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Semianalytical solution of the Kondo model in a magnetic field
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The single impurity Kondo model at zero temperature in a magnetic field is solved by an approximate
semianalytical approach based on the flow-equation method. The resulting problem is shown to be equivalent
to a resonant-level model with a nonconstant hybridization function. This nonteffiettive hybridization
function encodes the quasiparticle interaction in the Kondo limit, while the magnetic field enters as the
impurity orbital energy. The evaluation of static and dynamic quantities of the strong-coupling Kondo model
becomes very simple in this effective model. We present results for thermodynamic quantities and the dynami-
cal spin-structure factor and compare them with numerical renormalization-group calculations.
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[. INTRODUCTION Besides its relevance for the study of moment formation

in metals, the Kondo modé€ll) has gained new importance
The single impurity Kondo modéSIKM) or s-d modef  as input for investigating nondilute correlated electron sys-
tems such as heavy fermion materials within dynamical

mean-field theoryDMFT).'3 Here a reliable method for cal-
Hem= > GECEUCEaJFJE > Cgaé. ‘;aﬁcﬁ’ﬁ (1)  culating single-particle correlation functions, especially close

ko kk' aB to the Fermi energy, is extremely important.
In this paper, we propose a nevsnperturbativesemiana-

is, together with its close relative, the single impurity Ander-lytical approach to the Kondo problem based on Wegner’s
son modef one of the fundamental models in the theory of flow-equation method and previous work on applications
correlated electron systems. It has been studied extensiveff flow equations to strong-coupling problerts:® We will
over the past four decaddsut despite its simplicity, no Show that to a very good approximation, many physical
complete analytic solution exists that provides informationduantities of the Kondo model in the small coupling limit
on both thermodynamic and dynamical quantities. For ex{poJ—0) can be calculated from a resonant-level model,
amp|E, the Bethe ansatz So|uf|>’(§rhas solved all universal where the interacting features of the Kondo model are en-
properties of the Kondo prob|em inc|uding its h|gh- to low- coded in a nonconstardffective hybridization functioof
temperature crossover behavior. But the Bethe ansatz réhis resonant-level model. Thereby we extend the well-
quires the limit of infinite conduction bandwidth and cannotknown strong-coupling result by Toulou$éhat the Kondo
be used to calculate dynamical quantities beyond the lowmodel on the Toulouse line is equivalent to a resonant-level
energy limit. model with a flat hybridization function. Surprisingly, even
Thus, numerical methods, like Wilson’s numerical renor-in the small coupling limit(Kondo limit) our noninteracting
malization group® (NRG) or quantum Monte Carlo effective model describes both universal low-energy proper-
(QMC),G in connection with maximum-entropy metho7ds, ties such as the Wilson ratio as well as high-energy power
have to be employed to access dynamical quantities on al®ws and logarithmic corrections with very good accuracy.
energy scales. In both methods, evaluation of dynamicaPue to the noninteracting nature of this effective model this
properties, and quantities related to them, such as th&apping allows immediate insight into the physics of the
Korringa-Shiba relation or the Friedel sum rdlsyffer from  Kondo model, for example, the dependence of its static and
unavoidable numerical errors. QMC simulations, in addition, dynamical quantities on a local magnetic field.
cannot be used at zero temperature and are restricted to com-After presenting our approach in the next section, we dis-
paratively large values aof.® Moreover, a reliable evaluation Cuss several static quantitiesTat 0 as a function of a local
of single- and two-particle spectra and related quantities irmagnetic field and derive analytical expressions for their
an external magnetic field, as well as their comparison an@symptotic behavior. As an example for a dynamical quan-
interpretation within a local Fermi-liquid pictufebecome tity, we then discuss the spin-structure factor and the
rather problematié;?® especially in the limit of vanishing ex- Korringa-Shiba relation. An outlook on potential future ap-
ternal magnetic field. Approximate analytical techniquesplications of our approach concludes this paper.
such as perturbation expansions oN léxpansions, typi-
cally only describe certain properties of the Kondo model Il. MAPPING TO A RESONANT-LEVEL MODEL
correctly. A notable exception in this respect is the so-called
local-moment approacl. This perturbative approach is very
accurate in most casés,ncluding those of nonvanishing The general framework of the flow-equation metHahd
external magnetic fields!? its application to the Kondo model has been explained in

A. Principles of the flow-equation method
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detail in Ref. 16. Here we will only repeat the main steps in def (1 2) ]2 L2
order to make this paper self-contained, and refer to Ref. 16 cg()\):‘[ |pa|(1—kz)/2j dxdPx v
for more details. 2mal L2
The key idea of the flow-equation approach consists of
performing a continuous sequence of infinitesimal unitary def ' (N2)]Y2 o, (Y2
transformations on a given Hamiltonian, Cp(M)= Sral [pa )/2f dxe PP e)
—L/2
dH(B) that  obey (Q|C,(\)C,(\)|Q)=6,,6(p)  and
— p pp
dB [7(B),H(B)]. @ (Q|C£(A)Cp,()\)|ﬂ>=5pp,0(—p). For the special cask

=1 they fulfill fermionic anticommutation relations

With an anti-Hermitian generatos(B) the solution of Eq. {Cg(l),Cp,(l)}zépp, and can therefore be interpreted as
(2) describes a family of unitarily equivalent Hamiltonians creation and annihilation operators for fermions.
H(B) parametrized by the flow parametBr By choosing In Ref. 16 the following flow equations for the parameters
7(B) appropriately* one can set up a framework that diago- i Eq. (4) have been derived:
nalizes a many-particle HamiltoniaH(B=0), i.e., H(B
=) becomes diagonal. dg, ) 2

The concrete realization of this approach for the Kondo 9B~ —p°gpt 2
model was discussed in Ref. 16. The starting point is the I'(A%) ap
bosonized fortf of the Hamiltonian(1). Since we are 1 d\2
mainly interested in describing the basic ideas of our ap- + ngln(B/az)ﬁ, (5)
proach, we restrict ourselves to a linear dispersion relation.
Notice, however, that the flow-equation approach can also be
used for a nontrivial conduction-band density of states since % _ 2m
it does not rely on the integrability of the modélwith a dB  T(\?)
linear dispersion relation the Kondo problem becomes effec-
tively one dimensional, the charge-density excitations in Eqand the following is the differential equation for the flow of
(1) decouple, and we only need to look at the spin-densityhe scaling dimension:
part,

p+q 2_
E ﬁgpgaan‘ '

agelgal*’? 6)

d\?  8mA\2(1-\?) )

G5- o 2 9g-qaatt (@)
J I eore ra?)  “q

H=Ho— —=&,®(0)S+ —[e"?*Os™ + H.c]

/82 4ra B

3) It can be showtf that one always finds\ — 1 in the

strong—coupling phase of the Kondo model, i.e., in the low-
with Ho=Z2¢=0q0(q)a(—0q). Here o(p)  energy limit the vertex operators in E@) become fermions.
:1/’/2|plzq(c;+qTCqT_Cp+qLqu) are the bosonic spin- [N the following we will use an improved version of the_
density modes with the bosonic spin-density field defined byabove flow equations by taking into account that all approxi-
D(x)= _i2q$om/qe—iqx—alq\/za(q)_ For simplicity we mations should be performed with respect to the interacting
have set the Fermi velocity-=1. a is proportional to the ground state: It turns out that the only necessary modification
inverse conduction bandwidth. All our latter results will be in Egs.(5)—(7) is that the exponent ifgal*"~* gets replaced
expressed as universal functions of the low-energy Konddy )\Z(Bq)—l, i.e., it is no longer a running exponéfit.
scaleT, and we can consider E() to be equivalent to our

original Kondo Hamiltonian ifTy<a™?.

Equation(3) was used as the starting poid{B=0) of . . . .
. . Now we will compare this system of differential equa-
the flow-equation approach in Ref. 16, Away from the Tou'tions with the flow equations for a resonant-level model. This

louse point the unitary equivalence of the flow holds onlyWiII lead to thekey resultof this paper: the resonant-level

approximately, but this gpproximation can be controlled _by %model can be used as affective modelor the complicated
small parametér and yields very accurate results. During

o ) strong-coupling Kondo model.
the flow the Hamiltonian can be parametrized as The Hamiltonian of the resonant-level mod&LM) is

given by

B. Equivalence to a resonant-level model

H(B)=Ho+ > gp(B)(CI[A(B)]S +H.c)

P Hrw= 2, ecic+eqdid+ D Vi(ctd+dTey). (8)
RLM™ 2 €kCkbkT €d =~ Vi Sk k)

+

+% wp(B{CIN(Bp)],Co[A(Bp) ]} (4) Following the same flow-equation approach as previously

used in the Kondo model, we establish a solution to the

def resonant-level modéB). A detailed description of the flow-
HereBp=p‘2, andcg()\), Cp(N) denote normalized vertex equation solution can be found in Ref. 21. One finds the
operators with scaling dimension>0 in momentum space, following flow equations for the parameters in E8):
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de 2 2€k+ éq_ZEd
d—B——Vk(Gd—Gk) +q§k Vqu?eq, 9
dEd
E§=—2%:Vﬂq—6@, (10)
d&'k 2
EZZVk(ek— Ed). (11)

It should be noted that this yields the exact analytical
solution. Having established the flow equations to solve both
the Kondo model and the resonant-level model, respectively,
one can now show an approximate equivalence of these tvvg
models. We introduce the substitution

FIG. 1. The dimensionless effective hybridization function
«f(X) evaluated forpgJ=0.1 in the Kondo model. The resulting
function is symmetric and is only plotted far>0. It coincides with
the universal form fox=<30. The fit(14) is indistinguishable from
2(B)—1 (12) this line. Notice especially the appearance of logarithmic behavior
in the crossover region.

2

2:—
“ TIN%(By)]

oelkal*

and notice that with this substitution the two sets of ﬂOWresonant-IeveI model becomes better since this procedure
equations, Eqs5) and(6) and (9)—(11), become equivalent anages to partly also take the logarithmic term in &

for e4=0 in the resonant-level model, with the exception oft5 account.

the logarithmic term in Eq(5). Thus we now have estab-  The resulting effective hybridization function can be

lished an approximate mapping of the Kondo model onto thgjeq into a dimensionless form with one dimensionful pa-
resonant-level model by means of E@2) in the sense that rameterA® o T

their flow-equation diagonalization is identical. We shall re- eff = K
fer to this relation by introducing theffective hybridization
function Aeﬁ(e)zfrzkvﬁ&(e— €): the resonant-level
model with this nontrivial hybridization function can be usedz (x) is a universal function in the Kondo limitpgJ
as an effective model for the Kondo model in the Kondo:g) It is depicted in Fia. 1 fom-J—0.1. and coingides
limit (small coupling limi} poJ—0. Since this noninteract- with .its univefsal form fgr.|x|<3;())o (|e|<.6’OT e this
ing resonant-level model is a simple, quadratic Hamiltonian, hould b ficient f e | - cfé;g: 'l’
this mapping will allow us to read off and understand manyS ould be sufficient for most practical purp oriarger
properties of the complicated many-body Kondo physics in-nergles the effective hybno!|zat|on fF’”C“.O” beg'”? to cross
an intuitive and straightforward way. It will turn out that the over .|nto linear behawor_ with logarithmic c_orrectlon.s de-
deviations ofA(€) from a constant hybridization function pendmg on thevare COPF’"”Q ’?0‘]' .The following function
encode the quasiparticle interaction and therefore the man)p_rowdes an excellent fisee Fig. 1

body Kondo physics in this quadratic effective Hamiltonian.

Aeii(€)=A%A e el Ady). (13)

Notice that the above mapping between the Kondo model X (x)=1+3a n 1+(1 2}
and the resonant-level model beconessctat the Toulouse ef 2%t 2N
pointt’” pod=2m(2—2) sincer?(B)=1 for all flow pa- < 1x «
rametersB. One easily verifies that the effective resonant- +a, arctar*— 1= )(1—In - ) (14)
level model then has a constant hybridization function, Q| |a0 2

Ao €)= (7/4)pod?. In this case, our mapping just reduces .
to the observation already made by Toulouse that the part|V-VIth the _parameter_s from Table 1. .
A similar analysis based on the comparison of flow equa-

tion function of the Kondo model for this specific coupling tions shows that the above mappina between the Kondo
constant] is exactly equivalent to the partition function of a . . pping
model and the noninteracting resonant-level model can be

quadratic Hamiltonian’ A .
In order to specify the functio ¢( €) in the Kondo limit extende_d _to the case of a K_ondo Hamiltonid with a
nonvanishing local magnetic fiel

it is best to not directly use relatiqd2), but to determine the
effective hybridization function from matching a correlation h
function in the Kondo model and the resonant-level model. Hsim+9ushs;.,
We have chosen théS™(t)S™(0)) correlation function,

evaluated it with respect to E¢4) for B=0, and then chose .
Aci(€) in the resonant-level model such that this coincided?ef(X)-
with the (d¥(t)d(0)) correlation function. The resulting
Aci(€) agrees with Eq(12) in the high- and low-energy o
regimes, with deviations only in the crossover region. How-g.829 0.536 0.00324
ever, the mapping from the Kondo model to the effective

(15

TABLE |. Result of the fit(14) to the effective hybridization

aj a
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by settingegq=gugh in the resonant-level model. However, 10° T T
the mapping with the above effective hybridization function E
becomes less accurate foug|h|=Ty due to the approxi- o
mate nature of the flow-equation solutiof®—(7). We will gi: us i
discuss this point in more detail below. = F

Summing up, as long as we are interested in static quan- o X
tities in a local magnetic field smaller than approximatgly
and/or dynamical correlation functions for energies smaller
than approximately 60, we can use the resonant-level
model with the effective hybridization functiofi4) to de-
scribe the physics of the Kondo model in the small coupling 10, o 10° 10
limit. The only undetermined parameter in the resonant-level gugh / T,
model is the energy scakégﬁ that explicitly depends od.
This overall energy scale is proportional Tq . Notice that FIG. 2. Universal curve forS(0) as a function of the local
the nonperturbative behavior of this energy scale magnetic fieldh.

1

Tgoce™ Yeod (16) physics. However, in our approach this result can be read off
directly from Eq.(17). Secondpy(0)c1/A¢4(0)c1/Ty, i.e.,
we obtain the correct scaling behavior fgp,, directly from
the behavior ofA .4(€). There is, however, a nontrivial cor-
_ ) N rection coming from the factor in parentheses in ELj).
C. Calculation of physical quantities Note that forA .¢( €) = const this correction is one, but for the

Once the mapping between the Kondo modgland the  strongly e dependentA(e) in Fig. 1 it is of the order of
effective resonant-level modé8) has been established, one two. As we will demonstrate later, this difference is directly
can readily calculate physical quantities for the Kondoresponsible for obtaining the correct Wilson ratio in our ap-
model. One complication arises from the fact that operatorgroach.
of the original Kondo model have to be transformed by a From the mappingS,=d’d—1/2 it is easy to calculate
unitary transformation analogous to ). In the language x.A{®+i8)=—(gue)*(d'd;d'd)),.s. Since the correla-
of the effective resonant-level model they will thus in gen-tion function has to be evaluated within the resonant-level
eral correspond to more complicated many-particle operamodel, one obtains for the imaginary partTat 0
tors. Since the intention of this paper is to demonstrate the o

otential of our mapping in a pedagogical setting, we will " _ 2 / / /

goncentrate on two F(;li)wtr?tities ttl?at regmgin simple Snder these Xk ©)=(Gus) WJ do’pal@pal@to’). (19
transformationsti) the zcomponent of the spin operat8y,
which becomesS,=d’d—1/2, and(ii) the Hamiltonian it-
self.

From the latter we obtain the internal energyy,,=(H
—Hp) and the Sommerfeld coefficient;n,(h). A straight-

follows correctly from the original flow Eqs(5)—(7), see
Ref. 16.

—w

Again, this result provides direct access to an interpretation
of the behavior ofy,(w+16) in terms of the physics of the
resonant-level model.

forward calculation in the noninteracting resonant-level Il RESULTS
model yields One quantity that can be calculated analytically is the

242 low-energy limit of the spin-structure factorS(w)

T ¥p , def
7imp(h): 3 pa(0)[1=A"(0)], (17 =xs{w) o,
where A’ (w) denotes the derivative of L XA )
S(O)—J)lino P (20
A . 1 Pl d Agii(€)
(w)= P Co—e For a vanishing local magnetic fiel&(0) is just the spin-

relaxation rate accessible in, e.g., spin-resonance experi-

andP/ ... is the principal-value integral. Hepg(e) is the  ments. With the result fog”,(w) from Eq.(19) we obtain
impurity orbital density of states of the resonant-level model,

1 Aoxl(€) S(0)=( )2—1 5ﬁ(0) (21
effl € Qug )

=— . 18 7 h)24+A2(0)]?

pd(€) [e—gugh (O] éﬁ(e) (18 [(gugh) &i(0)]

which leads to the curve shown in Fig. 2. Equat{@d) is of
The result(17) for i, has some interesting implications. particular importance because it explicitly demonstrates uni-
First, because' is connected t@. , it is apparent that the versality, TﬁS(w)=f(g,uBh/TK), and allows to directly fit,
low-energy excitations in the system are controlled by spire.g., experimental data from electron-spin-resonance or
degrees of freedom, a well-known feature of the KondoNMR experiments and extract the Kondo temperature. Note
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FIG. 4. The magnetic susceptibilityo(h) from Eq. (23

_ L circles and the same quantity obtained from an NRG calculation.
FIG. 3. x;{w) for three characteristic local magnetic fields ( 9 d y

=0, h=Tx, and h=5T. . . .
9ren= Tk, andgue K more precisely the proportionality constant T A 44(0).

This can most conveniently be done by using Wilson’s defi-

furthermore that the resul2l) is not only valid in the Kondo '’
nition of the Kondo temperatute

limit, but also holds at the Toulouse point of the anisotropic
Kondo model and everywhere in between. Since it does not

depend on the details df.4(¢€) it will also be true for gen- Xo(h:0)=(gﬂs)2i, (22)
eral band structures; in Eq. (1) and thus is eventuallthe 4Ty
result forS(0) in DMFT calculations. where x, is the static magnetic susceptibility amd=0.413

The full frequency dependent;(w) has to be calculated the Wilson numbery, can be obtained from the imaginary
numerically using the form of the effective hybridization part of the dynamic susceptibilit{19) via
function in Fig. 1. The results for three values of the external
field, h=0, gugh=Tk, andgugh=5Ty, are displayed in 2 %d XoA®)

Fig. 3. These correlation functions provide a good example (23

for the usefulness of our mapping to the effective resonant-

level model since one can directly interpret the structures andnd must in general be evaluated numerically. At the Tou-
their frequency and field dependencies in terms of analyticdbuse point one can, however, give an analytic answer since
formulas derived for the resonant-level model. For exampleA () = const and thus

the high-frequency behavior af, (w) follows directly from

Eq. (19) and the behavior of the effective hybridization func- B o1 Aer(0)
tion A.(€) at large energieéwhich is linear with logarith- xo(h)=(gup) 7 W2 A0
mic corrections, see Fig.)1y,(w) decays like 1b with ef
logarithmic corrections, in agreement witexpensive nu-  Therefore at the Toulouse point the Korringa-Shiba relafion
merical result$> .

For the dependence of the dynamical susceptibility on the Re— (gue) lim Xz4 @) (25)
local magnetic field one makes use of the fact that the local s
magnetic field corresponds to the on-site energy in the effec-
tive resonant-level model. Therefore it is obvious that thelS independent of the local magnetic field
observed shift of the resonance peakyify(w) is due to the 5
shifted center of the resonant level. Furthermore, the deple- R :(QMB) S(0) _ 1 (26)
tion of the maximum value is related to the decreasing occu- S 2mx3(h) 2°
pation of the resonant level, which corresponds directly to
the increasinglocal magnetization in the Kondo model. At In the following we discusgo(h) and the Korringa-Shiba
the same time, one observes a decrease of the total spectrglation for the Kondo limitpqd— 0. The quantityyo(h) is
weight in x;(®), which can be accounted for by a transfer particularly convenient for a comparison with NRG results.
to a finite expectation value gfS,) in the Kondo model. In Fig. 4 the circles represent the valuesyg{h) calculated
There is, however, also a nontrivial effect, namely, the in-via Eq. (23) with the effective hybridization function from
creasing broadening of the resonance peak with increasingig. 1, and the full line represents the result of an NRG
magnetic field. For a resonant-level model with a constantalculation. We observe excellent agreement for all values of
Aqn(€) such a behavior does not occur; it is entirely relatedthe local magnetic field: notice that the curves agree without
to the fact that with increasing magnetic field the systenfit parameters. This example clearly demonstrates that the
starts to notice the energy dependence of the effective hyrontrivial form of the effective hybridization in Fig. 1 en-
bridization. codes the many-particle physics of the Kondo model in a

The quantity not yet fixed in our calculation &, or trivial noninteracting effective model.

w

(24)

2
27TXO w—0 w
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FIG. 5. Results for the Shiba ratis (full line) and the Wilson
ratio Ry, (dashed lingas a function of a local magnetic field. The
correct limiting values ah—0 are missed by approximately 5%.

The result in Fig. 4 can readily be combined with rela-
tions (17) and(21) to obtain the Wilson rati

n_ AmKs xXimp(h)
" 3(gue)? Ymp(h)’

(27)

From Eqgs.(17) and (24) one immediately derives the well-
known resultR,(h) =4 on the Toulouse line independent of
the magnetic field, which is twice the value in the small
coupling Kondo limit.

Our results for the Wilson ratio and the Korringa-Shiba
relation obtained within the effective resonant-level model

describing the weak-coupling limjpy,J—0 are collected in
Fig. 5. For the Wilson ratio we would actually have to cal-
culate the quantityy, and noty,.> However, for the case
of small poJ considered here, both quantities are
equivalent® One observes that bofk, andRg are indepen-
dent of the local magnetic field up to approximatelygh
~Tg, and then they start to decreashiba ratig, respec-
tively, and increaséWilson ratig. The exact Bethe ansatz
solutiorf gives Ry, (h)=2 independent of the magnetic-field
strength(see also Ref. 12 and local Fermi-liquid theory
yields Rg=1 for h—0.2 Our limiting values ahh—0 miss
these exact results by approximately 5%. Notice that th
term[1—A’(0)] in Eq. (17) is very important to obtain this
correct value forRy(h=0) because it reduces the Wilson

PHYSICAL REVIEW B7, 184408 (2003

IV. SUMMARY AND OUTLOOK

Summing up, we have shown that the resonant-level
model with a nontrivial hybridization functioA.«(€) can be
used as an effective model for the single impurity Kondo
model. The key observation was the fact that the flow-
equation solutions of both models are approximately identi-
cal if a suitableAg(€) is chosen for the resonant-level
model (Fig. 1). In this mapping the impurity orbital occupa-
tion number,ng—1/2 plays the role of the Kondo impurity
spinS,. The impurity orbital energy corresponds to the local
magnetic field acting o1%, .

In contrast to the conventional approach where effective
models describe the vicinity of the low-energy
renormalization-group fixed points, our effective model
very accurately describes both certain low- and high-energy
properties of the original Kondo model: compare, for ex-
ample, our discussion of the dynamical spin-spin correlation
function in Fig. 3. It also yields thermodynamic quantities
that are in excellent agreement with much more expensive
numerical methodgsee Fig. 4. The nontrivial behavior of
the effective hybridization function encodes the quasiparticle
interaction, which leads to, e.g., the correct Wilson ratio for
small magnetic fieldgwith 5% accuracy.

In general, the evaluation of physical observables in the
flow-equation approach requires following the flow of the
operator under the infinitesimal unitary transformati¢®ec.
IIC). Approximations and the ensuing accuracy of these
transformations need to be studied on a case-by-case basis: it
has been demonstrated above that thermodynamical quanti-
ties and thes5,-S, correlation function can be evaluated very
accurately. Likewise the spectral density and spin-density
correlation functions with or without external magnetic field
can be described very well within our effective motfel.
Other physical observables related to the conduction-band
electron dynamics such as tiematrix or the conductivity
have more complicated transformation properties under the
infinitesimal unitary transformations and they will be inves-
tigated in a future publication.

In conclusion, our approach describes many aspects of the
complicated many-body Kondo physics for not too large
magnetic fields within a simple noninteracting model. There-

%ore one can very easily and intuitively understand certain

properties of the Kondo model, e.g., the dependence of spin-
spin correlation functions on a local magnetic figkg. 3).

ratio from the Toulouse line value to the value in the Kondoc)ne main prospect of our approach is to look at other corre-

limit. Remarkably, our simplaoninteractingeffective model

lation functions using this effective model, in particular, the

therefore correctly describes the Wilson ratio in the Kondor matrix for applications in the framework of DMFT calcu-

limit (for not too large magnetic fielglswhich is a hallmark
of strong-coupling Kondo physics.

Let us finally analyze the accuracy of our effective model.

lations. Future prospects also include cluster problems and
the single impurity Anderson model. Work along these lines
is in progress.

Since Fig. 4 demonstrates that integral quantities such as

xo(h) are obtained with very good accuracy &t magnetic

fields, one can infer from Fig. 5 that quantities depending on

low-energy details in frequency space suchygg andS(0)
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