormalization-group calculation. We found, to an ex-
cellent approximation, that Ty = Tggy{1+1/2u).

For sufficiently large u and low temperatures, we find
that the transport coefficients are universal functions of
T/Tg. This is demonstrated for p in Fig. 2 where
p(T)/p(0) is plotted versus u when I'=0.5 and
T /Tx=1.5. For our results, universality is indicated by
the fact that, for u > 1.5, the value of the resistivity satu-
rates to a constant whereas the perturbation-theory result
continues to rise monotonically.

In Fig. 3 the universal resistivity is plotted versus
T /Ty for several values of u. The dotted line is the
Fermi-liquid result

p(T)/p(0)=1—a(T /Ty )?,

with «=0.83. As shown in the inset to Fig. 3,
a=0.8310.06 was determined from a fit to our low-T re-
sults (T /Ty <0.25). The quoted error +0.06 reflects
only statistical sources of error. Since, in this region,
p(T)/p(0) is very close to one, 1 —p(T)/p(0) is strongly
effected by both systematic and statistical errors. Thus, it
was difficult to determine a accurately. At high tempera-
tures T > Ty, the Hamann result (the solid line) is fitted
to our results by varying Ty in Eq. (1) so that the curves
agree when p(Tgy)/p(0)=0.5. This is consistent with
how Ty is defined in the Nagaoka-Suhl theory. We find
Ty /Tgy=~0.4. Our results agree well with Eq. (1) high
temperatures, but diverge for T <Ty. However, for the
highest temperatures simulated, the resistivity shows
some slight nonuniversality in that the data fall below the
Hamann result. In this limit the Anderson-model mo-
ment is thermally reduced, whereas the moment in
Hamann’s calculation is fixed. Thus, for finite # and
T >>Ty, the impurity moment which scatters the con-
duction electrons is reduced and hence so is the resistivi-
ty.

It is remarkable that the Wilson number often appears
when we fit our results to previous results. The Wilson
number relates the perturbation-theory value of Tk to the
intrinsic Kondo scale Tgo, defined such that
X(T=0)=u?/Tyq, where u is the electron spin. Wilson
found that Ty /Tyo=0.412.' We find that Eq. (1) fits
our results when Ty = T, Previously,!! we found that,
for T << T, the width of Abrikosov-Suhl peak in the im-
purity spectral density is determined by Ty, Finally,
Nozieres asserted that « is uniquely determined by the
Wilson number

a=(0.4127%/4)*=1.03 ,

which may be consistent with our result.

In Fig. 4, the universal thermal conductivity
[k(T)/T1/(k/T)p~g is plotted versus T /Ty for several
values of u. For low temperatures T/T <0.2, k is linear
in T, indicative of a Fermi liquid. For high temperatures
note that « becomes nonuniversal and the error bars in-
crease much more readily than p did.

In summary, using a combination of Monte Carlo
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simulation and maximum entropy analytic continuation,
we calculated the resistivity and thermal conductivity of
dilute magnetic alloys. Our work is the first quantitative-
ly correct calculation of transport for the spin- Ander-

son impurity over the entire range of interest T <<Tx to ,

T'>>Tg. We find that our results are consistent with
previous approximate calculations in their limits of appli-
cability. This work demonstrates that it is possible to ac-
curately calculate the transport coefficients for a strongly
correlated many-body system by direct analytic continua-
tion of quantum Monte Carlo data.

Note added in proof. Recently B. Horvati¢ pointed out
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“to us that our empirically derived formula for Ty, over

the range of u considered, always agrees with the exact
Bethe-ansatz result [B. Horvati¢ and V. Zlati¢, J. Phys.
(Paris) 46, 1459 (1985)] to within a few percent.

We are pleased to acknowledge useful conversations with
D. L. Cox, J. Deisz, F. D. M. Haldane, C. Jayaprakash,
and J. W. Wilkins. This work was supported in part by
the U.S. Department of Energy (Division of Materials
Research of the Office of Basic Energy Sciences), and the
Ohio Supercomputer Center (Columbus, OH).

IH. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys.
Rev. B 21, 1003 (1979).

23, Kondo, Prog. Theor. Phys. 32, 37 (1964).

3D. R. Hamann, Phys. Rev. 158, 570 (1967).

4Y. Nagaoka, Phys. Rev. 138, A1112 (1965); H. Suhl, ibid. 138,

A515 (1965).
5P. Nozigres, J. Low Temp. Phys. 17, 31 (1974).

6N. E. Bickers, D. L. Cox, and J. W. Wilkins, Phys. Rev. B 36,

2036 (1987). y
7B. Horvatié, D. Soké&evié, and V. Zlatié, Phys. Rev. B 36, 675

(1987).
8J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
%S. R. White et al., Phys. Rev. Lett. 63, 1523 (1989).
10M. Jarrell and O. Biham, Phys. Rev. Lett. 63, 2504 (1989).
1R, N. Silver et al., Phys. Rev. Lett. 65,496 (1990). =~ =~~~
128, F. Gull and J. Skilling, IEE Proc. 131F, 646 (1984).
I3R. N. Silver et al., Phys. Rev. B 41, 2330 (1989).
143, Gubernatis et al. (unpublished).
I5F, D. Haldane, J. Phys. C 11, 5015 (1978).
16K, G. Wilson, Rev. Mod. Phys. 47, 773 (1975).



