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Semianalytical solution of the Kondo model in a magnetic field
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The single impurity Kondo model at zero temperature in a magnetic field is solved by an approximate
semianalytical approach based on the flow-equation method. The resulting problem is shown to be equivalent
to a resonant-level model with a nonconstant hybridization function. This nontrivialeffective hybridization
function encodes the quasiparticle interaction in the Kondo limit, while the magnetic field enters as the
impurity orbital energy. The evaluation of static and dynamic quantities of the strong-coupling Kondo model
becomes very simple in this effective model. We present results for thermodynamic quantities and the dynami-
cal spin-structure factor and compare them with numerical renormalization-group calculations.
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I. INTRODUCTION

The single impurity Kondo model~SIKM! or s-d model1

HSIKM5(
kWs

ekWckWs
†

ckWs1J(
kWkW8

(
ab

ckWa
†

SW •sW abckW8b ~1!

is, together with its close relative, the single impurity Ande
son model,2 one of the fundamental models in the theory
correlated electron systems. It has been studied extens
over the past four decades,3 but despite its simplicity, no
complete analytic solution exists that provides informat
on both thermodynamic and dynamical quantities. For
ample, the Bethe ansatz solution3,4 has solved all universa
properties of the Kondo problem including its high- to low
temperature crossover behavior. But the Bethe ansatz
quires the limit of infinite conduction bandwidth and cann
be used to calculate dynamical quantities beyond the l
energy limit.

Thus, numerical methods, like Wilson’s numerical ren
malization group3,5 ~NRG! or quantum Monte Carlo
~QMC!,6 in connection with maximum-entropy methods7

have to be employed to access dynamical quantities on
energy scales. In both methods, evaluation of dynam
properties, and quantities related to them, such as
Korringa-Shiba relation or the Friedel sum rule,3 suffer from
unavoidable numerical errors. QMC simulations, in additio
cannot be used at zero temperature and are restricted to
paratively large values ofJ.6 Moreover, a reliable evaluation
of single- and two-particle spectra and related quantities
an external magnetic field, as well as their comparison
interpretation within a local Fermi-liquid picture,3 become
rather problematic,8,9 especially in the limit of vanishing ex
ternal magnetic field. Approximate analytical techniqu
such as perturbation expansions or 1/N expansions,3 typi-
cally only describe certain properties of the Kondo mo
correctly. A notable exception in this respect is the so-ca
local-moment approach.10 This perturbative approach is ver
accurate in most cases,11 including those of nonvanishing
external magnetic fields.9,12
0163-1829/2003/67~18!/184408~7!/$20.00 67 1844
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Besides its relevance for the study of moment format
in metals, the Kondo model~1! has gained new importanc
as input for investigating nondilute correlated electron s
tems such as heavy fermion materials within dynami
mean-field theory~DMFT!.13 Here a reliable method for cal
culating single-particle correlation functions, especially clo
to the Fermi energy, is extremely important.

In this paper, we propose a newnonperturbativesemiana-
lytical approach to the Kondo problem based on Wegne
flow-equation method14 and previous work on application
of flow equations to strong-coupling problems.15,16 We will
show that to a very good approximation, many physi
quantities of the Kondo model in the small coupling lim
(r0J→0) can be calculated from a resonant-level mod
where the interacting features of the Kondo model are
coded in a nonconstanteffective hybridization functionof
this resonant-level model. Thereby we extend the w
known strong-coupling result by Toulouse17 that the Kondo
model on the Toulouse line is equivalent to a resonant-le
model with a flat hybridization function. Surprisingly, eve
in the small coupling limit~Kondo limit! our noninteracting
effective model describes both universal low-energy prop
ties such as the Wilson ratio as well as high-energy po
laws and logarithmic corrections with very good accura
Due to the noninteracting nature of this effective model t
mapping allows immediate insight into the physics of t
Kondo model, for example, the dependence of its static
dynamical quantities on a local magnetic field.

After presenting our approach in the next section, we d
cuss several static quantities atT50 as a function of a loca
magnetic field and derive analytical expressions for th
asymptotic behavior. As an example for a dynamical qu
tity, we then discuss the spin-structure factor and
Korringa-Shiba relation. An outlook on potential future a
plications of our approach concludes this paper.

II. MAPPING TO A RESONANT-LEVEL MODEL

A. Principles of the flow-equation method

The general framework of the flow-equation method14 and
its application to the Kondo model has been explained
©2003 The American Physical Society08-1
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detail in Ref. 16. Here we will only repeat the main steps
order to make this paper self-contained, and refer to Ref
for more details.

The key idea of the flow-equation approach consists
performing a continuous sequence of infinitesimal unit
transformations on a given Hamiltonian,

dH~B!

dB
5@h~B!,H~B!#. ~2!

With an anti-Hermitian generatorh(B) the solution of Eq.
~2! describes a family of unitarily equivalent Hamiltonian
H(B) parametrized by the flow parameterB. By choosing
h(B) appropriately14 one can set up a framework that diag
nalizes a many-particle HamiltonianH(B50), i.e., H(B
5`) becomes diagonal.

The concrete realization of this approach for the Kon
model was discussed in Ref. 16. The starting point is
bosonized form18 of the Hamiltonian ~1!. Since we are
mainly interested in describing the basic ideas of our
proach, we restrict ourselves to a linear dispersion relat
Notice, however, that the flow-equation approach can also
used for a nontrivial conduction-band density of states si
it does not rely on the integrability of the model.19 With a
linear dispersion relation the Kondo problem becomes ef
tively one dimensional, the charge-density excitations in
~1! decouple, and we only need to look at the spin-den
part,

H5H02
J

A8p2
]xF~0!Sz1

J

4pa
@eiA2F(0)S21H.c.#

~3!

with H05(q.0qs(q)s(2q). Here s(p)
51/A2upu(q(cp1q↑

† cq↑2cp1q↓
† cq↓) are the bosonic spin

density modes with the bosonic spin-density field defined
F(x)52 i (qÞ0Auqu/qe2 iqx2auqu/2s(q). For simplicity we
have set the Fermi velocityvF51. a is proportional to the
inverse conduction bandwidth. All our latter results will b
expressed as universal functions of the low-energy Ko
scaleTK , and we can consider Eq.~3! to be equivalent to our
original Kondo Hamiltonian ifTK!a21.

Equation~3! was used as the starting pointH(B50) of
the flow-equation approach in Ref. 16. Away from the To
louse point the unitary equivalence of the flow holds on
approximately, but this approximation can be controlled b
small parameter15 and yields very accurate results. Durin
the flow the Hamiltonian can be parametrized as

H~B!5H01(
p

gp~B!„Cp
†@l~B!#S21H.c.…

1(
p

vp~B!$Cp
†@l~Bp!#,Cp@l~Bp!#%. ~4!

HereBp5
def

p22, andCp
†(l), Cp(l) denote normalized verte

operators with scaling dimensionl.0 in momentum space
18440
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Cp
†~l!5

defFG~l2!

2paLG1/2

upau(12l2)/2E
2L/2

L/2

dxeipx1 ilF(x),

Cp~l!5
defFG~l2!

2paLG1/2

upau(12l2)/2E
2L/2

L/2

dxe2 ipx2 ilF(x)

that obey ^VuCp(l)Cp8
† (l)uV&5dpp8u(p) and

^VuCp
†(l)Cp8(l)uV&5dpp8u(2p). For the special casel

51 they fulfill fermionic anticommutation relation
$Cp

†(1),Cp8(1)%5dpp8 and can therefore be interpreted
creation and annihilation operators for fermions.

In Ref. 16 the following flow equations for the paramete
in Eq. ~4! have been derived:

dgp

dB
52p2gp1

2p

G~l2!
(
qÞp

p1q

p2q
gpgq

2uqaul
221

1
1

4
gp ln~B/a2!

dl2

dB
, ~5!

dvq

dB
5

2p

G~l2!
qgq

2uqaul
221 ~6!

and the following is the differential equation for the flow o
the scaling dimension:

dl2

dB
5

8pl2~12l2!

G~l2!
(

q
gqg2quqaul

221. ~7!

It can be shown16 that one always findsl →
B→`

1 in the
strong–coupling phase of the Kondo model, i.e., in the lo
energy limit the vertex operators in Eq.~4! become fermions.
In the following we will use an improved version of th
above flow equations by taking into account that all appro
mations should be performed with respect to the interac
ground state: It turns out that the only necessary modifica
in Eqs.~5!–~7! is that the exponent inuqaul

221 gets replaced
by l2(Bq)21, i.e., it is no longer a running exponent.20

B. Equivalence to a resonant-level model

Now we will compare this system of differential equ
tions with the flow equations for a resonant-level model. T
will lead to thekey resultof this paper: the resonant-leve
model can be used as aneffective modelfor the complicated
strong-coupling Kondo model.

The Hamiltonian of the resonant-level model~RLM! is
given by

HRLM5(
k

ekck
†ck1edd†d1(

k
Vk~ck

†d1d†ck!. ~8!

Following the same flow-equation approach as previou
used in the Kondo model, we establish a solution to
resonant-level model~8!. A detailed description of the flow-
equation solution can be found in Ref. 21. One finds
following flow equations for the parameters in Eq.~8!:
8-2
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dVk

dB
52Vk~ed2ek!

21 (
qÞk

VkVq
2 ek1eq22ed

ek2eq
, ~9!

ded

dB
522(

k
Vk

2~ek2ed!, ~10!

dek

dB
52Vk

2~ek2ed!. ~11!

It should be noted that this yields the exact analyti
solution. Having established the flow equations to solve b
the Kondo model and the resonant-level model, respectiv
one can now show an approximate equivalence of these
models. We introduce the substitution

Vk
25

2p

G@l2~Bk!#
gk

2ukaul
2(Bk)21 ~12!

and notice that with this substitution the two sets of flo
equations, Eqs.~5! and ~6! and ~9!–~11!, become equivalen
for ed50 in the resonant-level model, with the exception
the logarithmic term in Eq.~5!. Thus we now have estab
lished an approximate mapping of the Kondo model onto
resonant-level model by means of Eq.~12! in the sense tha
their flow-equation diagonalization is identical. We shall r
fer to this relation by introducing theeffective hybridization
function D eff(e)5p(kVk

2d(e2ek): the resonant-leve
model with this nontrivial hybridization function can be us
as an effective model for the Kondo model in the Kon
limit ~small coupling limit! r0J→0. Since this noninteract
ing resonant-level model is a simple, quadratic Hamiltoni
this mapping will allow us to read off and understand ma
properties of the complicated many-body Kondo physics
an intuitive and straightforward way. It will turn out that th
deviations ofDeff(e) from a constant hybridization functio
encode the quasiparticle interaction and therefore the m
body Kondo physics in this quadratic effective Hamiltonia

Notice that the above mapping between the Kondo mo
and the resonant-level model becomesexactat the Toulouse
point17 r0J52p(22A2) sincel2(B)51 for all flow pa-
rametersB. One easily verifies that the effective resona
level model then has a constant hybridization functio
Deff(e)5(p/4)r0J2. In this case, our mapping just reduc
to the observation already made by Toulouse that the p
tion function of the Kondo model for this specific couplin
constantJ is exactly equivalent to the partition function of
quadratic Hamiltonian.17

In order to specify the functionDeff(e) in the Kondo limit
it is best to not directly use relation~12!, but to determine the
effective hybridization function from matching a correlatio
function in the Kondo model and the resonant-level mod
We have chosen thêS1(t)S2(0)& correlation function,
evaluated it with respect to Eq.~4! for B50, and then chose
Deff(e) in the resonant-level model such that this coincid
with the ^d†(t)d(0)& correlation function. The resulting
Deff(e) agrees with Eq.~12! in the high- and low-energy
regimes, with deviations only in the crossover region. Ho
ever, the mapping from the Kondo model to the effect
18440
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resonant-level model becomes better since this proce
manages to partly also take the logarithmic term in Eq.~5!
into account.

The resulting effective hybridization function can b
scaled into a dimensionless form with one dimensionful
rameterDeff

0 }TK ,

Deff~e!5Deff
0 D̃eff~e/Deff

0 !. ~13!

D̃eff(x) is a universal function in the Kondo limit (r0J
→0). It is depicted in Fig. 1 forr0J50.1, and coincides
with its universal form foruxu&30 (ueu&60TK , i.e., this
should be sufficient for most practical purposes22!. For larger
energies the effective hybridization function begins to cro
over into linear behavior with logarithmic corrections d
pending on thebare coupling r0J. The following function
provides an excellent fit~see Fig. 1!:

D̃eff~x!511
1

2
a1 lnF11S x

a0
D 2G

1a2S arctanU x

a0
U2U x

a0
U D S 12 lnU x

a0
U D ~14!

with the parameters from Table I.
A similar analysis based on the comparison of flow eq

tions shows that the above mapping between the Ko
model and the noninteracting resonant-level model can
extended to the case of a Kondo Hamiltonian~1! with a
nonvanishing local magnetic fieldh,

HSIKM1gmBhSz , ~15!

FIG. 1. The dimensionless effective hybridization functio

D̃eff(x) evaluated forr0J50.1 in the Kondo model. The resultin
function is symmetric and is only plotted forx.0. It coincides with
the universal form forx&30. The fit~14! is indistinguishable from
this line. Notice especially the appearance of logarithmic beha
in the crossover region.

TABLE I. Result of the fit ~14! to the effective hybridization

D̃eff(x).

a0 a1 a2

0.829 0.536 0.00324
8-3
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by settinged5gmBh in the resonant-level model. Howeve
the mapping with the above effective hybridization functi
becomes less accurate forgmBuhu*TK due to the approxi-
mate nature of the flow-equation solutions~5!–~7!. We will
discuss this point in more detail below.

Summing up, as long as we are interested in static qu
tities in a local magnetic field smaller than approximatelyTK
and/or dynamical correlation functions for energies sma
than approximately 60TK , we can use the resonant-lev
model with the effective hybridization function~14! to de-
scribe the physics of the Kondo model in the small coupl
limit. The only undetermined parameter in the resonant-le
model is the energy scaleDeff

0 that explicitly depends onJ.
This overall energy scale is proportional toTK . Notice that
the nonperturbative behavior of this energy scale

TK}e21/r0J ~16!

follows correctly from the original flow Eqs.~5!–~7!, see
Ref. 16.

C. Calculation of physical quantities

Once the mapping between the Kondo model~1! and the
effective resonant-level model~8! has been established, on
can readily calculate physical quantities for the Kon
model. One complication arises from the fact that opera
of the original Kondo model have to be transformed by
unitary transformation analogous to Eq.~2!. In the language
of the effective resonant-level model they will thus in ge
eral correspond to more complicated many-particle ope
tors. Since the intention of this paper is to demonstrate
potential of our mapping in a pedagogical setting, we w
concentrate on two quantities that remain simple under th
transformations:~i! thez component of the spin operatorSz ,
which becomesSz5d†d21/2, and~ii ! the Hamiltonian it-
self.

From the latter we obtain the internal energyU imp5^H
2H0& and the Sommerfeld coefficient,g imp(h). A straight-
forward calculation in the noninteracting resonant-le
model yields

g imp~h!5
p2kB

2

3
rd~0!@12L8~0!#, ~17!

whereL8(v) denotes the derivative of

L~v!5
1

p
PE de

Deff~e!

v2e

andP* . . . is the principal-value integral. Hererd(e) is the
impurity orbital density of states of the resonant-level mod

rd~e!5
1

p

Deff~e!

@e2gmBh2L~e!#21Deff
2 ~e!

. ~18!

The result~17! for g imp has some interesting implication
First, becaused† is connected toS1 , it is apparent that the
low-energy excitations in the system are controlled by s
degrees of freedom, a well-known feature of the Kon
18440
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physics. However, in our approach this result can be read
directly from Eq.~17!. Second,rd(0)}1/Deff(0)}1/TK , i.e.,
we obtain the correct scaling behavior forg imp directly from
the behavior ofDeff(e). There is, however, a nontrivial cor
rection coming from the factor in parentheses in Eq.~17!.
Note that forDeff(e)5const this correction is one, but for th
strongly e dependentDeff(e) in Fig. 1 it is of the order of
two. As we will demonstrate later, this difference is direc
responsible for obtaining the correct Wilson ratio in our a
proach.

From the mappingSz5d†d21/2 it is easy to calculate
xzz(v1 id)52(gmB)2^^d†d;d†d&&v1 id . Since the correla-
tion function has to be evaluated within the resonant-le
model, one obtains for the imaginary part atT50

xzz9 ~v!5~gmB!2pE
2v

0

dv8rd~v8!rd~v1v8!. ~19!

Again, this result provides direct access to an interpreta
of the behavior ofxzz(v1 id) in terms of the physics of the
resonant-level model.

III. RESULTS

One quantity that can be calculated analytically is t
low-energy limit of the spin-structure factorS(v)

5
def

xzz9 (v)/v,

S~0!5 lim
v→0

xzz9 ~v!

v
. ~20!

For a vanishing local magnetic field,S(0) is just the spin-
relaxation rate accessible in, e.g., spin-resonance exp
ments. With the result forxzz9 (v) from Eq. ~19! we obtain

S~0!5~gmB!2
1

p

Deff
2 ~0!

@~gmBh!21Deff
2 ~0!#2

, ~21!

which leads to the curve shown in Fig. 2. Equation~21! is of
particular importance because it explicitly demonstrates u
versality,TK

2S(v)5 f (gmBh/TK), and allows to directly fit,
e.g., experimental data from electron-spin-resonance
NMR experiments and extract the Kondo temperature. N

FIG. 2. Universal curve forS(0) as a function of the loca
magnetic fieldh.
8-4
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furthermore that the result~21! is not only valid in the Kondo
limit, but also holds at the Toulouse point of the anisotro
Kondo model and everywhere in between. Since it does
depend on the details ofDeff(e) it will also be true for gen-
eral band structuresekW in Eq. ~1! and thus is eventuallythe
result forS(0) in DMFT calculations.

The full frequency dependentxzz9 (v) has to be calculated
numerically using the form of the effective hybridizatio
function in Fig. 1. The results for three values of the exter
field, h50, gmBh5TK , andgmBh55TK , are displayed in
Fig. 3. These correlation functions provide a good exam
for the usefulness of our mapping to the effective resona
level model since one can directly interpret the structures
their frequency and field dependencies in terms of analyt
formulas derived for the resonant-level model. For exam
the high-frequency behavior ofxzz9 (v) follows directly from
Eq. ~19! and the behavior of the effective hybridization fun
tion Deff(e) at large energies~which is linear with logarith-
mic corrections, see Fig. 1!: xzz9 (v) decays like 1/v with
logarithmic corrections, in agreement with~expensive! nu-
merical results.23

For the dependence of the dynamical susceptibility on
local magnetic field one makes use of the fact that the lo
magnetic field corresponds to the on-site energy in the ef
tive resonant-level model. Therefore it is obvious that
observed shift of the resonance peak inxzz9 (v) is due to the
shifted center of the resonant level. Furthermore, the de
tion of the maximum value is related to the decreasing oc
pation of the resonant level, which corresponds directly
the increasinglocal magnetization in the Kondo model. A
the same time, one observes a decrease of the total spe
weight in xzz9 (v), which can be accounted for by a transf
to a finite expectation value of̂Sz& in the Kondo model.
There is, however, also a nontrivial effect, namely, the
creasing broadening of the resonance peak with increa
magnetic field. For a resonant-level model with a const
Deff(e) such a behavior does not occur; it is entirely rela
to the fact that with increasing magnetic field the syst
starts to notice the energy dependence of the effective
bridization.

The quantity not yet fixed in our calculation isTK , or

FIG. 3. xzz9 (v) for three characteristic local magnetic fieldsh
50, gmBh5TK , andgmBh55TK .
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more precisely the proportionality constant inTK}Deff(0).
This can most conveniently be done by using Wilson’s de
nition of the Kondo temperature3

x0~h50!5~gmB!2
w

4TK
, ~22!

wherex0 is the static magnetic susceptibility andw50.413
the Wilson number.x0 can be obtained from the imaginar
part of the dynamic susceptibility~19! via

x05
2

pE0

`

dv
xzz9 ~v!

v
~23!

and must in general be evaluated numerically. At the T
louse point one can, however, give an analytic answer s
Deff(v)5const and thus

x0~h!5~gmB!2
1

p

Deff~0!

h21Deff~0!2
. ~24!

Therefore at the Toulouse point the Korringa-Shiba relatio24

RS5
~gmB!2

2px0
2

lim
v→0

xzz9 ~v!

v
~25!

is independent of the local magnetic field

RS5
~gmB!2S~0!

2px0
2~h!

5
1

2
. ~26!

In the following we discussx0(h) and the Korringa-Shiba
relation for the Kondo limitr0J→0. The quantityx0(h) is
particularly convenient for a comparison with NRG resul
In Fig. 4 the circles represent the values ofx0(h) calculated
via Eq. ~23! with the effective hybridization function from
Fig. 1, and the full line represents the result of an NR
calculation. We observe excellent agreement for all value
the local magnetic field: notice that the curves agree with
fit parameters. This example clearly demonstrates that
nontrivial form of the effective hybridization in Fig. 1 en
codes the many-particle physics of the Kondo model in
trivial noninteracting effective model.

FIG. 4. The magnetic susceptibilityx0(h) from Eq. ~23!
~circles! and the same quantity obtained from an NRG calculati
8-5
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The result in Fig. 4 can readily be combined with re
tions ~17! and ~21! to obtain the Wilson ratio5

RW5
4p2kB

2

3~gmB!2

x imp~h!

g imp~h!
. ~27!

From Eqs.~17! and ~24! one immediately derives the wel
known resultRW(h)54 on the Toulouse line independent
the magnetic field, which is twice the value in the sm
coupling Kondo limit.

Our results for the Wilson ratio and the Korringa-Shi
relation obtained within the effective resonant-level mo
describing the weak-coupling limitr0J→0 are collected in
Fig. 5. For the Wilson ratio we would actually have to ca
culate the quantityx imp and notx0.5 However, for the case
of small r0J considered here, both quantities a
equivalent.25 One observes that bothRW andRS are indepen-
dent of the local magnetic field up to approximatelygmBh
'TK , and then they start to decrease~Shiba ratio!, respec-
tively, and increase~Wilson ratio!. The exact Bethe ansat
solution4 givesRW(h)52 independent of the magnetic-fie
strength~see also Ref. 12!, and local Fermi-liquid theory
yields RS51 for h→0.3 Our limiting values ash→0 miss
these exact results by approximately 5%. Notice that
term @12L8(0)# in Eq. ~17! is very important to obtain this
correct value forRW(h50) because it reduces the Wilso
ratio from the Toulouse line value to the value in the Kon
limit. Remarkably, our simplenoninteractingeffective model
therefore correctly describes the Wilson ratio in the Kon
limit ~for not too large magnetic fields!, which is a hallmark
of strong-coupling Kondo physics.

Let us finally analyze the accuracy of our effective mod
Since Fig. 4 demonstrates that integral quantities such
x0(h) are obtained with very good accuracy forall magnetic
fields, one can infer from Fig. 5 that quantities depending
low-energy details in frequency space such asg imp andS(0)
are more susceptible to our approximations for increas
magnetic fields. This suggests that for such low-energy qu
tities our effective model can be employed with very go
accuracy~5% error! for magnetic fields belowTK , and with
good accuracy~20% error! still up to approximately 5TK .

FIG. 5. Results for the Shiba ratioRS ~full line! and the Wilson
ratio RW ~dashed line! as a function of a local magnetic field. Th
correct limiting values ath→0 are missed by approximately 5%.
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IV. SUMMARY AND OUTLOOK

Summing up, we have shown that the resonant-le
model with a nontrivial hybridization functionDeff(e) can be
used as an effective model for the single impurity Kon
model. The key observation was the fact that the flo
equation solutions of both models are approximately ide
cal if a suitableDeff(e) is chosen for the resonant-leve
model~Fig. 1!. In this mapping the impurity orbital occupa
tion number,nd21/2 plays the role of the Kondo impurity
spinSz . The impurity orbital energy corresponds to the loc
magnetic field acting onSz .

In contrast to the conventional approach where effect
models describe the vicinity of the low-energ
renormalization-group fixed points,3,5 our effective model
very accurately describes both certain low- and high-ene
properties of the original Kondo model: compare, for e
ample, our discussion of the dynamical spin-spin correlat
function in Fig. 3. It also yields thermodynamic quantiti
that are in excellent agreement with much more expens
numerical methods~see Fig. 4!. The nontrivial behavior of
the effective hybridization function encodes the quasipart
interaction, which leads to, e.g., the correct Wilson ratio
small magnetic fields~with 5% accuracy!.

In general, the evaluation of physical observables in
flow-equation approach requires following the flow of th
operator under the infinitesimal unitary transformations~Sec.
II C!. Approximations and the ensuing accuracy of the
transformations need to be studied on a case-by-case ba
has been demonstrated above that thermodynamical qu
ties and theSz-Sz correlation function can be evaluated ve
accurately. Likewise the spectral density and spin-den
correlation functions with or without external magnetic fie
can be described very well within our effective model20

Other physical observables related to the conduction-b
electron dynamics such as theT matrix or the conductivity
have more complicated transformation properties under
infinitesimal unitary transformations and they will be inve
tigated in a future publication.

In conclusion, our approach describes many aspects o
complicated many-body Kondo physics for not too lar
magnetic fields within a simple noninteracting model. The
fore one can very easily and intuitively understand cert
properties of the Kondo model, e.g., the dependence of s
spin correlation functions on a local magnetic field~Fig. 3!.
One main prospect of our approach is to look at other co
lation functions using this effective model, in particular, t
T matrix for applications in the framework of DMFT calcu
lations. Future prospects also include cluster problems
the single impurity Anderson model. Work along these lin
is in progress.

ACKNOWLEDGMENTS

We acknowledge valuable conversations with N. Andr
R. Bulla, W. Hofstetter, D. Logan, A. Rosch, M. Vojta, an
D. Vollhardt. This work was supported by the DFG collab
rative research center SFB 484 and NSF Grant No. DM
0073308.
8-6



on
,

ys

od.

ues

he
ork

te

v. B

SEMIANALYTICAL SOLUTION OF THE KONDO MODEL . . . PHYSICAL REVIEW B 67, 184408 ~2003!
1J. Kondo, Prog. Theor. Phys.32, 27 ~1964!.
2P. W. Anderson, Phys. Rev.124, 41 ~1961!.
3For a comprehensive overview see, e.g., A. C. Hewson,The

Kondo Problem to Heavy Fermions~Cambridge University,
Cambridge, England, 1993!.

4N. Andrei, K. Furuya, and J. H. Lowenstein, Rev. Mod. Phys.55,
331 ~1983!; A. M. Tsvelick and P. B. Wiegmann, Adv. Phys.32,
453 ~1983!.

5K. G. Wilson, Rev. Mod. Phys.47, 773 ~1975!; H. R. Krishna-
Murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev. B21, 1003
~1980!; 21, 1044~1980!.

6J. E. Hirsch and R. M. Fye, Phys. Rev. Lett.56, 2521~1986!.
7M. Jarrell and J. E. Gubernatis, Phys. Rep.269, 135 ~1996!.
8T. Costi, Phys. Rev. Lett.85, 1504~2000!.
9M. T. Glossop and D. E. Logan, J. Phys.: Condens. Matter13,

9713 ~2002!.
10D. E. Logan, M. P. Eastwood, and M. A. Tusch, J. Phys.: C

dens. Matter10, 2673~1998!; D. E. Logan and M. T. Glossop
ibid. 12, 985 ~2000!.

11R. Bulla, M. T. Glossop, D. E. Logan, and Th. Pruschke, J. Ph
Condens. Matter12, 4899~1998!.

12D. E. Logan and N. L. Dickens, Europhys. Lett.54, 227 ~2001!.
18440
-

.:

13W. Metzner and D. Vollhardt, Phys. Rev. Lett.62, 324~1989!; A.
Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. M
Phys.68, 13 ~1996!.

14F. Wegner, Ann. Phys.~Leipzig! 3, 77 ~1994!.
15S. Kehrein, Phys. Rev. Lett.83, 4914 ~1999!; S. Kehrein, Nucl.

Phys. B592, 512 ~2001!.
16W. Hofstetter and S. Kehrein, Phys. Rev. B63, 140402~R! ~2001!.
17G. Toulouse, C. R. Acad. Sci. III268, 1200~1969!.
18For an overview of bosonization and refermionization techniq

see, e.g., J. von Delft and H. Schoeller, Ann. Phys.~Leipzig! 7,
225 ~1998!.

19The investigation of nontrivial dispersion relations is one of t
main future perspectives of the flow-equation approach. W
along these lines is in progress.

20S. Kehrein~unpublished!.
21S. Kehrein and A. Mielke, Ann. Phys.~N.Y.! 252, 1 ~1996!.
22It becomes increasingly difficult to numerically investiga

smaller couplings.
23T. A. Costi and C. Kieffer, Phys. Rev. Lett.76, 1683~1996!.
24H. Shiba, Prog. Theor. Phys.54, 967 ~1975!.
25K. Chen, C. Jayaprakash, and H. R. Krishnamurthy, Phys. Re

45, 5368~1992!.
8-7


