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Quantum Monte Carlo algorithm for nonlocal corrections to the dynamical
mean-field approximation
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~Received 14 May 2001; published 29 October 2001!

We present the algorithmic details of the dynamical cluster approximation~DCA!, with a quantum Monte
Carlo ~QMC! method used to solve the effective cluster problem. The DCA is a fully causal approach which
systematically restores nonlocal correlations to the dynamical mean field approximation~DMFA! while pre-
serving the lattice symmetries. The DCA becomes exact for an infinite cluster size, while reducing to the
DMFA for a cluster size of unity. We present a generalization of the Hirsch-Fye QMC algorithm for the
solution of the embedded cluster problem. We use the two-dimensional Hubbard model to illustrate the
performance of the DCA technique. At half filling, we show that the DCA drives the spurious finite-
temperature antiferromagnetic transition found in the DMFA slowly towards zero temperature as the cluster
size increases, in conformity with the Mermin-Wagner theorem. Moreover, we find that there is a finite-
temperature metal to insulator transition which persists into the weak-coupling regime. This suggests that the
magnetism of the model is Heisenberg-like for all nonzero interactions. Away from half filling, we find that the
sign problem that arises in QMC simulations is significantly less severe in the context of DCA. Hence, we were
able to obtain good statistics for small clusters. For these clusters, the DCA results show evidence of non-
Fermi-liquid behavior and superconductivity near half filling.

DOI: 10.1103/PhysRevB.64.195130 PACS number~s!: 71.10.Fd, 02.70.Ss
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I. INTRODUCTION

One of the most active subfields in condensed ma
theory is the development of new algorithms to simulate
many-body problem. This interest is motivated by vario
physical phenomena, including high-temperature superc
ductivity, magnetism, heavy fermions and the rich pheno
enology occurring in quasi-one-dimensional compounds
the last few years, important progress has been made. W
controlled results have been obtained by exact diagona
tion and quantum Monte Carlo methods~QMC!.1 However,
these algorithms suffer from a common limitation in that t
number of degrees of freedom grows rapidly with the latt
size. As a consequence, the calculations are restricted to
tively small systems. In most cases, the limited size of
system prohibits the study of the low-energy physics of th
models.

Recently, another route to quantum simulations has b
proposed. Following Metzner and Vollhardt2 and
Müller-Hartmann3 who showed that in the limit of infinite
dimensions, the many-body problem becomes purely loca
mapping to a self-consistent Anderson impurity problem w
performed.4,5 The availability of many techniques to solv
the Anderson impurity Hamiltonian has led to a drama
burst of activity. However, when applied to systems in two
three dimensions this self-consistent approximation, refe
to as the dynamical mean field approximation~DMFA!, dis-
plays some limitations. Due to its local nature, the DMF
neglects spatial fluctuations which are essential when the
der parameter is nonlocal, or when short-ranged spin co
lations are present.

An acceptable theory which systematically incorpora
nonlocal corrections to the DMFA is needed. It must be a
to account for fluctuations in the local environment in a se
0163-1829/2001/64~19!/195130~23!/$20.00 64 1951
r
e
s
n-
-
n
ll-
a-

e
la-
e
e

en

a
s

r
d

r-
e-

s
e
-

consistent way, become exact in the limit of large clus
sizes, and recover the DMFA when the cluster size equal
It must be easily implementable numerically and prese
the translational and point-group symmetries of the latti
Finally, it should be fully causal so that the single-partic
Green function and self-energy are analytic in the upper h
plane. There have been several attempts to formulate the
which satisfy these requirements, but all fail in some sign
cant way.6

In recent publications,7–9 the dynamical cluster approxi
mation ~DCA! has been proposed as an extension to
DMFA which satisfies all these criteria. The DCA is built i
close analogy with the DMFA. In the DCA, the lattice pro
lem is mapped to a self-consistently embedded finite-si
cluster, instead of a single impurity as in the DMFA. The k
idea of the DCA is to use the irreducible quantities~self-
energy, irreducible vertices! of the embedded cluster as a
approximation for the corresponding lattice quantities. Th
irreducible quantities are then applied to construct the lat
reducible quantities such as the Green function or susce
bilities in the different channels. The cluster problem gen
ated by the DCA may be solved by using a variety of tec
niques including the quantum Monte Carlo~QMC! method,10

the fluctuation exchange~FLEX! approximation,11 or the
noncrossing approximation~NCA!.12

The QMC method, and the Hirsch-Fye algorithm10 in par-
ticular, is the most reliable of these techniques. The Hirs
Fye algorithm was originally designed for the treatment
few-impurity problems. Hence, it has been widely applied
the Kondo problem10 and also to solve the impurity problem
of the DMFA. For embedded cluster problems, this algorith
shows a mild sign problem, compared to that encountere
previous finite-sized simulations, presumably due to the c
pling to the host. Thus, we are able to perform simulations
significantly lower temperatures than with other availab
©2001 The American Physical Society30-1
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techniques. However, in order to study a meaningful se
clusters of different sizes, it is necessary to use massi
parallel computers.

Throughout this paper, we will use the two-dimension
Hubbard model on a simple square lattice as an example
Hamiltonian is

H52(
ij

t ij ~cis
† cjs1H.c.!1e(

is
nis

1U(
i

~ni↑21/2!~ni↓21/2!, ~1!

wheret ij is the matrix of hopping integrals,cis
(†) is the anni-

hilation ~creation! operator for electrons on lattice sitei with
spin s, and U the intraatomic repulsion. We will takem
50 and vary the orbital energye to fix the filling. The model
has a long history and is still the subject of an intens
research in relation with the high-temperature supercond
tivity, the non-Fermi-liquid phenomenon, the metal to ins
lator transition and magnetism in various physical syste
dominated by strong correlations. Some short accounts13,14

of the DCA applied to this model have been recently pu
lished but without a full description of the details of th
algorithm and numerical subtleties. It is the purpose of t
paper to present the full account of the DCA-QMC tec
nique. A typical DCA algorithm using the QMC technique
the cluster solver is made of three main blocks: the s
consistent loop, the analysis block and the analytical cont
ation block. The self-consistent loop is the most importan
the three blocks; it is devoted to the mapping of the lattice
the cluster~coarse graining! and to the solution of the cluste
problem by the QMC method. In the analysis block, clus
Green functions obtained from the QMC method are tra
formed to lattice Green functions following the procedu
described in Sec. III. The last block is devoted to the co
putation of the lattice real frequency quantities from the a
lytical continuation of the corresponding QMC imaginar
time quantities by the maximum entropy method~MEM!.15

This paper is organized as follows. In the next section,
review the dynamical mean field approximation. In Sec.
we review the DCA formalism in which the lattice proble
is mapped to a self-consistently embedded periodic clus
and discuss the relationship between the cluster and the
tice. In this section we describe how different lattice Gre
functions can be obtained from the cluster quantities. In S
IV, we derive a modified form of the Hirsch-Fye QMC algo
rithm, which may be used to solve the effective cluster pr
lem. We also discuss the conditioning and optimization o
variety of one and two-particle measurements. In Sec. V,
discuss the DCA algorithm. In Sec. VI, we will show ou
results for the two-dimensional Hubbard model. Compa
sons between the DCA and the results of finite-sized sim
tions will be made in order to outline the complementarity
the two techniques which has been discussed in ea
publications.13,14,16At half filling we discuss the occurrenc
of antiferromagnetism and the metal to insulator transiti
Away from half filling, we show the signature of a non
Fermi-liquid behavior and superconductivity for small clu
19513
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ters for which the negative sign problem is mild so that go
statistics can be obtained at low temperatures. Finally, in S
VII, we draw the conclusions on the present work and d
cuss future applications of the DCA to various physical pro
lems.

II. THE DYNAMICAL MEAN-FIELD APPROXIMATION

The DCA algorithm is constructed in analogy with th
DMFA. The DMFA is a local approximation which was use
by various authors in perturbative calculations as a simp
cation of the k summations which render the proble
intractable.17,18 But it was after the work of Metzner an
Vollhardt2 and Müller-Hartmann3 who showed that this ap
proximation becomes exact in the limit of infinite dimensio
that it received extensive attention during the last decade
this approximation, one neglects the spatial dependenc
the self-energy, retaining only its variation with time. Plea
see the reviews by Pruschkeet al.4 and Georgeset al.5 for a
more extensive treatment. In this section, we will show t
it is possible to reinterpret the DMFA as a course grain
approximation, and then review its derivation.

The DMFA consists of mapping the original lattice pro
lem to a self-consistent impurity problem. As illustrated
Fig. 1 for a two-dimensional lattice, this is equivalent
averaging the Green functions used to calculate the irred
ible diagrammatic insertions over the Brillouin zone. An im
portant consequence of this averaging is that the self-en
and the irreducible vertices of the lattice are independen
the momentum. Hence, they are those of the impurity.

Müller-Hartmann3 showed that this coarse-graining b
comes exact in the limit of infinite-dimensions. For Hubbar
like models, the properties of the bare vertex are comple
characterized by the Laue functionD which expresses the
momentum conservation at each vertex. In a conventio
diagrammatic approach

D~k1 ,k2 ,k3 ,k4!5(
r

exp@ i r•~k11k22k32k4!#

5Ndk11k2 ,k31k4
, ~2!

wherek1 andk2 (k3 andk4) are the momenta entering~leav-
ing! each vertex through its legs ofG. However as the di-
mensionalityD→` Müller-Hartmann showed that the Lau
function reduces to3

DD→`~k1 ,k2 ,k3 ,k4!511O~1/D !. ~3!

The DMFA assumes the same Laue functi
DDMFA(k1 ,k2 ,k3 ,k4)51, even in the context of finite di-
mensions. Thus, the conservation of momentum at inte
vertices is neglected. Therefore we may freely sum over
internal momentum labels of each Green function leg. T
leads to a collapse of the momentum dependent contribut
and only local terms remain.

This argument may then be applied to the free ene
functional. As discussed in many-body texts,19 the additional
free energy due to an interaction may be described by a
over all closed connected graphs. These graphs may be
0-2
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QUANTUM MONTE CARLO ALGORITHM FOR NONLOCAL . . . PHYSICAL REVIEW B 64 195130
ther separated into compact and noncompact graphs.
compact graphs, which comprise the generating functio
F, consist of the sum over all single-particle irreducib
graphs. The remaining graphs, comprise the noncompact
of the free energy. In the infinite-dimensional limitF con-
sists of only local graphs, with nonlocal corrections of ord
1/D. However, for the noncompact parts of the free ener
nonlocal corrections are of order 1, so the local approxim
tion applies only toF. Thus, whereas irreducible quantitie
such as the self-energy are momentum independent, the
responding reducible quantities such as the lattice Gr
function are momentum dependent.

The perturbative series forS in the local approximation is
identical to that of the corresponding impurity model. Ho
ever in order to avoid overcounting the local self-ener
S( ivn), it is necessary to excludeS( ivn), ivn5(2n
11)pT is the Matsubara frequency, from the bare loc
propagator G. G( ivn)215G( ivn)211S( ivn) where
G( ivn) is the full local Green function. Hence, in the loc
approximation, the Hubbard model has the same diagr
matic expansion as an Anderson impurity with a bare lo
propagatorG( ivn ;S) which is determined self-consistently

An algorithm constructed from this approximation is t

FIG. 1. A single step illustration of coarse graining in th
DMFA: all lattice propagators used to calculate the self-energy
averaged over the points in the first Brillouin zone~top!. This ef-
fectively maps the lattice problem to a single point in recipro
space~bottom!. Since the real space and reciprocal space o
single-site cluster are equivalent, this mapping takes the la
problem to one of an impurity embedded within a host.
19513
he
al

art

r
y,
-

or-
n

y

l

-
l

following. ~i! An initial guess forS( ivn) is chosen~usually
from perturbation theory!. ~ii ! S( ivn) is used to calculate the
corresponding local Green function

G~ ivn!5E dh
r0~h!

ivn2h2e2S~ ivn!
, ~4!

wherer0 is the noninteracting density of states.~iii ! Starting
from G( ivn) andS( ivn) used in the second step, the ho
Green functionG( ivn)215G( ivn)211S( ivn) is calculated
which serves as bare Green function of the impurity mod
~iv! Starting withG( ivn), the local Green functionG( ivn) is
obtained using the Quantum Monte Carlo method~or another
technique!. ~v! Using the QMC output for the cluster Gree
function G( ivn) and the host Green functionG( ivn) from
the third step, a newS( ivn)5G( ivn)212G( ivn)21 is cal-
culated, which is then used in step~ii ! to reinitialize the
process. Steps~ii !–~v! are repeated until convergence
reached. In step~iv! the QMC algorithm of Hirsch and Fye10

may be used to compute the local Green functionG(t) or
other physical quantities in imaginary time. Local dynamic
quantities are then calculated by analytically continuing
corresponding imaginary-time quantities using t
maximum-entropy method~MEM!.15

III. THE DYNAMICAL CLUSTER APPROXIMATION

In this section, we will review the formalism which lead
to the dynamical cluster approximation. Here, we first mo
vate the fundamental idea of the DCA which is coarse gra
ing, we then describe the mapping to an effective clus
problem and discuss the relationship between the cluster
lattice at the one and two-particle level.

A. Coarse graining

As in the DMFA, the DCA may be intuitively motivated
with a coarse-graining transformation. In the DMFA, th
propagators used to calculateF and its derivatives were
coarse-grained over the entire Brillouin zone, leading to lo
~momentum independent! irreducible quantities. In the DCA
we wish to relax this condition, and systematically resto
momentum conservation and nonlocal corrections. Thus
the DCA, the reciprocal space of the lattice~Fig. 2! which
containsN points is divided intoNc cells of identical linear
size Dk. The coarse-graining transformation is set by av
aging the Green function within each cell. IfNc51 the origi-
nal lattice problem is mapped to an impurity proble
~DMFA!. If Nc is larger than 1, then nonlocal corrections
length 'p/Dk to the DMFA are introduced. Provided tha
the propagators are sufficiently weakly momentum dep
dent, this is a good approximation. IfNc is chosen to be
small, the cluster problem can be solved using conventio
techniques such as QMC, NCA, or FLEX. This averagi
process also establishes a relationship between the sys
of sizeN andNc . A simple and unique choice which will be
discussed in Sec. III B is to equate the irreducible quanti
~self-energy, irreducible vertices! of the cluster to those in
the lattice.

re
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e
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B. A diagrammatic derivation

This coarse graining procedure and the relationship of
DCA to the DMFA is illustrated by a microscopic diagram
matic derivation of the DCA. The DCA systematically r
stores the momentum conservation at internal vertices re
quished by the DMFA. The Brillouin zone is divided int
Nc5LD cells of sizeDk52p/L ~see Fig. 3 forNc58). Each
cell is represented by a cluster momentumK in the center of
the cell. We require that momentum conservation is~par-
tially! observed for momentum transfers between cells,
for momentum transfers larger thanDk, but neglected for
momentum transfers within a cell, i.e., less thanDk. This
requirement can be established by using the Laue functi8

DDCA~k1 ,k2 ,k3 ,k4!5NcdM (k1)1M (k2),M (k3)1M (k4) , ~5!

whereM (k) is a function which mapsk onto the momentum
labelK of the cell containingk ~see, Fig. 3!. This choice for
the Laue function systematically interpolates between the
act result, Eq.~2!, which it recovers whenNc→N and the
DMFA result, Eq.~3!, which it recovers whenNc51. With
this choice of the Laue function the momenta of each in
nal leg may be freely summed over the cell.

FIG. 2. A single step illustration of coarse graining in the DC
all lattice propagators used to calculate the self-energy are firs
eraged over the points within each cell in the Brillouin zone~top!,
mapping the lattice problem to a small cluster defined by the cen
of the cells embedded within a host~bottom!.
19513
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This is illustrated for the second-order term in the gen
ating functional in Fig. 4. Each internal legG(k) in a dia-
gram is replaced by the coarse-grained Green func
Ḡ@M (k)#, defined by

Ḡ~K ![
Nc

N (
k̃

G~K1 k̃!, ~6!

where N is the number of points of the lattice,Nc is the
number of clusterK points, and thek̃ summation runs over
the momenta of the cell about the cluster momentumK ~see,
Fig. 3!. The diagrammatic sequences for the generating fu
tional and its derivatives are unchanged; however, the c
plexity of the problem is greatly reduced sinceNc!N.

As with the DMFA, the coarse-graining approximatio
will be applied to only the compact part of the free energyF
and its derivatives. This is justified by the fact that there is
need to coarse grain the remaining terms in the free ene
Formally, we have justified this elsewhere by exploring t
Dk dependence of the compact and noncompact parts o
free energy.20 The generating functional is the sum over a

v-

rs

FIG. 3. Coarse-graining cells forNc58 ~differentiated by alter-
nating fill patterns! that partition the first Brillouin Zone~dashed
line!. Each cell is centered on a cluster momentumK ~filled
circles!. To construct the DCA cluster, we map a generic mom
tum in the zone such ask to the nearest cluster pointK5M (k) so

that k̃5k2K remains in the cell aroundK .

FIG. 4. A second-order term in the generating functional of
Hubbard model. Here the undulating line represents the interac
U, and on the left-hand side~LHS! ~RHS! the solid line the lattice
~coarse-grained! single-particle Green functions. When the DC
Laue function is used to describe momentum conservation at
internal vertices, the momenta collapse onto the cluster mom
and each lattice Green function is replaced by the coarse-gra
result.
0-4
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QUANTUM MONTE CARLO ALGORITHM FOR NONLOCAL . . . PHYSICAL REVIEW B 64 195130
of the closed connected compact diagrams, such as the
shown in Fig. 4. The corresponding DCA estimate for t
free energy is

FDCA52kBT~Fc2tr@SsGs#2tr ln@2Gs#!, ~7!

whereFc is the cluster generating functional. The trace
dicates summation over frequency, momentum and s
FDCA is stationary with respect toGs ,

21

kBT

dFDCA

dGs~k!
5Scs@M ~k!#2Ss~k!50, ~8!

which means thatSs(k)5Scs@M (k)# is the proper approxi-
mation for the lattice self-energy corresponding toFc . The
corresponding lattice single-particle propagator is then gi
by

G~k,z!5
1

z2ek2e2Sc@M ~k!,z#
. ~9!

A variety of techniques may be used to sum the clus
diagrams in order to calculateSc and the vertex functions
Gc . In the past, we have used QMC,13 the noncrossing
approximation9 or the fluctuation-exchange approximatio
Here, we will use the QMC technique which we will detail
Sec. IV. Since QMC is systematically exact; i.e., it effe
tively sums all diagrams to all orders, care must be ta
when defining the initial Green function~the solid lines in
Fig. 4! to avoid overcounting diagrams on the cluster. F
example, to fourth order and higher in perturbation the
for the self-energy, nontrivial self-energy corrections ente
the diagrammatic expansion for the cluster self-energy of
Hubbard model. To avoid overcounting these contributio
we must first subtract off the self-energy corrections on
cluster from the Green function line used to calculateSc and
its functional derivatives. This cluster-excluded Green fu
tion is given by

1

G~K ,z!
5

1

Ḡ~K ,z!
1Sc~K ,z! ~10!

which is the coarse-grained Green function with correlatio
on the cluster excluded. SinceSc(K ,z) is not knowna pri-
ori, it must be determined self-consistently, starting from
initial guess, usually from perturbation theory. This guess
used to calculateḠ from Eq. ~6!. G(K ,z) is then calculated
with Eq. ~10!, and it is used to initialize the QMC calcula
tion. The QMC estimate for the cluster self-energy is th
used to calculate a new estimate forḠ(K ) using Eq.~6!. The
correspondingG(K ) is used to reinitialize the procedur
which continues untilGc5Ḡ and the self-energy converge
to the desired accuracy.

One of the difficulties encountered in earlier attempts
include nonlocal corrections to the DMFA was that the
methods were not causal.21,22 The spectral weight was no
conserved and the imaginary parts of the one-particle
tarded Green functions and self-energies were not nega
definite as required by causality. The DCA algorithm p
sented in this subsection does not present these probl
19513
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This algorithm is fully causal as shown by Hettleret al.8.
They analyze the different steps of the self-consistent lo
and found that none of them breaks the causality of
Green functions. Starting from the QMC block, one can s
that if the inputG is causal, since the QMC algorithm i
essentially exact, the outputGc will also be causal. Then the
correspondingSc(K ,ivn) is causal. This in turn ensures th
the coarse-grained Green functionḠ(K ,ivn) also fulfills
causality. The only nontrivial operation which may bre
causality is the calculation ofG(K ,ivn). Hettleret al. used a
geometric proof to show that even this part of the loop
spects causality.

In the remainder of this section, we will give further d
tails about the DCA formalism, and discuss the relations
between the cluster and the lattice problems. Below, we
discuss the steps necessary to choose the coarse-gra
cells and ensure that symmetries of the lattice are preser

C. Selecting the coarse-graining cells

As we will see in Sec. IV the solution of the cluster pro
lem using the quantum Monte Carlo method, though a gr
simplification over the original lattice problem, is still a fo
midable task. The reason is that the self-consistent natur
the cluster problem forces us to adopt the Hirsch-Fye al
rithm. While this algorithm is very efficient for few impurity
problems, it becomes slow even for a cluster of a mod
size. Therefore, in order to study the size dependence
physical quantities we adopt various cluster tilings of t
lattice instead of confining ourselves to only the usual squ
tilings Nc54,16,36,64, . . . .

When selecting the coarse-graining cells, it is importan
preserve the point group symmetries of the lattice. For
ample, in this study, we will choose a simple square latti
Both it and its reciprocal lattice shareC4v symmetry with
eight point group operations. We must choose a set of coa
graining cells which preserve the lattice symmetry. This m
be done by tiling the real lattice with squares, and using
K points that correspond to the reciprocal space of the til
centers. We also will only consider tilings which contain
even number of sites, to avoid frustrating the magnetic c
relations on the cluster. Square tilings with an even num
of sites includeNc54,8,10,16,18,20,26,32,34,36, . . . . The
first few are illustrated in Fig. 5. The relation between t
principle lattice vectors of the lattice centersa1 anda2, and
the reciprocal lattice takes the usual formgi52pai /(a1
3a2), with Knm5ng11mg2 for integern andm. For tilings
with either a1x5a1y ~corresponding toNc51,8,18,32, . . . )
or one of a1x or a1y zero ~corresponding to Nc
51,4,16,36, . . . ), theprinciple reciprocal lattice vectors o
the coarse-grained system either point along the same d
tions as the principle reciprocal lattice vectors of the r
system or are rotated from them byp/4. As a result, equiva-
lent momentak are always mapped to equivalent coars
grained momentaK . An example forNc58 is shown in Fig.
6. However, forNc510,20,26,34, . . . , theprinciple recipro-
cal lattice vectors of the coarse-grained system do not p
along a high symmetry direction of the real lattice. Since
points within a coarse-grained cell are mapped to its ce
0-5
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K , this means that these coarse-graining choices violate
point group symmetry of the real system. This is illustrat
for Nc510 in Fig. 6, where the two open dots resting
equivalent points in the real lattice, fall in inequivale
coarse-graining cells and so are mapped to inequivalenK
points. Thus the tilings corresponding toNc
510,20,26,34, . . . , violate the point-group symmetry of th
real lattice and will be avoided in this study.

One should note that the coarse-graining scheme also
pends strongly on dimensionality. For example, in one
mension, any cell with an even number of sites will prese
the lattice symmetry and avoid frustrating the magnetic c
relations.

D. One-particle Green functions

In the DMFA, after convergence, the local Green functi
of the lattice is identical to that of the impurity mode
Though in the DCA, the coarse-grained Green funct
Ḡ(K ,ivn) is equal to the cluster Green functionGc(K ,ivn),
this quantity is not, however, used as an approximation to
true lattice Green functionG(K ,ivn). The correct procedure
to calculate the lattice physical quantities within the DCA
to approximate the lattice irreducible quantities with those
the cluster. The lattice reducible quantities are then dedu

FIG. 5. Different tile sizes and orientations in real space. T
tiling principle translation vectorsa1 anda2 form two sides of each
tiling square~illustrated for theNc520 tiling!. For square tile ge-
ometriesa2x52a1y anda2y5a1x .

FIG. 6. The coarse graining cells forNc58 and 10 each cen
tered on a coarse-grained momentaK represented as black fille
dots. For Nc58 equivalent momentak are always mapped to
equivalent coarse-grained momentaK . However, this is not true for
Nc510 where, for example, the two equivalent momenta shown
open dots are mapped to inequivalent coarse-grained moment
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from the irreducible. This procedure was justified formally
Sec. III B. To obtain a physical understanding, one must fi
understand why reducible and irreducible quantities mus
treated differently. Consider a quasiparticle propagat
through the system. The screening cloud is described by
single-particle self-energyS(k,v) which itself may be con-
sidered a functional of the interaction strengthU and the
single-particle propagatorG(k,v), S5S@U,G#. The differ-
ent screening processes are described perturbatively
sum of self-energy diagrams. If the size of the screen
cloud r s is short, the propagators which describe these p
cesses need only be accurate for distances,r s . From the
Fourier uncertainty principle, we know that the propagat
at short distances may be accurately described by a co
sampling of the reciprocal space, with sampling rateDk
5p/r s . Hence, in this case,S@U,G# may be quite well
approximated byS@U,Ḡ#.

On the other hand, the phase accumulated as the par
propagates through the system is described by the Fou
transform of the single-particle Green function. Since t
accumulated phase is crucial in the description of the qu
tum dynamics it is important thatG(r ) remains accurate a
long distances, so it should not be coarse-grained as
scribed above. However, it may be constructed from the
proximate self-energy. Hence, the approximate lattice Gr
function is given by Eq.~9!. Thus, as in the DMFA, the
lattice Green function is generally more strongly moment
dependent than the corresponding self-energy.

In the case of the 2D Hubbard model, nonlocal corre
tions are the most important in the parameter regime clos
the quantum critical point at half filling. Away from this pa
rameter regimer s is thus expected to be short. Here, t
above construction scheme for the approximate lattice Gr
function is likely to yield accurate results even for clusters
modest size. However, as the quantum critical point is
proached, longer range correlations are important. As a c
sequence one will need to evaluateS@U,Ḡ# on larger clus-
ters.

E. Two-particle Green functions

A similar procedure is used to construct the two-parti
quantities needed to determine the phase diagram or the
ture of the dominant fluctuations that can eventually dest
the quasiparticle. This procedure is a generalization of
method of calculating response functions in the DMFA.23,24

In the DCA, the introduction of the momentum dependen
in the self-energy will allow one to detect some precurs
effects which are absent in the DMFA; but for the actu
determination of the nature of the instability, one needs
compute the response functions. These susceptibilities
thermodynamically defined as second derivatives of the
energy with respect to external fields.Fc(G) andScs , and
henceFDCA depend on these fields only throughGs andGs

0 .
Following Baym25 it is easy to verify that, the approximatio

Gs,s8'Gcs,s8[dScs /dGs8 ~11!

yields the same estimate that would be obtained from
second derivative ofFDCA with respect to the applied field

e

y
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For example, the first derivative of the free energy with
spect to a spatially homogeneous external magnetic fieldh is
the magnetization

m5tr@sGs#. ~12!

The susceptibility is given by the second derivative

]m

]h
5trFs ]Gs

]h G . ~13!

We substituteGs5(Gs
0212Scs)21, and evaluate the deriva

tive

]m

]h
5trFs ]Gs

]h G5trFGs
2S 11s

]Scs

]Gs8

]Gs8
]h D G . ~14!

If we identify xs,s85s(]Gs8 /]h), andxs
05Gs

2 , collect all
of the terms within both traces, and sum over the cell m
mentak̃, we obtain the two-particle Dyson’s equation

2~ x̄s,s2x̄s,2s!52x̄s
012x̄s

0~Gcs,s2Gcs,2s!

3~ x̄s,s2x̄s,2s!. ~15!

We see that again it is the irreducible quantity, i.e., the ver
function, for which cluster and lattice correspond.

1. Particle-hole

In this subsection we will provide more details about t
relationship between the lattice and cluster two-parti
Green functions and describe how a particle-hole suscept
ity may be calculated efficiently. As a specific example,
will describe the calculation of the two-particle Green fun
tion

xs,s8~q,k,k8!

5E
0

bE
0

bE
0

bE
0

b

dt1dt2dt3dt4

3ei [(vn1n)t12vnt21vn8t32(vn81n)t4]

3^Ttck1qs
† ~t1!cks~t2!ck8s8

†
~t3!ck81qs8~t4!&,

where we adopt the conventional notation19 k5(k,ivn), k8
5(k,vn8), q5(q,nn), andTt is the time ordering operator.

xs,s8(q,k,k8) andGs,s8(q,k,k8) are related to each othe
through the Bethe-Salpeter equation

xs,s8~q,k,k8!5xs,s8
0

~q,k,k8!1xs,s9
0

~q,k,k9!

3Gs9,s-~q,k9,k-!xs-,s8~q,k-,k8!,

~16!

where Gs,s8(q,k,k8) is the two-particle irreducible verte
which is the analogue of the self-energy,xs,s8

0 (q,k,k9) is the
noninteracting susceptibility constructed from a pair of fu
dressed single-particle Green functions. As usual, a sum
tion is to be made for repeated indices.
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We now make the DCA substitutionGs,s8(q,k,k8)
→Gcs,s8@q,M (k),M (k8)# in Eq. ~16! ~where frequency la-
bels have been suppressed!. Note that only the bare and
dressed two-particle Green functionsx depend upon the mo
mentak̃ within a cell. Sincex andx0 in the product on the
right-hand side~RHS! of Eq. ~16! share no common momen
tum labels, we may freely sum over the momentak̃ within a
cell, yielding

x̄s,s8~q,K,K8!5x̄s,s8
0

~q,K,K8!1x̄s,s9
0

~q,K,K9!

3Gcs9,s-~q,K9,K-!x̄s-,s8~q,K-,K8!.

~17!

By coarse graining the Bethe-Salpeter equation, we h
greatly reduced its complexity; each of the matrices abov
sufficiently small that they may be easily manipulated us
standard techniques.

In contrast with the single-particle case where the coa
grained quantities are identical to those of the clus
xcs,s8(q,K,K8) is not equal tox̄s,s8(q,K,K8). This is be-
cause the self-consistency is made only at the single-par
level. Unlike the single particle case where bothS(K) and
Ḡ(K) are directly calculated, neitherGs,s8(q,K,K8) nor the
coarse-grained susceptibilityx̄s,s8(q,K,K8) are calculated
during the self-consistency. Instead, the coarse-grained
interacting susceptibilityx̄s,s8

0 (q,K,K8) is calculated in a
separate program after the DCA converges using the foll
ing relation:

x̄s,s8
0

@~q,inn!;~K ,ivn!;~K 8,ivn8!#

5ds,s8dK ,K8dvn ,v
n8
Nc

N (
k̃

Gs~K1 k̃,ivn!

3Gs~K1 k̃1q,ivn1nn!. ~18!

The corresponding cluster susceptibility is calculated in
QMC process, as discussed in Sec. IV D and the vertex fu
tion is extracted by inverting the cluster two-particle Beth
Salpeter equation

xcs,s8~q,K,K8!5xcs,s8
0

~q,K,K8!1xcs,s9
0

~q,K,K9!

3Gcs9,s-~q,K9,K-!xcs-,s8~q,K-,K8!.

~19!

If we combine Eqs.~19! and ~17!, then the coarse-graine
susceptibility may be obtained after elimination
G(q,K,K8) between the two equations. It reads

x̄215xc
212xc

021
1x̄021

, ~20!

where, for example, x̄ is the matrix formed from
x̄s,s8(q,K,K8) for fixed q. The charge~ch! and spin~sp!
susceptibilitiesxch,sp(q,T) are deduced fromx̄
0-7
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xch,sp~q,T!5
~kBT!2

Nc
2 (

KK8ss8
lss8x̄s,s8~q,K,K8!, ~21!

wherelss851 for the charge channel andlss85ss8 for
the spin channel.

2. Particle-particle

The calculation of susceptibilities in the particle-partic
channel is essentially identical to the above. The exceptio
this rule occurs when we calculate susceptibilities for tran
tions to states of lower symmetry than the lattice symme
For example, in order to obtain the pair function of the d
sired symmetry (s,p,d), the two-particle Green function
must be multiplied by the corresponding form factorsg(k)
andg(k8). In the study of the Hubbard model below, we w
be particularly interested ing(k)51 (s wave!, g(k)
5cos(kx)1cos(ky) ~extendeds wave!, and g(k)5cos(kx)
2cos (ky) (dx22y2 wave!. These symmetries have bee
evoked as possible candidates for the superconduc
ground state.

These factors modify the Bethe-Salpeter equations

g~k!x~q,k,k8!g~k8!5g~k!x0~q,k,k8!g~k8!

1g~k!x0~q,k,k9!3G~q,k9,k-!

3x~q,k-,k8!g~k8!, ~22!

where

x~q,k,k8!

5E
0

bE
0

bE
0

bE
0

b

dt1dt2dt3dt4

3ei [(vn1n)t12vnt21vn8t32(vn81n)t4]

3^Ttck1qs
† ~t1!c2k2s

† ~t2!c2k82s~t3!ck81qs~t4!&,

~23!

On the LHS, we have dropped the spin indices since we
consider only opposite-spin pairing. Equation~22! cannot be
easily solved if it is coarse grained, since this will convol
x(q,k,k8) with two factors ofg on the LHS andone factor
on the RHS. Hence for the pairing susceptibilities, or for a
situation where nontrivial form factors must be used, we
the equivalent equation involving the reducible vertexT2
~instead of the irreducible vertexG)

g~k!x~q,k,k8!g~k8!5g~k!x0~q,k,k8!g~k8!

1g~k!x0~q,k,k9!

3T2~q,k9,k-!x0~q,k-,k8!g~k8!,

~24!

where

T2~q,k,k8!5G~q,k,k8!

1x0~q,k,k9!G~q,k9,k-!x0~q,k-,k8!1••• .

~25!
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Pg,g~q,k,k8!5g~k!x~q,k,k8!g~k8!, ~26!

Pg,g
0 ~q,k,k8!5g~k!x0~q,k,k8!g~k8!, ~27!

Pg
0~q,k,k8!5g~k!x0~q,k,k8!. ~28!

The remaining steps of the calculation are similar to
particle-hole case. We invert the cluster particle-parti
Bethe-Salpeter equation withg51 for the cluster, in order to
extract Gc . We then coarse grain Eq.~25!, and useGc to
calculate the coarse-grainedT̄25Gc(12x̄0Gc)

21. We then
coarse grain Eq.~24!, and use the coarse-grainedT̄2 to cal-
culate the coarse-grainedP̄g,g

P̄g,g~q,K,K8!5P̄g,g
0 ~q,K,K8!1P̄g

0~q,K,K9!

3T̄2~q,K9,K-!P̄g
0~q,K-,K8!. ~29!

The pairing susceptibility of a desired symmetry is given

Pg~q,T!5
~kBT!2

Nc
2 (

K,K8
P̄gg~q,K,K8!. ~30!

F. Local quantities

We will also need to evaluate a number of local quantit
on the lattice. They include the magnetic moment, the lo
magnetic susceptibility, the local Green function, etc. T
local cluster quantities are identical to the local lattice on
This may be seen for example on the one-particle Gr
function. The coarse-grained Green function is related to
lattice Green function as follows:

Ḡ~r ,v!5
1

N (
K ,k̃

(
X,r8

eiK•(r2r8)ei k̃•(X1r8)G~X1r 8,v!.

~31!

It is easy to see from this relation thatḠ(0,v)5G(0,v).

IV. THE QUANTUM MONTE CARLO ALGORITHM

In this section we will derive a generalization of th
Hirsch-Fye Anderson impurity algorithm suitable to simula
a Hubbard cluster embedded in a self-consistently de
mined host. We will then discuss the differences between
algorithm and the more familiar Blanckenbecler-Sug
Scalapino~BSS! algorithm26 used to simulate finite-sized
systems. Finally, we will discuss how different quantiti
mentioned above may be measured efficiently and how
code can be optimized.

A. Formalism

The Hirsch-Fye algorithm is an action-based techniq
Therefore, knowledge of the underlying Hamiltonian is n
required provided that we know the Green function for t
noninteracting cluster coupled to the host, and the interac
part of the action or Hamiltonian. The interacting part
0-8
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unchanged by the coarse graining since it is purely loca
may be written in the real space as follows:

HI5U(
i51

Nc

~ni,↑21/2!~ni,↓21/2!, ~32!

and the bare cluster Green function isG(K ,ivn).
Given this information, the most direct way to derive th

algorithm is to express the partition function as path integ
over Grassmann variables. The first step is to disentangle
interacting HI and noninteractingH0 parts of the Hamil-
tonian using a Trotter-Suzuki decomposition for the partit
function. We divide the interval@0,b# into Nl sufficiently
small subintervalsDt5b/Nl such thatDt2@H0 ,HI # may be
neglected. This leads to

Z5Tr e2bH5Tr )
l 51

Nl

e2DtH'Tr )
l 51

Nl

e2DtH0e2DtHI.

~33!

The interacting part of the Hamiltonian may be further d
coupled by mapping it to an auxiliary Ising field via a di
crete Hirsch-Hubbard-Stratonovich~HHS! transformation,27

e2DtHI5e2DtU(
i

(ni↑21/2)(ni↓21/2)

5
1

2
e2DtU/4)

i
(

si561
easi(ni↑2ni↓), ~34!

where cosh(a)5eDtU/2.
We now introduce coherent states of the operators on

cluster and in the host as the basis states and expres
partition function as path integrals over the correspond
Grassmann variablesg i,l ,s and fk,l ,s defined over eachNl
time slicest l5 lDt of the interval@0,b#.28 After substituting
the Grassmann variables one obtains the following appr
mation for the partition function which becomes exact
Dt→0:

Z'E D@g#D@f#e2S0[g,f]e2SI [g] , ~35!

whereD@•••# symbols denote the measures of path integ
tion over the corresponding Grassmann fields andS(0)I is the
~non!interacting part of the action. The interacting part of t
action, becomes

SI@g#52(
i51

Nc

(
l 51

Nl

(
s

ag i,l ,s* ssi,lg i,l 21,s . ~36!

The noninteracting parts are

S0@g,f#5Dt(
k,l

Ffk,l ,s* S fk,l ,s2fk,l 21,s

Dt D
1Hhost~fk,l ,s* ,fk,l 21,s!G
1Dt(

i,l ,s
g i,l ,s* S g i,l ,s2g i,l 21,s

Dt D
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Hcluster
0 ~fk,l ,s* ,fk,l 21,s ;g i,l ,s* ,g i,l 21,s!,

~37!

whereHhost,Hcluster
0 are the Hamiltonian for the host, and th

noninteracting degrees of freedom on the cluster includ
the coupling to the host, respectively. The detailed form
bothHhostandHcluster

0 are unknown, due to the self-consiste
renormalization of the host. However, both are purely bil
ear, and may be integrated out of the actionwithout further
approximation.

We will first integrate out the host degrees of freedo
The partition function becomes

Z}F)
k,s

det~gk,s!21G E D@g#D@f#e2Sc[g] , ~38!

wheregk,s is the Green function of the host. It remains fixe
during the QMC process, and it may be disregarded since
we show below, we only require knowledge of the ratio
the partition functions for two different configurations of th
HHS fields. Other fixed prefactors~depending upon
U, b, . . . ) have also been disregarded in Eq.~38!. Sc is the
cluster action. It takes the form

Sc@g#5 (
i,l ; i8,l 8,s

g i,l ,s* G 21~ i,l ; i8,l 8!g i8,l 8,s1SI@g#,

~39!

whereG( i,l ; i8,l 8) is the cluster excluded~i.e., noninteracting
on the cluster! Green function, defined previously. Now w
will integrate out the remaining cluster Grassmann variab
The partition function then becomes

Z}Tr$si ,l %)
s

det~Gcs;si,l
!21, ~40!

where again factors which are fixed during the QMC proc
have been ignored. (Gcs;sil

)21 is the inverse cluster Gree
function matrix with elements

~Gcs;sil
! i,j ,l ,l 8

21
5d i,jd l 8,l 21assi~t l !1G i,j ,l ,l 8

21 . ~41!

If we reexponentiate the first term in the RHS of th
above formula by definingVs( i,l )[asi ,ls, we can write Eq.
~41! in a simple matrix notation as

Gcs
215G 211T~eVs21!, ~42!

where T is d i , jd l 21,l 8 . The matrix productGcs
21e2Vs de-

pends upon the HHS fields only along its diagonal eleme
As can be seen from Eq.~37!, each diagonal element of th
matricesG 21 and henceGcs

21 is 1. Therefore, the inverse
Green functions for two different field configurations$sil%
and$sil8%, are related by

Gcs8
21e2Vs85Gcs

21e2Vs2e2Vs1e2Vs8 . ~43!

Or, after multiplying byeVs8 , and collecting terms
0-9
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Gcs8
212Gcs

215~Gcs
2121!e2Vs~eVs82eVs!. ~44!

Multiplying from the left byGc and from the right byGc8, we
find

Gcs8 5Gcs1~Gcs21!~eVs82Vs21!Gcs8 ~45!

or

GsGcs8
21511~12Gcs!~eVs82Vs21!. ~46!

B. The QMC algorithm

We will now proceed to derive the Monte Carlo alg
rithm. The QMC algorithm involves changes in the Hubba
Stratonovich field configuration$si,l%→$si,l8 %, and accepts
these changes with the transition probabilityPs→s8 . Thus, to
define the algorithm, we needPs→s8 and a relation between
the cluster Green functionsG and G8 for the two different
auxiliary field configurations. To simplify the notation, w
introduce a combined space-time indexi 5( i,l ), and will
consider only local changes in the fieldssm→sm8 52sm . As
can be inferred from Eq.~40!, the probability of a configu-
ration $si% is Ps}det(Gc↑$si %

21 )det(Gc↓$si %
21 ); on the other hand

detailed balance requiresPs8Ps8→s5PsPs→s8 for all s8. We
may satisfy this requirement either by defining the transit
probability Ps8→s5R/(11R), where

R[
Ps

Ps8

5
det~Gc↑8 !det~Gc↓8 !

det~Gc↑!det~Gc↓!
~47!

is the relative weight of two configurations, or by lettin
Ps8→s5minimum(R,1) ~the first choice is called the ‘‘hea
bath’’ algorithm, and the second the ‘‘Metropolis’’ algo
rithm!. If the difference between two configuration is due
a flip of a single Hubbard Stratonovich field at themth loca-
tion in the cluster space time,10 then from Eq.~46!

R5)
s

@11~12Gcsm,m!~e2as(sm2sm8 )21!#21. ~48!

For either the Metropolis or the heat bath algorithm, if t
change is accepted, then we must update the Green fun
accordingly. The relationship betweenG and G8 is defined
by Eq. ~45!

Gcs i j8 5Gcs i j 1
~Gcs im2d i ,m!~e2as(sm2sm8 )21!

11~12Gcsm,m!~e2as(sm2sm8 )21!
Gcsm j .

~49!

The QMC procedure is initialized by settingGcs i j 5Gi j
where Gi j is the ~cluster! Fourier transform ofG(K ) @Eq.
~10!#, and choosing the corresponding field configurat
with all si50. Then we use Eq.~49! to create a Green func
tion corresponding to a meaningful field configuration@i.e.,
si561, for eachi 5( i,l ) or the$si% from a previous run or
iteration#. We proceed by sequentially stepping through
space-time of the cluster, proposing local changessi
→2si . We accept the change ifPs8→s is greater than a
19513
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random number between zero and one and update the G
function according to Eq.~49!. After twenty to one hundred
warm-up sweeps through the space-time lattice of the clus
the system generally comes into equilibrium and we begin
make measurements. A few lattice updates are used betw
each measurement step to reduce the correlations betw
measurements. This improves the efficiency of the algorith
since as we will see below, the measurements are num
cally expensive. After many iterations of lattice updates, n
merical round-off error begins to accumulate in the Gre
function update, Eq.~49!. To compensate for this round-of
error, the Green functions must be refreshed by again se
Gcs i j 5Gi j , and then using Eq.~49! to recalculate the Green
function corresponding to the present field configuration.

C. Differences with the BSS algorithm

The Hirsch-Fye~HF! algorithm differs in several ways
from the more familiar Blanckenbecler-Sugar-Scalap
~BSS! algorithm26 used to simulate finite-sized systems. T
BSS algorithm is more efficient. HF simulations can be co
putationally quite expensive since the memory and the C
time required by this algorithm scale as (NcNl)

2 and
(NcNl)

3, whereNc and Nl are, respectively, the number o
cluster sites and the number of time slices. The BSS a
rithm scales asNlNc

2 for the memory andNlNc
3 for the CPU

time. In order to study a meaningful set of cluster sizes us
the Hirsch-Fye algorithm, it is necessary to use massiv
parallel computers. The maximum size we studied isNc
564 for the two-dimensional Hubbard model. This max
mum size is indeed smaller than what can be reached
the BSS algorithm applied for finite system simulatio
~FSS!. But, one should bear in mind that, in the DCA, th
system is in the thermodynamic limit, it is the range of sp
tial correlations which is restricted to the cluster size. Clus
size effects are of different nature than that occurring in F
Therefore, the DCA as discussed in previous studies,
provide information which cannot be obtained from the FS

The Hirsch-Fye algorithm is action-based, whereas
BSS algorithm is Hamiltonian based. Therefore, the BSS
gorithm cannot be employed to solve the DCA cluster pro
lem, since the cluster problem has no Hamiltonian formu
tion with known parameters, and its action is highly nonloc
in time. The BSS algorithm requires that the action be lo
in time. The cluster action, Eq.~39!, is long ranged in time
due to the term involvingG. Thus, the Hirsch-Fye algorithm
is the most appropriate QMC algorithm to solve the DC
embedded cluster problem.

In addition to the differences mentioned above~detailed
knowledge of the Hamiltonian is not needed for the HF
gorithm so long as we have an initial Green function!, there
are other advantages to the HF algorithm. Whereas in
BSS algorithm, all degrees of freedom must appear exp
itly, in the HF algorithm, any noninteracting degrees of fre
dom may be integrated out without loss of any informatio
At the end of the calculation, the irreducible diagrams on
interacting orbitals may be used to calculate any relev
quantity. Therefore, the HF algorithm may be used, for e
ample, to simulate the periodic Anderson model~with only
0-10
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the f-orbital correlated! with the same computational co
required to simulate a single-band model. One may also
corporate a~dynamical! mean field coupling to an environ
ment, or between an infinite set of coupled Hubbard plane29

at no additional computational cost. In these cases, the in
mation about the mean field coupling to the environmen
the other planes is reflected inG.

For clusters, the Hirsch-Fye algorithm is very stable
low temperatures. In particular, the matricesGc

s which are
generated in the algorithm are well conditioned, the cos
stabilization steps required at low temperatures30,31 for the
more popular BSS algorithm are avoided.

Finally, the Hirsch-Fye algorithm is easily adapted
making measurements which are nonlocal in time, such
those required to calculate the irreducible vertex functio
This will be discussed in the next section. It is very difficu
to measure quantities which are nonlocal in time with
BSS algorithm. In fact, such measurements require sig
cantly more CPU time than is required to average over
HHS field configurations, since the CPU time required
these measurements scales as (NcNl)

3 for both the BSS and
Hirsch-Fye algorithms. Thus, when these measurem
which are nonlocal in time are required, both algorithm
scale as (NcNl)

3.

D. Making and conditioning measurements

In the QMC technique, all the physical quantities are e
pressed in terms of Green functions. Standard diagramm
techniques are applied to evaluate these quantities. In d
so one must remember that the Hubbard-Stratonovich tr
formation reduces the problem to one of free electrons m
ing in a time-dependent field. Thus for each field configu
tion, any diagram may be formed by summing all allow
Wick’s contractions. The full quantity is recovered by ave
aging this over all field configurations. Connected as wel
disconnected configurations must be used during the eva
tion. It is important to average over all equivalent time a
space differences and all the symmetries of the Hamilton
in order to produce the lowest variance measurement.

One difficulty encountered with the DCA algorithm is th
a reliable transform from imaginary-time quantities, in t
QMC part, to Matsubara frequencies, for the coarse-grain
part is needed. A careful treatment of the frequency sum
tion or the imaginary-time integration is crucial in order
ensure the accuracy and the stability of the algorithm an
maintain the correct high-frequency behavior of the Gre
functions. We need to evaluate

Gc~K ,ivn!5E
0

b

dteivntGc~K ,t!. ~50!

But from the QMC, we know the functionGc(K ,t) only at a
discrete subset of the interval@0,b#. As it may be readily
seen by discretizing the above equation, the estimation
Gc(K ,ivn) becomes inaccurate at high-frequencies. This
formalized by Nyquist’s theorem which tells us that abo
the frequencyvc5p/Dt unpredictable results are produce
by conventional quadrature techniques. For example, a r
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angular approximation to the integral in Eq.~50! yields a
G(K ,ivn) that is periodic invn . This presents a difficulty
since the causality requires that

lim
vn→`

G~K ,ivn!'
1

ivn
. ~51!

A straightforward way to cure this problem may be
increase the size of the set oft points where the Green
function is evaluated. But, this renders the QMC simulat
rapidly intractable as seen in the previous section. A m
economic way to avoid the problem is to use the high f
quency information provided by an approximate method t
is asymptotically exact.

Second-order perturbation theory is enough to obtain
correct asymptotic behavior, Eq.~51!. To use this high fre-
quency information, we compute the Matsubara-freque
Green function from the imaginary-time QMC Green fun
tion as follows:32

Gc~K ,ivn!5Gcpt~K ,ivn!1E
0

b

dteivnt

3@Gc~K ,t!2Gcpt~K ,t!#. ~52!

The integral is computed by first splining the differen
Gc(K ,t)2Gcpt(K ,t) using an Akima spline,33 and then in-
tegrating the spline~a technique often called oversampling!.

As another example, consider the local magnetic susc
tibility ~used to calculate the screened local moment!

x~T!'
1

Nc
(

i
E

0

b

dt^Si
1~t!Si

2~0!&

'
1

Nc
(

i
E

0

b

dt^c↑ i
† ~t!c↓ i~t!c↓ i

† ~0!c↑ i~0!&

'
T

2Nc
(
s i

E
0

b

dtE
0

b

dt8^Gcs~ i,t1t8; i,t8!

3Gc2s~ i,t8; i,t1t8!&$sil %
, ~53!

where the$sil% subscript indicates that the Monte Carlo a
erage over the Hirsch-Hubbard-Stratonovich fields is still
be performed, and in the last step in Eq.~53! we form all
allowed Wick’s contractions and average over all equival
time and spatial differences to reduce the variance of
estimator. This measurement is best accomplished by s
ting it in two parts. First, we measurex(t)

x~t!5
T

2Nc
(
s i

E
0

b

dt8^Gcs~ i,t1t8; i,t8!

3Gc2s~ i,t8; i,t1t8!&$sil %
~54!

by approximating the integral as a sum using a rectang
approximation. Fort.0
0-11
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x~t l !'
1

2NlNc
(
s il 8

^Gcs@ i,ind~ l 1 l 8!; i,l 8#

3Gc2s@ i,l 8; i,ind~ l 1 l 8!#&$sil %
, ~55!

whereind( l ) is the smaller nonnegative value of eitherl or
l 2Nl . For t50 the fact that we always storeGs( i,l 8; i,l 8)
5Gs( i,t l 8101; i,t l 8) requires us to modify the measur
ment

x~t50!'
1

2NlNc
(

s,l 8,i
^Gcs~ i,l 8; i,l 8!

3@Gc2s~ i,l 8; i,l 8!21#&$sil %
. ~56!

Finally

x~T!5E
0

b

dtx~t!'(
l

f ~ l !Dtx~t l !, ~57!

where the Simpson factorf ( l )52Dt/3 (4Dt/3) for odd
~even! l is used to reduce the systematic error of the integ

As a final example, consider the cluster particle-parti
ur
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l.
e

Green function matrixxc(q,K,K8) @K5(K ,ivn)# which is
used in Sec. III E 2 to calculate the lattice pair-field susc
tibilities. The first step is to form the corresponding quant
in the cluster space-time

xc~X1 ,X2 ,X3 ,X4!5^Ttc↑~X1!c↓~X2!c↓
†~X3!c↑

†~X4!&.
~58!

Here Xi is in the space-~imaginary!time notation Xi
5(Xi ,t i), where the pointsXi are on the corresponding re
ciprocal cluster ofK in real space, and̂Tt•••& denotes the
time ordered averaging process. The two-particle Gr
functions are difficult to measure efficiently. For a particu
configuration of the auxiliary Hubbard-Stratonovich field
the fermions are noninteracting, thus the expectation va
indicated above may be evaluated in two steps. First, us
Wick’s theorem, its value is tabulated for each field config
ration $si% and then transformed into the cluster Four
space. Second, we Monte Carlo average over these con
rations. After the first step, the expression for the above tw
particle Green function in the cluster momentum-frequen
space becomes
xc~Q,inn ;K ,ivn ;K 8,ivn8!5K (
X1 ,X4

eiK 8X1Gc↑~X1 ,X4!e2 iKX4 (
X2 ,X3

ei (Q2K8)X2Gc↓~X2 ,X3!e2 i (Q2K)X3L
$si %

, ~59!
two
di-
ted.
is

cit

red
ne

ing.
e
on.
the

the
igh
whereK is the momentum-frequency pointK5(K ,ivn). The
average over Hubbard-Stratonovich fields^•••&$si %

can be
evaluated through the QMC sweeps along with the meas
ments ofGc↑ andGc↓ . However, the sums~integrals! overt
in Eq. ~59! require special consideration. Since the Gre
functions change discontinuously when the two time ar
ments intersect, the best applicable integral approximatio
the trapezoidal approximation. Using this, we will run in
Green functionsGc(X,t;X,t) with both time and space ar
guments the same. In the QMC algorithm, this is stored
Gc(X,t1;X,t) ~i.e., it is assumed that the first time arg
ment is slightly greater than the second!; however, if we
replaced the equal time Green function to be the averag

$Gc~X,t1;X,t!1Gc~X,t;X,t1!%/25Gc~X,t1;X,t!21/2

then a trapezoidal approximation of the integrals results
we call the matrixGc , with 1/2 subtracted from its diagona
elements, asĜc ~note that we can treat one of the thr
independent momenta involved inxc as a variableQ outside
the matrix structure!, then we can write the two-particl
Green function in a matrix form

xcı~Q!5^~FQ50
† Ĝc↑FQ50! ı~FQ

† Ĝc↓FQ! ı* &$si %
, ~60!

where (FQ) i 5Dte2 i (K 2Q)•Xi2 ivt i where we have chose
ı and to index the cluster momentum-frequency space. T
measurement may be performed efficiently if the produc
e-

n
-
is

s

If

is
f

three matrices in each set of parenthesis is tabulated as
sequential matrix-matrix products and stored before the
rect product between the terms in parenthesis is calcula
When done this way, the calculation time required for th
process scales like (NcNl)

3 rather than (NcNl)
4 as would

result from a straight-forward evaluation of the sums impli
in Eq. ~60!.

For the reasons discussed above, Eq.~60! becomes unre-
liable at high frequenciesuvnu.p/Dt. The high frequency
behavior of the two particle Green function can be recove
by using a method similar to that developed for the o
particle Green function.34 The first term of its perturbation
expansion, the bubble diagram, is used for the condition
It is calculated in two ways: First it is formed from th
square of the properly conditioned cluster Green functi
Second, it is calculated using the same approximation to
Fourier transform employed in Eq.~60!. The difference of
the two may be used to condition the estimate

xcı j~Q!5^~FQ50
† Ĝc↑FQ50! ı~FQ

† Ĝc↓FQ! ı* &$si %

2~FQ50
† ^Ĝc↑&$si %

FQ50! ı~FQ
† ^Ĝc↓&$si %

FQ! ı*

1Gc~Kı!Gc* ~Kı2Q!d ı . ~61!

Moreover, this appends the right asymptotic behavior of
perturbation result to the two-particle Green function at h
0-12
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frequencies where QMC results are dominated by statis
errors.

E. Optimizing the code

In this subsection, we will discuss the optimization a
parallelization of the QMC code. We generally find that t
heat bath algorithm is more efficient, presumably becaus
has a lower acceptance rate and therefore deemphasize
expensive step of updating the Green function.

We may greatly reduce the statistical error in many of
measured Green functions by employing the translatio
and point-group symmetries of the cluster. The QMC av
aging over the HHS fields systematically restores the tra
lational invariance of the system in time and space. So
may reduce the statistical error in the measured Green f
tions by averaging over all equivalent differences in spa
and temporal cluster coordinates. To reduce the statis
error further, we then average over all the lattice point gro
operations. For example, forGc(K ,vn)

Gc~K ,ivn!5
1

NR
(R Gc@R~K !,ivn#, ~62!

where R is one of the symmetry operations in the po
group of the lattice andNR is the total number of such sym
metry operations.

The two-particle Green functions typically have more s
tistical noise than their single-particle counterparts, and th
matrices can be quite large. To reduce both the stor
needed for these measurements and their statistical noise
point group symmetry of the lattice may again be used.
first average the two-particle cluster Green functions over
different point-group operations

xs,s8~q,K ,K 8!5
1

NR
(R xs,s8@q,R~K !,R~K 8!#.

~63!

We should also average over the symmetries of the diagra
For example, for the particle-particle channel there are a
tional symmetries of the diagrams which include horizon
(K ,ivn ;K 8,ivn8)→(K 8,ivn8 ;K ,ivn) and vertical
(K ,ivn ;K 8,ivn8)→(2K ,2 ivn ;2K 8,2vn8) reflections.
After these symmetries have been imposed, we will lose
information and significantly reduce the storage requ
ments if we storexs,s8(q,K ,K 8) for eitherK or K 8 within
the irreducible wedge~we may not take bothK and K 8
within the irreducible wedge though!.

The memory required for these calculations may be f
ther minimized by limiting the use of the double precisi
arithmetic. The Green functions and all of the equations
sociated with the calculation of the initial Green function a
the Green function update, Eq.~49!, are computed with
double precision~8 byte real! to minimize the problems with
the accumulation of numerical error discussed in Sec. IV
However, to save memory, it is convenient to both calcul
and store the two-particle cluster Green functions with sin
precision~8 byte complex!. Since these measurements typ
cally have a fraction of a percent statistical error, higher p
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cision arithmetic and storage will not improve the accura
of the two-particle measurements.

The required CPU time may be reduced by optimizing
inner loops. The two numerically most expensive parts of
QMC code are the Green function update, Eq.~49!, and the
two-particle measurements, Eq.~61!. These can be written in
terms of highly optimized BLAS calls,35 DGER and
CGEMM, respectively. To see that Eq.~49! can be calculated
with an outer product, we define

am5
~e2as(sm2sm8 )21!

11~12Gcsm,m!~e2as(sm2sm8 )21!
. ~64!

Then Eq.~49! takes the form

Gcs i j8 5Gcs i j 1~Gcs im2d i ,m!amGcsm j . ~65!

This is a vector outer product and matrix update, with ve
tors am(Gcs im2d i ,m) andGcsm j for fixed m.

Additional speedup of the calculation is possible by wr
ing parallel codes. The DCA-QMC codes are extremely w
suited for massively parallel supercomputers because of t
efficient use of the floating-point capabilities of such m
chines and the highly parallel nature of the codes and
underlying algorithm. With the current relative decline in th
availability of vector supercomputers and the concomit
increase in the number of massively parallel supercomput
this is an important feature of the algorithm. In the remaind
of this subsection, we discuss first the general parallel na
of the algorithm.

There is a high degree of parallelism in the DCA-QM
algorithm, which one may exploit. This parallelism exists
two levels. First, QMC is itself inherently parallel because
consists of a number of stochastic random walks. One m
think of QMC as one long Markov-chain walk. Measur
ments are made periodically along this walk. At the end
the walk, these measurements are averaged and the fina
sult, with error bars, is obtained.

However, there is no reason why this Markov-chain wa
has to be continuous. It has been known for years that
can perform several independent, shorter Markov-ch
walks and average the results of each walk to obtain the fi
result of the calculation. The result can be an almost per
parallel speedup as an increasing number of processo
applied to a problem. This arises because only an extrem
small amount of communication between processors
required—first to initialize the Markov-chain walks and the
to collect the data for averaging at the end of the Mark
process~even this averaging can be done in parallel us
MPI calls!. We call this the ‘‘perfectly parallel’’ algorithm.

The second degree of parallelism exists in the linear a
bra problem itself. That is, one can distribute the vectors
matrices which comprise the linear algebra problem acr
several processors.~The matrix in our case is the Green fun
tion discussed above.! Such a break-up of the data becom
of paramount importance when the size of a matrix is
large that it cannot possibly fit within all of the memor
available on a single processor of a computer.
0-13
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The issue of interprocessor communication now becom
paramount as one performs linear algebra. However,
things work in our favor here. First, the main linear algeb
operation of the QMC is a vector outer product—which is
itself inherently parallel. Second, this is a well-studied pro
lem and again an efficient library package, the para
PBLAS,35 exists to solve it. When we divide the Green fun
tion over all of the processors that we use in a run o
parallel machine, we call this the ‘‘truly parallel’’ method.

The truly parallel method can be used to efficiently fill a
available processors of a parallel machine with one DC
QMC problem. Often, however, the problem of interest is n
so big as to require the entire machine for one Green fu
tion, but is too big to fit within the RAM available on
single processor and hence too big for the perfectly para
code. To efficiently use available hardware for these pr
lems, one can employ a ‘‘hybrid’’ code, which is both tru
parallel in part and perfectly parallel in part.

The hybrid code may be thought of as using blocks
processors to distribute Green functions and in turn perfo
ing a perfectly parallel QMC with many such blocks. F
example, say that the Green function for the problem at h
will not fit in the memory of a single processor, but will fi
within the memory of 4 processors. Assume also that th
are 100 processors available for a run. The hybrid code t
allocates all 100 processors, divides these 100 proces
into 25 blocks of 4, distributes copies of the initial Gre
function onto each of the 25 blocks, and then does a
fectly parallel QMC using these 25 blocks. This makes
most use of the resources of a machine and is especially
suited for a symmetric multiprocessor machine, where m
nodes exist and each node comprises several processors
a shared, relatively large, pool of RAM.

V. THE DCA ALGORITHM

In this section, we will discuss how the QMC and DC
formalism are combined into a DCA algorithm for simula
ing lattice problems. The complete DCA program is made
three completely separate parts as illustrated in Fig. 7.
first part is the self-consistent loop which is the main part
the algorithm. It includes the DCA self-consistency lo
composed of the QMC block and the coarse-graining of
lattice. This program is usually run on a parallel superco

FIG. 7. Sketch of the DCA algorithm: the self-consistent loo
the analysis part, and the MEM part.
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puter, and the cluster self energy and the various two-part
cluster Green functions are written into files. In the seco
part various one-particle and two-particle lattice Green fu
tions are calculated from the cluster Green functions
tained from the self-consistent loop. This part of the code
generally run on a workstation and it requires the data g
erated by the first part of the code. The third is devoted to
analytical continuation of the imaginary-time Green fun
tions to real frequencies using the Maximum Entro
Method ~MEM!.

A. Part 1: The self-consistent loop

~1! The DCA iteration procedure is started by setting t
initial self-energySc(K ,ivn)50, or to a perturbation theory
result.

~2! S is then used to compute the coarse-grained Gr
function Ḡ(K ,ivn),

Ḡ~K ,ivn!5(
k̃

1

ivn2e2eK1 k̃2Sc~K ,ivn!
. ~66!

~3! The next step of the iteration is to useḠ(K ,ivn) to
compute the host Green function G(K ,ivn)21

5Ḡ(K ,ivn)211Sc(K ,ivn) which must be introduced to
avoid over-counting diagrams.G(K ,ivn) serves as the inpu
to the QMC simulation to yield a new estimate for the clus
self-energy.

~4! G(K ,ivn) must be Fourier transformed from th
momentum-frequency variables to space-imaginary-ti
variables before being introduced in the QMC part of t
program as the initial Green functionGci j5G(X i2X j ,t i
2t j ) corresponding to allsi50. Equation~49! is used to
generate the cluster Green function corresponding tosi51,
or to the$si% from a previous run.

~5! The QMC step is next and is the most time consum
part of the algorithm. Each QMC step is warmed up befo
one starts to perform measurements. While making meas
ment, we average over the differences in space and time
the point group operations, as described above, to reduce
statistical error. This together with the QMC averaging
stores the translational invariance of the system in time
space, sôGci j&$si %

5Gc(X i2X j ,t i2t j ).

~6! Gc(X i2X j ,t i2t j ) is then Fourier-transformed to
Gc(K ,ivn). We calculate a new estimate for the self-ener
Sc(K ,ivn)5G(K ,ivn)212Gc(K ,ivn)21.

~7! Starting with step 2, the procedure is repeated u
Sc(K ,ivn) converges. This typically happens in less than
iterations. The number of iterations decreases whenNc in-
creases since the coupling to the host is smaller@O(1/Nc)#9

for larger clusters. The convergence test is made on the r
r,

r5

U(
K

@Scnew~K ,iv0!2Scold~K ,iv0!#U
U(

K
Scold~K ,iv0!U , ~67!

,

0-14
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wherev05pT
~8! Once convergence is reached to the desired accu

the remaining one and two-particle measurements are m
in a final QMC iteration. As in a usual QMC simulation, bin
of measurements are accumulated and error estimates
made from the fluctuations of the binned measureme
These error estimates are accurate provided that the bins
tain enough measurements so that the bin averages ar
correlated. The statistical error may be reduced by avera
over the different symmetries as discussed above.

Once the cluster Green functions are obtained, the de
mination of the lattice quantities requires additional ste
which are done in separate programs.

B. Part 2: Numerical calculation of lattice quantities

The self-consistent loop yields cluster Green functio
Gc(K ,ivn),Sc(K ,ivn), and susceptibilities
xcs,s8(K ,ivn ;K 8,ivm),Pg(K ,ivn ;K 8,ivm) which may be
used to construct the equivalent lattice quantities. This
done in a separate computer program in which the irred
ible quantities of the cluster which are in the DCA appro
mation identical to those of the lattice are used to comp
the corresponding reducible lattice quantities.

To calculate the single-particle quantities, an interpola
self-energyS(k,ivn) may be used. This is especially impo
tant for the calculation ofu¹n(k)u, and other quantities suc
as band structure, where continuity of the self-energy is
portant. We often use bilinear interpolation for this purpo
since it is guaranteed to preserve the sign of function~i.e.,
the bilinear interpolation of a positive-definite function r
mains everywhere positive!. We also use a multidimensiona
spline interpolant, similar to some Akima splines, whi
does not overshoot. However, it is important to note that
interpolated self-energy should not be used in the s
consistent loop as this can lead to violation of causality.8

The interpolated self-energyS(k,ivn) is then used to cal-
culate the Fermi surface. For this we use the discrete form
¹n(k)

Dnk

Dk
5

T(
n

G~k1Dk,ivn!2G~k,ivn!

Dk
~68!

which, in a Fermi liquid~or a marginal Fermi liquid! is maxi-
mum at the Fermi surface. The quasiparticle weight may
approximated with

Zk'12
Im S~k,ivn50!

vn50
~69!

which becomes exact asT→0.
The calculation of the lattice susceptibilities in th

particle-hole channel and in the particle-particle channe
also made in this code. The stored QMC cluster suscepti
ties are used for this purpose as prescribed in Sec. II
Here, we first form the corresponding coarse-grained
bare cluster susceptibilities, and then we use Eq.~20! to cal-
culate the corresponding coarse-grained lattice susceptib
To calculate the pair field susceptibilities, we first calcula
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the corresponding coarse-grained two-particle reducible
tex, and then use Eq.~29! to calculate the coarse-graine
lattice pair-field susceptibility matrix.

In the two-particle calculations, it is tempting to interp
late the cluster vertex functions to the lattice momenta. Ho
ever, this would increase the size of the matrices which m
be inverted in Eq.~20! dramatically, making the calculation
of the lattice susceptibilities numerically much more expe
sive.

C. Part 3: Analytic continuation

Unfortunately, there is no reliable way to perform the d
rect analytic continuation ofSc(K ,ivn). Pade´ approximants
lead to very unstable spectra because of the QMC statis
noise contained inSc(K ,ivn). The binned imaginary-time
Green function data accumulated from the cluster calcula
must be used to obtain lattice spectra from whichSc(K ,v)
may be deduced. To obtain the self-energy and spec
weight functionA(k,v) of the lattice in real frequencies, w
first compute the cluster spectral-weightĀ(K ,v). This is
done using the maximum entropy method15 to invert the fol-
lowing integral equation:

Ḡ~K ,t!5E dv
e2vt

11e2bv
Ā~K ,v!, ~70!

where Ḡ(K ,t) is the imaginary-time Green function ob
tained from the QMC simulation of the cluster.

Since Ā(K ,v)521/p Im Ḡ(K ,v), the full frequency-
dependent coarse-grained Green functionḠ(K ,v) is ob-
tained using Kramers-Kronig relations. Then, the equatio

Ḡ~K ,v!5
Nc

N (
k̃

1

v2e2eK1 k̃2Sc~K ,v!
~71!

is solved for the real-frequency self-energySc(K ,v) using a
complex root finder.36 This self-energy may then be interpo
lated onto the latticek points using a high-level interpolan
which also preserves the sign of the imaginary part.

The above steps are unnecessary if the local quantities
to be computed since the local lattice and cluster Green fu
tions correspond one-to-one. For example, we may dire
analytically continue the local cluster Green function to o
tain the lattice density of states.

VI. APPLICATION TO THE 2D HUBBARD MODEL

We will now show the results of the application of th
DCA to the two-dimensional Hubbard model. The Hubba
model has a long history and is believed to contain
mechanism of various physical phenomena such as ma
tism, metal-insulator transitions and more recently superc
ductivity and non-Fermi-liquid behavior. Our intent in th
section is not to exhaustively study this model’s properti
but rather to use it to illustrate the power and limitations
the DCA and to survey what can be done.

Since the two-dimensional model is not expected to h
a finite-temperature magnetic or perhaps even supercond
0-15
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ing transition, we will add a hoppingt' ~Ref. 37! into the
third dimension between an infinite set of weakly coup
Hubbard planes

t'~kx ,ky ,kz!522t'~coskx2cosky!2 coskz . ~72!

We taket'!t, and treat the additional coupling at the DMF
level, so the self-energy is independent ofkz . This is accom-
plished by modifying the coarse-graining cells into rectan
lar solids of dimensionsDk, Dk, and 2p in the kx , ky , and
kz directions, respectively. After coarse graining, the probl
is reduced to a two-dimensional cluster. Information relev
to the mean-field coupling between the planes is contai
within G.

A. Results at half filling

The physics of the half filled model is a severe test of
DCA as well as finite-sized simulations~FSS! due to the
quantum critical point at zero doping. As this point is a
proached, both the dynamical and spatial correlation leng
diverge, and both the DCA and FSS are expected to fail

1. Antiferromagnetism

Earlier finite size simulations38,39 employing the QMC
method have led to the conclusion that the ground state i
antiferromagnetic insulator at half filling. Since the model
two dimensional, we know from the Mermin-Wagner the
rem that the transition temperature is necessarily zero. Bu
found in infinite dimensions,32 the DMFA predicts a finite
temperature transition even in two dimensions. This spuri
behavior may be attributed to the lack of nonlocal corre
tions in the DMFA. These correlations are known to indu
strong fluctuations particularly in reduced dimensions a
are responsible for the suppression of the finite tempera
transition. The DCA which includes these nonlocal corre
tions is thus expected to progressively drive the spuri
finite temperature transition found in the DMFA towards ze
temperature as the cluster size increases.

This behavior is illustrated in Fig. 8, where the inver
antiferromagnetic susceptibility is plotted versus tempera
for d50 and various values ofNc which preserve the lattice
symmetries as discussed in Sec. III C. At high temperatu
the susceptibility is independent ofNc , due to the lack of
nonlocal correlations. In contrast to FSS calculations,
low temperature susceptibility diverges atT5TN , indicating
an instability to an antiferromagnetic phase. AsNc increases
Nc.1, the nonlocal dynamical fluctuations included in t
DCA suppress the antiferromagnetism. For example, w
Nc51, the susceptibility diverges with an exponentg'1, as
expected for a mean-field theory; whereas the susceptibil
for larger Nc values diverge at lower temperatures w
larger exponents indicative of fluctuation effects.41 At first,
these effects are pronounced; however, asNc increases,TN
falls andg rises more slowly with increasingNc . This can
be understood from the singular nature of the spin correla
length, which at least in the largeU limit is expected to vary
asj}eA/T, whereA is a constant of the order of the exchan
coupling. For this quantum critical transition, we expect t
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DCA to indicate a finite temperature transition oncej ex-
ceeds the linear cluster size. Since correlations build ex
nentially, large increases in the cluster size will only redu
the DCA transition temperature logarithmically.

Note that the data forTN(Nc) falls on a smooth curve
except forTN(Nc54). This behavior was seen previously
the transition temperature of the Falicov-Kimball model, c
culated with DCA.7,8 TheNc54 data falls well off the curve
produced by the other data, and has a much larger expo
indicating that fluctuation effects are more pronounced. P
ently this behavior is not completely understood but may
related to the fact that the maximum coordination number
Nc54 is two, whereas it is greater than two for cluster siz
larger thanNc54.

An interplanar coupling can significantly alter the pha
diagram. However, since the superexchange coupling va
roughly like the square of the hopping, it is necessary
maket' a significant fraction of the intraplanar couplingt in
order to see an effect. For example, ift' /t50.4, the ratio of
the interplanar to intraplanar exchanges is roughlyJ' /J
'0.16. In Fig. 9 the antiferromagnetic transition temperat
is plotted versusNc when t' /t50,0.4,1.0 whenU5W52
and d50. For botht' /t50.4 andt' /t51.0, the transition
temperatures forNc516 and 32 are the same to within th
numerical error. Thus, the finite-temperature transitio
found for small clusters, can be preserved asNc→` by in-
troducing the interplanar coupling.

2. Mott transition at half filling

In the strong coupling limit, a Mott Hubbard gap is e
pected to open in the charge excitation spectra. In the w
coupling limit, the situation is less clear. Since the grou
state of the half filled model is always an antiferromagn
the system remains insulating, but the nature of the insu
ing state in weak coupling is less clear, and depends upon
dimensionality. In one dimension, Lieb and Wu40 showed
long ago that a charge gap opens as soon asU.0. There is

FIG. 8. The inverse antiferromagnetic susceptibility versus te
perature for various cluster sizes. The lines are fits to the func
(T2TN)g. In the inset, the corresponding Nee´l temperatures, deter
mined by the divergence of the susceptibility, are plotted. The
is a polynomial fit to the data, excludingNc54.
0-16
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a spin-charge separation and there is no long range o
even atT50. Hence, the Slater scenario is not respons
for the metal-insulator transition and the low energy s
excitations are described by the Heisenberg model. In infi
dimension, the model can be mapped to a self-consis
Anderson impurity problem. The solution of the se
consistent equations have been obtained numerically by v
ous authors. For smallU!W, the antiferromagnetic transi
tion temperatureTN is higher than any temperature at whic
there is a metal-insulator transition in the paramagn
phase. Hence, the metal-insulator transition in infinite dim
sion is due to the Slater mechanism. In two dimensions,
Mermin-Wagner theorem prohibits long range order for a
T.0, and we find that the weak coupling transition is simi
to what is found in one dimension.

The density of statesr(v) ~shown in Fig. 10! confirms
the destruction of the Fermi-liquid quasiparticle peak
short-range antiferromagnetic correlations. With increas
Nc , the gap opens fully, and the Hubbard side bands bec
more pronounced.

In Fig. 11 the behavior ofTN is compared to the tempera
tureTg where the gap opens. In contrast toTN , Tg increases
with the size of the cluster. This confirms the conclusion t
a gap, which is not due to antiferromagnetism alone, open
finite temperatures in the 2D Hubbard model.

3. Comparisons with finite system simulations

A great number of simulations have been performed in
half-filling regime of the two-dimensional Hubbard mod
over the last decade. Most of them are based on QMC w
imaginary-time data analytically continued by the maximu
entropy method. While these studies all agree forU.W, for
U,W they have led to conflicting results.16 The reason is
that the metal-insulator transition is related to the antifer
magnetic transition so that it is difficult to distinguish b
tween the two physical processes. As a consequence va
conflicting scenarios for the disappearance of the quasip
cle peak at low temperatures have been proposed. These
troversies are inherent to the limitations of the finite syst
simulations. There are artificially introduced finite size ga
when the correlations become comparable to the system

FIG. 9. TN versusNc for different values oft' /t.
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This does not occur whenU.W because the Mott gap open
well before the magnetic correlations set in. It is thus fair
ask to what extent the conclusion reached with the D
above may be more reliable. For this it is necessary to co
pare the DCA to FSS.

In Figs. 12 and 13, we show the imaginary-time Gre
function G(t) at the Fermi pointX5(p,0). This quantity
has a more rapid decay from its maximum atG(b/2) when
the effects of the correlations are stronger. In finite syste
the decay is sharper for smaller lattices while in the DCA it
the opposite. This behavior marks the fundamental differe
between the FSS and the DCA. At low temperatures, in F
the correlation length is greater than the lattice size. Th
the effects of the correlations are overestimated for sma
clusters because these systems are artificially closer to c
cality than a system in the thermodynamic limit. This te
dency is reduced by increasing the cluster size, which mo
the system in the direction of the thermodynamic limit. T
situation is radically different in the DCA where the syste
is already in the thermodynamic limit. The DCA approxim
tion consist in restricting correlations to within the clust
length in the infinite system. As the cluster size increas
possible longer-range correlations are progressively

FIG. 10. The single-particle density of statesr(v) at b532,
U51, andt'50.

FIG. 11. The Ne´el TN and gapTg temperatures versusNc when
U5W52, d50, andt'50.
0-17
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cluded. Thus, the effects of the correlations increase with
cluster size.

The density of states shown in Fig. 13 supports th
conclusions. The finite size gap in the FSS decreases w
the cluster size goes fromNc516 to 64. While, in the DCA
for Nc516 there is a pseudogap that turns into a true
when the cluster size is increased to 64. Since by const
tion, the DCA underestimates the gap, we can affirm tha
this temperature, the gap exists in the thermodynamic lim
Its actual value is bracketed by the FSS and the DCA. T
behavior is characteristic of the DCA. It has been extensiv
verified on the one-dimensional Hubbard model.14

B. Results away from half filling

1. Sign problem

The most serious limitation of QMC calculations at lo
temperatures is the sign problem. Off half filling, the sign

FIG. 12. The imaginary-time Green function at the pointX
5(p,0) on the Fermi surface from finite size QMC~filled symbols!
and from DCA~open symbols! with U51.1, b516, t'50, and
Nc516,36,64. The size increases from top to bottom for FSS.
size increases from bottom to top for DCA.

FIG. 13. The density of statesr(v) from finite size QMC~top!
and from DCA~bottom! at U51, b532, t'50, andNc516,64.
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P($si%)}det@Gc
↑($si%)#3det@Gc

↓($si%)# can be negative so
that it can no longer be interpreted as a probability distrib
tion. The solution is to reinterpretuP($si%)u as the probability
of the configuration$si% and associate its sign with th
measurement.42 For any operatorO, this becomes

^O&5

(
si

P~$si%!O~$si%!

(
si

P~$si%!

5
( 8
si

sgn~$si%!O~$si%!

( 8
si

sgn~$si%!

,

~73!

where sgn($si%) is the sign ofP($si%), O($si%) is the value
of the operator for the field configuration$si%, and the
primed sums are over configurations generated by imp
tance sampling. In finite system simulations, as the temp
ture is lowered, the average sign becomes exponent
small42,30 so that it is no longer possible to obtain good s
tistics. This sign problem has posed a formidable challe
in the field of numerical simulations for nearly two decade

Some recent works have brought some hope. Gubern
and Zhang43 and Zhang44 have shown that by putting a con
straint on the fermion determinant, one can construct an
proximate algorithm which shows some improvement on t
problem. While the resulting algorithm seems to be free fr
the sign problem, it is possible that the constraint introduc
may affect the ergodicity of the algorithm. The ergodici
question is suggested by the work of Sorella45 who employ a
similar idea as the former authors but who arrived at diff
ent results. The most promising new direction seems to
that of Chandrasekharan and Weise.46 They proposed a new
algorithm which is rigorously free from a sign problem fo
certain classes of models. The basic idea is to decompo
configuration of fermion world lines into clusters that co
tribute independently to the sign. There are two type of cl
ters: clusters whose flip changes the sign called meron
others that do not modify the sign after a flip. Configuratio
containing meron clusters contribute 0 to the partition fun
tion, while all other configurations contribute 1. Hence, th
cluster representation describes the partition function as a
of clusters in the zero-meron sector.

The sign problem remains in DCA simulations, as illu
trated in Fig. 14 where the average sign is plotted ver
inverse temperature for various values ofU whend50.1 and
Nc58. In the inset, the average sign is plotted versus dop
whenU5W52, b554, andNc58. As in FSS, the sign is
worst just off half filling. However, the DCA sign problem i
significantly less severe than that encountered in FSS. Th
illustrated in Fig. 15, where the average sign for the DC
and the BSS simulations of Whiteet al.30 are compared
when U/W51/2, d50.2, andt'50. Whent' is finite, the
average sign increases further~not illustrated!. We attribute
this strange behavior to the action of the host on the clus
but its actual mathematical justification is still mysteriou
Nevertheless, due to the large reduction in the severity of
sign problem, we are able to study the physics at sign
cantly lower temperatures than is possible with FSS.

e

0-18
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2. Single-particle properties

Much can be learned about the single-particle proper
of the system, especially Fermi-liquid formation, from stud
ing the momentum distribution functionn(k), the single-
particle spectraA(k,v) and the single-particle self-energ
S(k,v). For a Fermi liquid, the self-energyS(kF ,v);(1
21/Z)v2 ibv2 whereb.0, 1/Z.1, andkF is a point on
the Fermi surface. The correspondingA(kF ,v) is expected
to display a sharp Lorentzian-like peak, andu¹n(k)u is also
expected to become sharply peaked at the Fermi surfac
each case, these quantities are calculated by first interp
ing the cluster self energy onto the latticek points.

FIG. 14. The average sign as function of the inverse tempera
b for Nc58 at d50.1 for U51.0,1.5,2.0. In the inset, the averag
sign is plotted versus dopingd when U5W52, t'50, and b
554.

FIG. 15. A comparison of the average sign for the DCA and
simulations30 whenU/W51/2,d50.2,t'50.
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For example, the gradient of the momentum distributi
function is plotted in Fig. 16 whenU51,b544,d50.05 for
different values ofNc ~this temperature would correspond
roughly room temperature for the cuprates in units where
bare bandwidthW52 eV). Apparently, at this temperature
there are two Fermi surface features, one centered aG
5(0,0) and one centered atM5(p,p). The Fermi surface
centered atG5(0,0) has roughly the volume expected
non-interacting electrons, so we will call it the electronlik
surface and the other holelike. Note that the holelike Fe
surface becomes more prevalent, and the peak n
(p/2,p/2) diminishes, asNc increases. We therefore attribu
this behavior to short-ranged correlations.

We can further resolve the different surface features,
investigating the single-particle spectrumA(k,v) as shown

re

FIG. 16. u¹n(k)u versusk when U51, b544, t'50, andd
50.05 forNc51, 8, and 16.
0-19
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in Fig. 17 for U51, b544, d50.05, andNc516. The
graph~d! on the upper left of Fig. 17 plots the correspondi
location of the maxima ofu¹n(k)u. Along the direction from
G to M, A(k,v) shows a relatively well defined and sym
metric peak atv50 at the location as indicated by the max
mum of u¹n(k)u. The only notable feature is that the peak
a bit better defined fork closer to the zone centerG. Along
the direction fromM to X, the part of the holelike Ferm
surface closest to theX point is resolved. Here the peak i
A(k,v) crosses the Fermi surface at roughly the samk
where the peak inu¹n(k)u is seen; however, the peak i
A(k,v) is broader and is heavily skewed to higher freque
cies. Finally, along the direction fromX to G, we find very
sharp peaks inA(k,v); however, none occur atv50 indi-
cating that there are well defined quasiparticle excitati
along this direction, with a small pseudogap, presumably
to the short-ranged order. This pseudogap behavior beco
more pronounced as the temperature is lowered.

This can be seen in the density of states, shown in Fig
where the gap is more pronounced. At high temperatu
b54 the Hubbard side bands are apparent atv'61/2. As
the temperature is lowered, a central peak begins to deve
At low temperatures,b*24 a pseudogap begins to develo

More can be learned by investigating the self energy
rectly. In Fig. 19, both the real and imaginary parts of t
self-energy are plotted for the three values ofk indicated by
filled circles in Fig. 17~d!. The self-energy on the part of th

FIG. 17. ~a!–~c! The single-particle spectrumA(k,v) for U
51, b544, d50.05, t'50, andNc516 along certain high sym
metry directions. The arrows and bold lines in~a! and ~c! indicate
the spectra which cross the Fermi energy with a peak closestv
50. In ~b!, no such peak is found which crosses the Fermi ene
~d! the maxima of theu¹n(k)u data illustrated in Fig. 16 plotted
versusk.
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Fermi surface along the direction fromG to M, looks roughly
Fermi-liquid-like. However, the self-energy on the parts
the Fermi surface closest toX have pronounced non-Ferm
liquid character, especially atk5(p,0.48) where the rea
part displays a minimum and the imaginary part crosses
Fermi energy almost linearly. Atk5(2.571,0), the real par
again displays a minimum, but the imaginary part has
almost Fermi-liquid-like maximum at the Fermi energy, a
then once again the scattering rate increases dramatica
higher energies. All of the points close toX share this dra-

y.

FIG. 18. The single-particle density of statesr(v) when U
51, d50.05, t'50, andNc516 for several different values of th
inverse temperatureb. As the temperature is lowered,r(v) devel-
ops a pseudogap due to the short-ranged antiferromagnetic or

FIG. 19. The low-frequency self-energy, plotted versusv for the
three k points denoted by filled circles in Fig. 17~d! where the
Fermi surface defined by the maxima ofu¹n(k)u crosses the high
symmetry directions.
0-20
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matic asymmetry; that excitations below the Fermi ene
are much longer lived than those above. Thus, we expect
the transport from these parts of the Fermi surface would
predominantly holelike.

The non-Fermi-liquid features, including the holelike d
tortion of the Fermi surface, the anisotropy and non-Fer
liquid features of the self-energy, and the pseudogap in
density of states, become more pronounced asNc increases.
Thus, it is reasonable to assume that these features will
sist asNc→`.

3. Superconductivity

We searched for many different types of superconduc
ity, including s, extended-s, p, andd wave, of both odd and
even frequency and we looked for pairing at both the zo
center and corner. Only the pairing channels with zero ce
of mass momentum~zone center! are enhanced as the tem
perature falls. Of these, only the even-frequencyd-wave pair
field susceptibility diverges. This is illustrated in Fig. 2
where all of the zone center susceptibilities are plotted ve
temperature forU51.5, Nc58, andd50.05.

In contrast to the antiferromagnetic susceptibility whi
falls asNc increases, thed-wave pair field susceptibility gen
erally rises withNc , except at very low temperatures. This
illustrated in Fig. 21. However, forNc516 at lowT, it falls
abruptly whenT&0.03. This behavior is consistent with th
lack of superconductivity in the purely two-dimension
model. However, in the inset, we see that a very small in
planar couplingt' /t50.2 causes the susceptibility to co
tinue to rise with decreasing temperature. Thus, perhap
very small interplanar coupling is able to stabilize the me
field superconductivity seen in smaller clusters.48,47

VII. SUMMARY

We have presented the algorithmic details of the dyna
cal cluster approximation. The technique consists of mapp
the original lattice problem to a problem involving a fini

FIG. 20. Various pair field susceptibilities calculated at the zo
center and plotted versus temperature forU51.5, d50.05, t'50,
and Nc58. Pairing is found only in the even-frequencyq50
d-wave channel.
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cluster dynamically coupled to an infinite host. The clus
problem may be solved by a variety of techniques that
clude the QMC method, the FLEX approximation or th
NCA.

An extensive account of a QMC method used to solve
cluster problem was given. Though this algorithm requi
significantly greater computer power than th
Blanckenbecler-Sugar-Scalapino algorithm which is of
used for finite systems, it has some advantages. First, it d
not show any numerical instability at low temperature; th
it avoids the time costly matrix factorization step that slo
down the BSS algorithm. Second, the algorithm is quite g
eral and can be applied to problems that do not have
explicit Hamiltonian formulation with known parameter
Third, a mean-field coupling to other degrees of freed
may be easily incorporated. Fourth, the minus sign prob
is far less severe in DCA simulations. This allows us to stu
systems at significantly lower temperatures, with stronger
teractions, or with larger clusters than can be studied with
BSS algorithm when the sign problem is apparent.

The full DCA algorithm is made of three separate units.
the first unit the coarse graining of the lattice is perform
and the resulting self-consistent cluster problem is solved
the QMC technique. This unit requires the formidable co
puter power available on massively parallel computers. T
second part deals with the calculation of the lattice one
two-particle Green functions from those of the embedd
cluster. In the last part the analytical continuation of t
imaginary-time Green functions to real frequency Gre
functions is performed.

In order to illustrate the originality of the DCA technique
we have applied it to the two-dimensional Hubbard mo
with a small interplanar mean-field coupling. The DC
method was developed to address some of the shortcom
encountered in the dynamical mean-field theory. The lack
nonlocal fluctuations in the DMFA leads to incorrect pred
tions when this method is applied to systems in finite dim
sion. In particular, we have seen that in violation of t
Mermin-Wagner theorem, the DMFA predicts a finit

e
FIG. 21. Thed-wave pair field susceptibility versusT for several

values ofNc whenU51.5, d50.05, andt' /t50.0. In the inset the
d-wave pair field susceptibility is plotted versusT when Nc516,
U51.5, andd50.05 for t' /t50.2.
0-21
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temperature transition in the two-dimensional Hubba
model. We have shown that in the DCA, this transition
progressively suppressed as the range of the fluctuations~i.e.,
the cluster size! is increased.

We also find that a finite-temperature gap persists w
into the weak coupling regime of the half filled model. A
the DCA systematically underestimates the gap format
these conclusions are valid in the limitNc→`. Since the
temperature where the gap opens increases withNc , while
TN decreases, the Slater mechanism is likely not respons
for the metal-insulator transition in the two-dimension
Hubbard model. The resulting phase diagram is consis
with Anderson’s view that the effective Hamiltonian for th
2D Hubbard model at half filling for allU.0 and D@T
~where D is the gap energy! is the 2D Heisenberg
Hamiltonian.49

We find no evidence for a Kondo peak, or the associa
Fermi liquid behavior for the unfrustrated model near h
filling. Since this is an essential feature of the DMFA so
tion of the doped model or the half filled model withU
&W, we conclude that the DMFA is a very poor approxim
tion for the two-dimensional model, especially for behav
such as the Mott transition, observed near or at half fillin

When the model is doped, the sign problem becomes
nificant and will certainly affect the quality of the result
However, the sign problem is significantly less severe th
that found in finite size systems, allowing us to explore th
model systems at significantly lower temperatures, lar
coupling or larger clusters than heretofore possible. In
doped model, we find evidence of non-Fermi-liquid behav
even for relatively small values ofU/W. This has been ob
ev
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served in the self energy, single particle spectra, and den
of states. We also find that thed-wave pair-field susceptibil-
ity is divergent for small clusters. A trend that is not prese
in the DMFA because the method cannot treat nonlocal or
parameters.

Finally, the DCA is a very versatile technique that may
applied to a variety of problems. A straightforward genera
zation of this algorithm to the periodic Anderson model
two dimensions will allow us to study the physics of th
recently discovered two-dimensional heavy fermion syste
In its present form, we have incorporated diagonal disor
in the 2D Hubbard model which will allow us to address t
interesting problem of disorder and interaction in two dime
sions. A future improvement of the DCA algorithm itself is
insert long range fluctuations in the algorithm which wou
be treated perturbatively.
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