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The dynamic-spin-correlation function S{g,w) is computed for the one-dimensional antiferro-
magnetic Heisenberg model for S =4 and S =1. Imaginary-time correlation functions are evalu-
ated with the quantum Monte Carlo method and the maximum-entropy method is used to contin-
ue these results to real frequencies. This technique produces a value for the S=1 Haldane gap
that agrees with previous work and also gives a good description of inelastic neutron scattering
data for the one-dimensional S = 7 antiferromagnet CuClz: 2N (CsDs).

The dynamics of the one-dimensional antiferromagnetic
Heisenberg model, described by

N
H=JiZlS(Ri)-S(R,~+1), J>0, )

has been of considerable interest since Haldane made the
novel prediction that when the number of sites NV becomes
infinite the excitation spectrum for integer spins is gapped,
in contrast to the excitation spectrum for half-integer
spins which is gapless.! This model is also of experimental
relevance as CuCly-2N(CsHs) (S=%) and CsNiCl;
(S=1) are examples of nearly one-dimensional antifer-
romagnets.

This paper will describe the calculation of S(g,®), the
dynamic spin correlation function using quantum Monte
Carlo and the maximum entropy method. S(g,w) is
given by

S(g,w) =% Y e “PEn(m|S, (q)|nXn|S,(—q)|m)

m,n
x8lo—(E,—Eu)], (2a)
where
N
S, (@)=N"123 ¢ THRg, (R), (2b)
i=1

which shows that S(g,®) describes excitations from the
thermal equilibrium state. S(g,®) is important experi-
mentally because it is directly measured in inelastic
neutron-scattering experiments.

There has been considerable work done on the dynami-
cal properties of one-dimensional Heisenberg antifer-
romagnets. Miiller, Beck, and Bonner? have produced a
zero-temperature ansatz for S(g,») when S =7 which is
consistent with exact sum rules within factors of order
unity. Most studies have been restricted to determining
the lowest-lying excited states because full matrix diago-
nalization is prohibitive for reasonable size systems. The
dispersion relation for the lowest-lying triplets for S = 3
in the thermodynamic limit is given by &(g)=(x/
2)Jsin(q),? thus gaplessness for S = 7. So S= 1 studies
are important in verifying Haldane’s prediction. For
S =1 Nightingale and Blote* produced an estimate for the
gap A of 0.41J by extrapolating the results from finite-size

4

systems (up to 32 sites) to the thermodynamic limit.

Other studies have focused on the equal-time spin-spin
correlation function, S(R) =(S;(R)S;(0)). This correla-
tion function indirectly describes the excitation spectra
since a power-law decay of S(R) as a function of R im-
plies gapless excitations and an exponential decay results
from gapped excitations. Liang’s® zero-temperature cal-
culations and Marcu’s® finite-temperature calculation
agree with Haldane’s prediction, but no estimate for A
could be produced.

These and other results have been useful in understand-
ing the dynamics of the one-dimensional antiferromagnet-
ic Heisenberg model, but it remains desirable to obtain
the temperature-dependent S(g,»). S(g,) contains not
only information on the low-lying excitations, but also
higher-lying excitations that are observed in neutron-
scattering experiments.

The large size of the Hilbert space makes direct evalua-
tion of Eq. (2a) difficult for any reasonable size system.
However, S(g,®) is related to an imaginary-time correla-
tion function S (g, ) via

@0 =o- [ e (q.0)do (38)
where
S(g,7) = 5{e?S,(g)e ~HS,(—q)). (3b)

We have evaluated S(g,7) and the associated covari-
ance matrix using the world-line quantum Monte Carlo
method.” In this method the inverse temperature B is bro-
ken into several discrete intervals of length Az and the
noncommutivity between the terms in Eq. (1) is ignored
within these intervals. This procedure becomes exact only
in the limit Az— 0. The systematic errors due to the
finite size of At(A7= 0.25/J) are estimated to be of order
1% from measurements of the energy at low temperature.
Monte Carlo sampling errors are found to be less than 1%
for small values of 7, but can become larger when 7 in-
creases since the magnitude of S(g,7) becomes small.
The code was tested versus exact diagonalization of four
site systems.®

Equation (3a) must be inverted to obtain S(g,®) from
the Monte Carlo results for S{g,7). For a finite set of 7
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values (with some error at each 7) this inversion is ill
defined. Recently Silver, Sivia, and Gubernatis,” have
proposed using the maximum-entropy method® for in-
verting relationships like Eq. (3a) that are commonly
found between dynamical quantities and imaginary-time
correlation functions which can be measured with quan-
tum Monte Carlo simulations. We refer to Ref. 9 for a
full discussion of the maximum-entropy method, but we
provide a brief sketch of the technique here.
Let S(g,) be some trial function for S{(g,®).

[5Gg,0) = (/2 [_e~'$(g,0)dol’
L -Zr (0.)?

describes how close $ comes to reproducing the Monte
Carlo values of S(g,7) relative to the measured error bars
o, on the Monte Carlo values [in practice Eq. (4a) must
be modified to describe the correlation between measure-
ments at different z values''].

(4a)

| _a S(g,0) | &
I-‘j; [—S(q,w)ln,—n-(%@—)+S(q,w)—m(q,w) do

(4b)

is the entropy and generally becomes more negative the
further S is from a predefined default model m(g,®), the
solution to which this analysis will default to in the ab-
sence of data. The maximum-entropy result for S(g,®) is
the trial function S, which maximizes al(S,m)—L(S)
where the choice of the constant a is made with the
method described by Gull and Skilling.!® Our S(g,0)’s
produced this way are smooth curves in contrast to the &
functions expected for a finite-sized system. The smooth-
ing is effected by convoluting about a given @ with a box
function of width Aw==0.05J (smaller Aw produce no
change in shape.)

Figure 1 shows the dependence of the results on the de-
fault model m(g,®). In order to select m(g,w), we note
that
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FIG. 1. Dependence on the default model m(q,®). The max-
imum entropy method requires a default model 7(q,) so that
a unique S(g,®) can be chosen which agrees with the imagi-
nary-time correlation function measurements made with quan-
tum Monte Carlo. The default models are plotted in the inset.
The broken line was produced with a flat (up to a cutoff at 4.5J)
default model which satisfied only sum rule (5a). The solid line
was produced with a default model which satisfied all three sum
rules. This latter default model agreed well enough with all
imaginary-time data that it became the final result for S(g,®).
The flat default model contained little information and large
changes were required to produce agreement with the Monte
Carlo data. Figures 2 and 3 were produced using default models
which incorporated the three sum rules.

are three sum rules which should be satisfied by S(g,®)
(Ref, 12) and whose right-hand sides may be determined
by the Monte Carlo technique. It is thus natural to choose
an m(g,®) which satisfies one or more of these along with
the detailed balance constraint m(g, — ) =e "#°m(q,0)
which we also impose on S(g,®). In Fig. 1, the dashed

—LfS(q,w)dw =S(q,7=0), (5a) line is for m(g,w) flat up to a cutoff at 4.5/ and normal-
2z ized to obey (5a). The default model for the full line was
2 f 0~ 18(q,0)do =2(q) (5b) chosen by minimizing
r ’ ’ o
and —'J; m(q,0)Inlm(q,0)ldo (6)
1 - —\E T subject to the constraint that all three sum rules are
2n f 0S(g,0)do 3N [1=cos(g)] (5¢) satisfied.'> This produces an m(g,®) of the form
| — }
m(g,w) =e ~'exp{—Aoll +exp(—Bw)}exp{— 1 [1 —exp(—Bw)lw} expf —A - ([1 —exp(—pw)lo ™1, (7

which will be called the “informed default model.” The
o} are numerically determined Lagrange multipliers
used to enforce the constraints in maximizing the func-
tional of Eq. (6).

The informed default of Fig. 1 was able to reproduce all
the S(q,7) data despite having the information from only
three sum rules. Thus m(q,®) was chosen by the Maxent
as S(g, ) [we find that this often occurs when m(q,®) is
chosen in this wayl. For the flat default model large
changes were required to reproduce the data. These

f

changes produced better agreement with the more in-
formed default model, but it was not able to reproduce the
low-frequency structure for ¢ near the Brillouin-zone
boundary. An error analysis can be used to compare the
validity of these two results. It is found that the integrat-
ed intensity for 0.1 < @ < 1.0 is equal t0 0.465 £ 0.013 for
the informed default while the flat default model has
0.403 +0.143."! These results show that the S(g,») pro-
duced from the flat default model has too little spectral
weight for 0.1 <o < 1.0.
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TABLE I. Comparison of the Monte Carlo results for the right-hand sides of (5a)-(5c) compared to
the integrals of the left-hand side using the maximum entropy generated S(g,®)’s. (5a) and (5b) are
satisfied to within the statistical accuracy of the Monte Carlo averages. (5c) is satisfied to within 1%,
but this is not within the error bars as the energy can be very accurately measured. The default models
used to generate these S(g,)’s [the S(g,0)’s are pictured in Fig. 2] incorporated the three sum rules,
however default models which do not incorporate these sum rules have similar success in producing

S(g,®)’s which satisfy (5a)-(5¢).

S=1(T=J/8, 96 sites)

Maximum Entropy Monte Carlo

S=1(T=J/8, 64 sites)
Maximum Entropy

Sum Monte Carlo
% _ 0 'Slg=mw)do 5.041
+0.067
z—ln'f —S{g=n0)do 0.523
+0.004
;7f _.08(g=r,0)do 0.2941
+0.0001

5.017 18.05 18.12
+0.062 +0.20 +0.18

0.522 2.044 2.045
+0.004 +0.014 +0.012

0.2948 0.9436 0.9360
+0.0009 +0.0008 +0.0048

Table I compares the results for the right-hand side of
(5a)-(5c) evaluated with quantum Monte Carlo to the in-
tegrals of the left-hand side using the maximum-entropy
method results for S(g,w) when ¢ =g, temperature
=J/8, and for both S = 5 and S =1 [S(g,®)’s are shown
in Fig. 21. There is good agreement. Perhaps this is not
surprising since the default model incorporated all three
sum rules, however, S(g,) is different from the default
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FIG. 2. Comparison of S(g,») for S=1 and $=1 when
T =J/8. Haldane has predicted that there is a gap A for excita-
tions at zero temperature when S =1, while no gap should be
found for S=1%. When S = there is considerably more low-
frequency weight than for S =1. If the peak position for S =1 is
taken to be A, then we obtain A=0.41J in agreement with previ-
ous work (Ref. 4). The peak for S= 3 is not at @ =0, but the
peak moves to zero frequency as temperature decreases; this be-
havior is not seen when S =1. Note that for S=1 the flat and
three sum rule default models discussed for Fig. 1 predict the
same peak position in S(g,®), but the flat default produces a
line shape which is 20% narrower than that produced by the
three sum rule default.

model for both of these cases. Further, the three sum
rules are reasonably well satisfied even when default mod-
els are used which do not incorporate them. '

Most numerical studies of the Haldane conjecture have
focused on S = % and S =1 because the Hilbert space in-
creases in size as (28 +1)" where the system size N must
be = 32 to make an accurate prediction of the Haldane

gap A. World-line Monte Carlo scales like N xS, making

q=0.8m
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FIG. 3. Inelastic neutron scattering cross section for the one-
dimensional antiferromagnet CuCly- 2N(CsDs) vs (1 —a/g) '
xS(g,0) (g=incident neutron energy) predicted by quantum
Monte Carlo and the maximum entropy method. The solid cir-
cles represent the experimental results of Endoh et al. (Ref. 15)
and the solid lines are our results. The energy scale was set to be
26.8 K by susceptibility and specific-heat measurements. The
correct qualitative features are reproduced with the exception
that the g =0.5z peak sharpens more quickly with temperature
than is observed experimentally.
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large values of S accessible; however, here we only consid-
er S= 4 and S =1 to compare with previous results. Also
since A is expected to be largest for S =1, the simulations
can be carried out at high temperatures without the gap
structure being eliminated by thermal excitations.

Figure 2 shows S(g,®) for S =7 and S=1 at temper-
ature J/8. There are clear differences. When S =14
there is a broad spectrum with large weight near o =0,
while the S=1 spectrum is nearly Lorentzian with its
peak at @=0.41J and has little low-frequency weight.
Indeed, the low-frequency tail is consistent with finite
temperature broadening into the gap. If this peak position
is taken to be A, then our result agrees with that of
Nightingale and Bléte who used Green’s-function Monte
Carlo to project out the ground and lowest-lying excited
states of finite chains (up to 32 sites).* They also obtain
A=0.41J. S(q,0) for S= % is not peaked at @ =0, but
the peak position moves closer to @ =0 when the tempera-
ture goes to zero (not shown here). In contrast, the peak
position for S =1 does not decrease as temperature is
lowered, rather the peak narrows as the temperature is
lowered.

Figure 3 is a comparison of our results with inelastic
neutron-scattering experiments on CuCly- 2N(CsDs) per-
formed by Endoh et al.!'> They determined the energy
scale J with susceptibility and specific-heat measure-
ments. Our only fitting parameter is the overall intensity
which is set to be the same for both ¢ values and all three
temperatures (although there is ¢ dependence from the
magnetic structure factor). A direct comparison between
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our results and experiment is difficult because of the in-
coherent background in the experimental data, but the
qualitative features of the data are largely reproduced
with the exception that the rapid sharpening of our
g =0.57 results are not seen experimentally. However, we
believe that the agreement in encouraging. Marcu has
previously shown that the integrated neutron-scattering
cross section agrees well with predictions made with the
same Monte Carlo technique used here. '®

In conclusion, we have calculated S(g,®) for the S =+
(up to 96 sites) and S =1 (up to 64 sites) antiferromag-
netic Heisenberg models in one dimension using the quan-
tum Monte Carlo method and the maximum-entropy
method. Our value for the Haldane gap (S=1) agrees
with previous work. Comparison to the inelastic neutron-
scattering experiments on CuCly: 2N{(CsDs) at finite tem-
perature produced qualitative agreement. It will be in-
teresting to apply this method to higher spin systems
(§=3, S=2) and also to the dynamic spin and charge
spectra of the z-J model.
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